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Relativistic effects in the sum rules for the d(y, p)n reaction
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The integrated and bremsstrahlung-weighted cross section for deuteron photodisintegration have

been calculated taking the relativistic one-body charge density and the two-body charge density with

its local and nonlocal contributions for several nucleon-nucleon potentials in pseudoscalar and pseu-

dovector pion-nucleon couplings. The relativistic correction lowers the enhancement factor for the
soft-core potentials and raises it for the hard-core potentials as well as for the Paris potential which

has velocity dependence in it to simulate the effect of the hard core. This increase and decrease pat-
tern of the enhancement factor is found to be related to the maxima of the deuteron ground-state

wave functions. Though there are some changes in the enhancement factor for different potentials,

they are not large enough to enable us to distinguish between the various hard-core or soft-core
nucleon-nucleon potentials.

I. INTRODUCTION

It is well known that photonuclear sum rules play an
important role in our understanding of the electromagnet-
ic interactions with nuclei. By knowing the ground-state
wave function and nucleon-nucleon interaction one can
calculate the first few moments of the deuteron photo-
disintegration cross section. The first sum-rule calcula-
tion for the y+d~n+p reaction was performed by I.ev-

inger employing the nonrelativistic (NR) one-body charge
density and the enhancement factor (k) obtained was com-
pared with the experimental cross section integr'ated up to
the pion threshold energy (k =0.35+0.10). Several au-
thors followed the same procedure for a number of realis-
tic potentials. An integration of the experimental cross
section including the 6 resonance yielded an enhancement
factor of (0.80+0.10) as reported in Ref. 6, which is
higher than the earlier one. This difference in the
enhancement factor and the suggestion of Hadjimichael
that the two-body charge density contributions to the in-
tegrated cross section can be used to distinguish between
the various two-nucleon potentials, encouraged several
workers ' to reinvestigate the sum-rule calculations in-
cluding the two-body charge density employing the pseu-
doscalar pion-nucleon (n.N) coupling. It was found that
contrary to Hadjimichael's suggestion, the sum-rule calcu-
lation cannot provide a guide line to distinguish among
the nucleon-nucleon potentials. A11 these calculations
were done considering NR one- and two-body (local con-
tribution only) charge densities.

Though the contributions of the relativistic and retarda-
tion correction to the dipole sum-rule for a relativistic
bound electron have been known for many years, " ' they
have not received any attention in deuteron photodisin-
tegration sum rules. Only recently Cambi, Mosconi, and
Ricci'" have shown that the relativistic corrections in the
charge density can reduce the well-known discrepancy be-
tween the theoretical and the experimental value of the
forward deuteron photodisintegration.

In this paper our aim is to include the relativistic

correction to the one-body charge density and the two-
body charge density considering its loca1 and nonlocal
contributions and study its effect on the enhancement fac-
tor and the bremsstrahlung-weighted cross section for the
pseudoscalar (ps) and pseudovector (pv) mN coupling. In
Sec. II we will describe the dipole operators for the rela-
tivistic one-body charge density and the two-body charge
density including both the local and nonlocal contribu-
tions and write the expressions for the enhancement factor
and the bremsstrahlung-weighted cross section. Section
III is devoted to a discussion of our results and a compar-
ison with other theoretical results.

II. CALCULATIONS

The one-body charge density electric dipole operator,

Di ———,+[1+~,(i)]r;,

will get modified for the relativistic effect as follows

(~i —~2),
ED&(rel) = (2p„—1)[(oi+o'2) X V„]

SM
P

+ (2p, —1)[(o i
—o'p) X V, ] . , (2)

where r; are the c.m. nucleon coordinates, p, =pp+Jfl„,
pI1 pp p pip and p„are proton and neutron magnetic
moments, and I is nucleon mass. The dipole operators,
derived from the two-body charge density as obtained by
Hyuga and Gari' by the unitary transformation method,
with the sign correction in the pion-in-flight term pointed
out by Jaus and Woolcock, ' may be expressed as the sum
of local (L) and nonlocal (NL) terms, Dz ——Dz(L )

+D2(NL) and may be written as'
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Dz(L) =— 2

2M 4m'

r

I (~1—~z),
& (&I rz)r + (ol +oz) ~

2
(o loz r+ F2~1 r)

(~1—&2)* A ) A

4M 4m 2
[(o'1o'2'r+ozoi r)$1— r(poo1'nz'+$2S12)] (3)

1 f i ++ A ++
Dz(NL) = —(v1 Xrz), I@0[oz Vo i.r+o 1 Voz.r]r+ T[(341+42)oi.oz+@2S12]VI,4M 4m p

(4)

where f /4vr=0. 081, p=m~c/A', m~ is the pion mass,
Siz is usual tensor operator, V=—V,V, acts only on the
initial and final wave function, and u, and a„are defined
for pseudoscalar and pseudovector nN couplings as fol-
lows:

for pseudoscalar,

where A=1003 MeV as obtained by Dominguez and
Clark, x =pr, A, =A/p, 7'1(x)=(e "/x)[1+(1/x)],
and C = —1 for the pseudoscalar and C = 1 for the pseu-
dovector m.N couplings. The integrated cross section a.o
for the deuteron is given by

oo——fo(8')dW

1s ———,,
1

CX~= 2

1 1~s= ops~ ~u=Y(pv+I) ~

for pseudovector,

(Sa)

(5b)
where

=m e (1+k),
Mc

The P's are defined in Refs. 8 and 9 and the 4's take
the following forms:

1+k = Q(d m
I [D [~,D, ]] f

d, m ) .
m

e,(r,p, A) =xy(r, p, A)
1+C

2

@1(r,p, A)

=—e "+e ~+ [A, Y'1(Ax) —F1(x)],
X A,

2 —1

@z(r,p, A, ) = —x/1(r, p, A),

(6a)

(6b)

(6c)

Here D, is the z component of the dipole operator

D=D1+bD1(rel)+Dz(L)+Dz(NL),

~
d, m ) is the ground state of the deuteron, and H is the

Hamiltonian, the sum of the kinetic and potential ener-
gies.

The expression for the enhancement factor (1+k) for
the Paris potential ' taken from Ref. 9 may be written as

1~k= —,
' g fdx g(JLST

~ UJQJ ~
JL'ST)gJLgg +oLL ' (1+2V, )JLL'ST, j

+ (gag ) (1+2V, ) +&-b L(L+ 1)
X

d VS

dX
(9)

gJL ~ gJL [D1+D2(L)1+gJL [AD1(rel)]

+gJL [Dz(NL)], (10)

where Uz MVJ Im ~c, e=——MB Im ~c, and B is the
deuteron binding energy. In our earlier paper (Ref. 9) the
term proportional to d V, /dx was missing [Eq. (11)]
though it was included in the calculation. The functions
gJL corresponding to Di and Dz(L) in the ps mN cou-
pling have been already defined in Refs. 8 and 9 and the
inclusion of the relativistic corrections and nonlocal con-
tribution of the two-body charge density will modify gg
as follows:

2

gzi ——(1—2p„) v'5/3 u 1—
4M

2v2
Ni

g» ———(1—2p„) p 3

4M

oo r 1 I s
goi .

1 —2pU

goi ———(1—2p„) v'2/3(~2u 1 +w 1 ),p
4M

g,", =(1—2p„) (u, —v 2wi),p
4M

(1 la)

(1 lb)

(1 1c)

(11cl)

(1 le)

where gg[&D1(rel)] for a different contributing set of J,
I., S, and Tare given by' Here u], m&, and m2 are defined in terms of the deuteron
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ground state wave functions u and ui and their derivatives
as

fzi = (14C'o—@1+7@z)2= 1

30

dQ Q
Q) =

dx x
dN 2N

LU) = +
dx, x
dw 3N

Wz=

(12a)

(12b)

(12c)

h 2 1
—— ( 144'o —c'1 —7@'2),2= 2

30

f23
——— (2&ho —3@1+4&2),

1

5

h» —— (4p —94, +24, ) .2 1

5

(14g)

(14h)

gg[Dq(NL)] which are only nonzero for S=T=1 will
be defined as

The bremsstrahlung-weighted cross section for the
deuteron can be written as

gzL. [Dz(&l-)l=
4 g fez, d

+ 4L. —sr p f
M 4m I o z dx x

oi(E1.) = f (o/W)dW

(15)

fJr, ui, (13)
1

2 dx

where up ——u, u2 ——io, and fJL and hJI are given below.

fpl (2+0 @1+@2)~ hpl ('2@o @1 @2) ~

p 1 p 1

3
'

3

(14a)

The bremsstrahlung-weighted cross section does not de-
pend on the two-body potential directly but will change
due to the change in g~z .

III. RESULTS AND CONCLUSIONS

f i i = —(2'4+ @1+4'2) Ii 1 1 @0+C'1
0 0

fxi = (2@o+Sc'i+ @2»p 1

15

Ii 21 —— (@p—54&1 —242),p 1

15

f2q
——2&2/5(24 o+ 4'2), h 23 ———2fz3,

fpi = —~2fpi, li pi =&2/3(c'p —241+ 4 z),
2 ~ 0 z .r 0f ii = -f iiV2

(14b)

(14c)

(14d)

(14fl

%'e have calculated the E 1 integrated and
bremsstrahlung-weighted deuteron cross section for the
Yale, super-soft core, ' Paris, ' Hamada- Johnston
(HJ) (Ref. 25) and modified Hamada-Johnston (HJM) po-
tentials. The super-soft-core potential of Ref. 24 is called
SSC-D here.

In Table I, the first column lists the enhancement fac-
tor k~, when only the one-body charge density is con-
sidered. The second column displays the combined effect
of the one-body charge density and the one-body relativis-
tic correction (k„,). The effect of the relativistic correc-
tion on the one- and two-body charge density without and
with the nonlocal term, respectively, are displayed in the

TABLE I. The enhancement factor for the various nucleon-nucleon potentials for the pseudoscalar
and pseudovector m.N coupling. The results for pseudovector mN coupling are given in the parentheses.

Potentials

SSC-0

SSC-C

SSC-B

SSC-A

Paris

0.529

0.523

0.479

0.441

0.439

0.497

0.533

0.539

k)+k„)
0.550

0.439

0.394

0.374

0.379

0.486

0.650

0.681

k)+k2 (NN)
+k2(ret)+ k„)

0.628
(0.565)
0.479
(0.451)
0.430
(0.402)
0.410
(0.382)
0.409
(0.388)
0.525
(0.497)
0.695

(0.659)
0.462
(0.451)

k l +kp(NN)+ k2(ret)
+k, (NI. )+k„,

0.631
(0.592)
0.496
(0.413)
0.447
(0.397)
0.426
(0.363)
0.421
(0.362)
0.600
(0.543)
0.695

(0.710)
0.463
(0.503)
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TABLE II. The position of maxima of deuteron wave functions u and m for the various nucleon-
nucleon potentials.

Potentials
The position
of maxima

1.162
0.784

SSC-D

1.190
0.952

SSC-C

1.218
0.994

SSC-8

1.218
1.022

1.190
1.022

Paris

1.162
0.952

1.183
0.861

1.160
0.880

third and fourth columns. Our results for k
& +k„& are

essentially in agreement with those of Cambi et al. ' for
the common potentials except for the Paris. The relativis-
tic correction has the effect of lowering the k& value for
potentials which have no core radius, whereas k& is in-
creased for the potentials with hard core. This pattern
can be explained by examining the position of the max-
imum of the wave functions u and w because the relativis-
tic correction involves u and m and their derivatives.
Table II shows the position of the maxima of u and w for
all the potentials. It is clear from Table II that the posi-
tion of the maxima for u and ur occur closer to the origin
for the potentials having hard core than those having soft
core except for the Paris potential which has velocity
dependence in it and which is introduced to simulate the
effect of the hard core. The hard core potentials have
larger values of the wave functions between the position
of the maximum and the asymptotic region and contri-
bute more to the integrated cross section.

In the third column we have shown the effect of the rel-
ativistic correction on the one- and two-body charge den-
sities when only the local term of the two-body charge
density is considered. The relativistic effects decrease the
values reported in Ref. 9 for the ps nN coupling, but the
pattern of decrease and increase in kt still exists as was
observed in the second column for k

& +k„t. The in-

elusion of the nonlocal term to the third column increases
the value for ps mN coupling but for the pv m.N coupling
case increases for the hard core potentials having the posi-
tion of the maxima closer to the origin and decreases for
the soft core potentials having the position of the maxima
further away from the origin. Our results with the in-
clusion of nonlocal terms are in agreement with those of
Cambi et al. ' for the Paris and HJ potentials for ps mN

coupling and with the SSC-D and SSC-B potentials for
the pv mN coupling.

Table III shows the bremsstrahlung-weighted cross sec-
t~on «r p$~ p]+pre[~

p ~ +pq(NN) +p2(ret) +p„~

p ~+p2( NN ) +p2( ret ) +p2(NL ) +p„&

in the first through fourth columns, respectively. The
value of o. ~(E1) for p& is higher than those of Cambi
et a/. ' However, our results are in agreement for p&+p,d
with Cambi et aI. for common cases within 0.3—2.0'%.
The effect of including the relativistic correction
p~+p2(NN)+p2(ret) is to lower the value of o &(E 1) in
comparison with Ref. 9 for ps mN coupling. For pv mN

TABLE III, The bremsstrahlung-weighted cross section for the various nucleon-nucleon potentials in
the pseudoscalar and pseudovector mN coupling. The numbers for pseudovector ~N coupling are given
in parentheses.

Potentials

SSC-D

SSC-C

SSC-8

SSC-A

Paris

HJ

HJM

o. l(E 1}
pi

3.7049

3.8864

3.7912

3.8189

3.8067

3.7082

3.7610

3.7175

~,(Z1)
p1 +prel

3.6948

3.8416

3.7818

3.8121

3.7997

3.7094

3.7618

3.7093

o. i(E 1)
p$+p2(NN)+ p2(ret)

+pre&

3.7134
(3.6980}
3.8588

(3.8445)
3.7988

(3.7847)
3.8280

(3.8147)
3.8158

(3.8023)
3.7270

(3.7123)
3.7730

(3.7534)
3.7326

(3.7183)

~,(E1)
pl+ p2(NN)+ p2(ret)

+p2(XI. )+p„)
3.7194

(3.6995)
3.8627

(3.8447)
3.8025

(3.7847)
3.8313

(3.8146)
3.8192

(3..8023)
3.7310

(3.7126)
3.7685

(3.7547)
3.7374

(3.7196)
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coupling, o ~(E1) is less than its value for p, . Inclusion
of the nonlocal term leads to the same value of o t(E1)
as reported by Cambi et al. ' for common cases within a
few percent.

In summary, the inclusion of the relativistic correction
to one-body and one-body plus the contribution of the lo-
cal two-body charge densities increases the enhancement
factor for the potentials with hard core and decreases the
enhancement factor for the potentials with soft core. This
pattern for the enhancement factor is found to be related
to the positions of the maxima of deuteron wave functions
u and w for hard core and soft core potentials. The effect

of relativistic correction to one-body and local and nonlo-
cal contributions of the two-body charge densities in-
creases the enhancement factor for ps m.N coupling,
whereas for pv mN coupling increase and decrease pat-
terns remain the same. However, the changes are not
large enough to enable us to distinguish between the vari-
ous potentials.
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