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A new variational method is applied to the solution of the Schrodinger equation for interacting few-body
systems. The results for three nucleons interacting via the spin-dependent Malfliet-Tjon potential and three
alpha particles interacting via the Ali-Bodmer potential are presented and compared with Faddeev and amal-
gamation of two-nucleon correlations in multiple scattering process results, respectively.

It can be seen that the VHO method is recovered when
I' = l.

The CVHO method was successfully applied' to three nu-
cleons interacting via central potentials. It turned out that
the introduction of the correlation factor I' drastically im-
proved the convergence of the triton static properties as well
as the tail of the one-body and two-body distribution func-
tions.

In this Brief Report both the results obtained for three
nucleons interacting via the spin-dependent Malfliet-Tjon
potential MT/I-III, 5 acting only in the s wave, and those for
three alpha particles interacting via the central Ali-Bodmer
potential do, acting in all partial waves, will be presented
and compared with the available results based on the amal-
gamation of two-nucleon correlations in multiple scattering
process (ATMS) approach7 and configuration space Faddeev
(FCS) calculations. 8

For pure S-wave ground states the CVHO trial wave func-
tion is written in the form'

F X b 4"o(x,y) X (2)

In a previous paper' a new complete basis of wave func-
tions for the treatment of interacting few-body systems has
been introduced with the aim of improving the existing
variational-type calculations, particularly the ones based
upon the expansion of the bound states onto the harmonic-
oscillator basis [variational harmonic oscillator (VHO)
method]. As a matter of fact, even with simple interac-
tions, like, e.g. , the central nucleon-nucleon potentials, it
turned out that, (i) the convergence of- the ground-state en-
ergy can be reached only by using a high number of basis
states (see Ref. 1), (ii) the convergence of the energy is no
guarantee that other quantities converge as well (see Ref.
3), and (iii) VHO wave functions have a wrong asymptotic
behavior at large interparticle distances, which is the reason
for the observed poor convergence of the momentum distri-
bution at low momenta (see Ref. 4).

As explained in Ref. 1, the new variational method
[hereafter called the correlated VHO (CVHO) method] is
based upon the expansion of few-body bound states onto a
complete set of properly correlated basis states obtained by
multiplying the usual HO wave functions by a scalar sym-
metric correlation factor of the Jastrow form:

F= fJ f(lr r, l) . —

n&
n —&r/b )2f(r) = ( [1—ate

" ' ] [1+e2(r/b2) 'e ' ] ]'i' (3)

for the 3-o, system and

(4)

for the three-nucleon system.
The results obtained with the VHO and CVHO methods,

reported in Tables I and II, clearly show that the rate of
convergence of the calculated quantities is drastically im-
proved by the CVHO method.

For the 3-n system (see Table I), the CVHO method
yields 99.9% of the final value of the energy already with
Qo= g (22 basis states), whereas with the VHO method the
same energy is obtained only when Qo=32 (525 basis
states). The agreement between the ATMS and CVHO
results is excellent. In Fig. 1 the charge form factors calcu-
lated by the VHO, CVHO, and ATMS methods are com-
pared. It clearly appears that for the 3 nsystem (with t-he

Ali-Bodmer potential) the VHO, CVHO, and ATMS
methods yield very similar results. However, we would like
to stress that, (i) in the CVHO method it is sufficient to
consider 8 excitation quanta only, whereas in the VHO
method one has to use 32 excitation quanta, and (ii) the
CVHO method can be applied even for potentials acting in a
finite number of partial waves, whereas in the ATMS
method the treatment of such a case seems to be a very dif-
ficult task.

For the three-nucleon system the improvement of the
convergence is more remarkable than for the 3-n system.
From Table II it can be seen that the CVHO method yields
99.5% of the final values of the computed quantities at

where X is the appropriate spin factor, 4kno(x, y) is an S-
wave HO function expressed in terms of intrinsic coordi-
nates

[ x = r~ —rq, y = 2 [r3 —(r) + r2)/2]/3 }

k stands for ( n„, n~, l„,l~] where n and l are radial and orbital
quantum numbers; N is the number of HO states corre-
sponding to excitation quanta

Q & Qo 2n„+——2n +I„+I
with I„=1»; finally, I' is the correlation factor of Eq. (1).
The two-body correlation function f(~r; —r, ~) =f(r) used
in the calculations is
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TABLE I. 3-a system: ground-state energy (8), mean kinetic energy ((T)), mass radius (R~) and the form factor evaluated at

q =2.D fm (iF~,„i) calculated by the VHO and CVHO methods with the Ali-Bodmer potential do (Ref. 6) (acting in all partial waves) for
various values of the number of oscillator quanta Qo. For the VHO basis the value of the harmonic-oscillator (HO) length is a =2.DD fm,
which corresponds to the best variational energy at Qo= 2D. The variational parameters [the HO length and the correlation function parame-
ters appearing in Eq. (3)] used in the CVHO basis are a=2.54 fm, &i=1.00, bi=2.25 fm, n~=4. 49, ~2=2.57, b2=2.00 fm, n2=3, 03.
These values have been obtained by minimizing the variational energy at Qo=8. The results obtained by the ATMS method (Ref. 7) are
also reported.

Qo

B
(MeV)

VHO basis
(T)

(MeV)
Rm

(fin)
IF,„I
x10—2

Qo

CVHO basis
(T)

(MeV)
Rm

(fm)

0
4
8

12
16
20
24
28
32

153.70
—1.61
—3.70
—4.66
—5.06
—5.13
—5.14
—5.16
—5.17

7.78
8.42
6.30
7.21
7.53
7.53
7.56
7.62
7.66

1,41
2.23
2,46
2.45
2.44
2.44
2.44
2.44
2.43

26.4
9.5
6.3
6.8
6.5
6,4
6.4
6.4
6.4

0
2
4
6
8

10
12

5.62
—3.19
—4.88
—5 ~ 14
—5.17
—5.18
—5.18

11.35
7.47
7.05
7.62
7.70
7.70
7.70

1.88
2.33
2,43
2.42
2.43
2.43
2,43

0.4
4.1

7.9
6.3
6.4
6.4
6.4

—5.18 7.71 2.43
ATMS (Ref. 7)

6.4 —5.18 7.71 2.43

go=10 (56 basis states), while in the VHO method the
convergence is far from being reached even at go= 26 (560
basis states); in particular, 11'/o of the energy and 22'/o of
the mixed-symmetry S-wave probability (P ) are still miss-S
ing at go=26.

The agreement between the COHO and FCS results is

excellent for the S'-wave probability and the charge radius
of H, whereas the binding energies differ by —50 keV;
since we are very confident in our extrapolated value, it
~ould be very interesting to have an independent check of
H binding energy with the MT/I-III potential. From the

results presented in Table II, it can also be seen that the ex-

TABLE II. Triton: ground-state energy (8), mean kinetic energy ((T) ), 5'-wave probability (P,), point proton radius (Rz) and the

momentum distribution n(k) evaluated at k=0 calculated by the VHO and CVHO methods with the spin-dependent Malfliet-Tjon potential
MT/I-III (acting in the s wave only) for various values of the number of oscillator quanta Qo. For the VHO basis the value of the HO
length is a = 1.2D fm, which corresponds to the best variational energy at Qo= 2D. The variational parameters [the HO length and the corre-
lation function parameters appearing in Eq. (4)] are a = 246 fm, et =443, bt' = D.6D fm, e2=3.5D, b2 = 1.81 fm. These values correspond to
the best variational energy at Qo=8. The results based on the Faddeev theory (Ref. 8) (FCS) are also reported. Finally, the energy calcu-

—~ei'0, )
lated at Qo corresponds to the extrapolated value of Qo ~ according to the formula 8(Qo) =8(Qo )e

Qo

B
(MeV)

VHO basis
(T)

(Me V) (o/o)

Rp

(fm)

n(k =0)
(fm3) (MeV)

(T)
(Mev)

CVHO basis
I',

S

('/o)

Rp

(fm)

n(k=0)
(fm3)

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Q
m!

91.64
21,67
12.27
3,60
0.37

—2.27
—3.87
—4.98
—5,78
—6,36
—6,80
—7.12
—7.38
—7.57

—8.5 +0.2

—8.54

86.40
58.72
48.55
41.80
38.77
36.28
34.9S
33.85
33.16
32.54
32.14
31.79
31.52
31.31

0.0
1.12
0.94
0.87
0.94
0.99
1.06
1.14
1.22
1.29
1.36
1,42
1.48
1.53

1.95

0.84
1.07
1.19
1.28
1.33
1.38
1.42
1.44
1.47
1.50
1,51
1 ~ 52
1.53
1.54

1.62

3.90
6.66
8.77

11.6
13.5
15.9
17.7
19.5
21.1
22, 7
24.0
25.3
26.4
27.4

PCS (Ref.8)

—5.86
—7.81
—7.99
—8.35
—8.40
—8.44
—8.460
—8.473
—8.482

—8.50 + 0.01

—8.54

41.72
30.69
30.69
29.99
30.05
30.07
30.03
30.03
30.03

0.0
1.69
1.86
1.94
1.94
1.96
1.96
1.96
1.96

1.95

1.38
1.53
1,55
1.59
1.60
1.61
1.61
1.61
1.61

1.62

20.4
27.0
28.0
33.7
33.6
35.8
36.5
37.0
37.2
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FIG. 1. Charge form factor of the 3-a system corresponding to
the Ali-Bodmer potential do acting in all partial waves. Dashed line,
VHO method at Qo = 32 (525 basis states); full line, CVHO method
at QUA= 12 (50 basis states); bars, ATMS method (Refs. 7 and 9).

trapolation of the calculated energy to Qa ~ may not be
very reliable in the VHO method.

In Fig. 2 the charge form factors of 3H calculated by the
VHO and CVHO methods are compared. In the same fig-
ure the convergence of the form factor evaluated at
q=5.2 fm ' and q=8.6 fm ' is also shown. It can be seen
that the convergence is completely reached only in the

CVHO method. This is due to the improvement of the eon-
' vergence of P, since the S'-wave admixture greatly affects
the elastic form factor as was explicitly shown in Ref. 2(a).

In Fig. 3 the point proton density of H evaluated by the
VHO and CVHO methods is shown. It turns out that the
Gaussian decay of the VHO density starts already at
y —3 fm, whereas the CVHO density has the correct
asymptotic behavior up to y —9 fm. As a further test of
the tail of our CVHO wave function, we have evaluated the
momentum distribution n(k) at k=0 (see Ref. 4).

From Table II it clearly appears that the convergence of
n ( k =0) is reached only with the CVHO method.

In a previous paper' the CVHO method was used with
pure central interactions and excellent agreement with
Green's function Monte Carlo (GFMC), variational Jastrow
Monte Carlo (VJM), and Faddeev (FCS) results were ob-
tained. Also, recent ATMS calculations' for 3H using the
MT/V interaction5 yield results in agreement with our
CVHO method' (a thorough numerical comparison of the
two methods is under investigation"). The results exhibit-
ed in this Brief Report show an agreement of the same
quality with FCS and ATMS methods when spin-dependent
N-N interaction and local o,-a potential are used. It should,
however, be pointed out that a very small but not negligible
difference (up to —200 keV) exists between the FCS and
our energies when the N-N interaction acts only in the s
wave for both central and spin-dependent potentials.
Results for Reid soft-core potential and I-dependent n-o. in-
teraction will be published elsewhere.
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FIG. 2. Charge form factor of 3H with the spin-dependent
Malfliet-Tjon potential MT/I-III acting in the s wave only. Dashed
line: VHO method at Qz=-26 (560 basis states). Full line, CVHO
method at go=12 (84 basis states). In the right upper corner the
convergence of the form factor evaluated at q=5.2 fm and
q=8, 6 fm ' is reported. Dashed line, VHO method; full line,
CVHO method.

FIG. 3. Point proton density of 3H with the MT/I-III potential
acting only in the s wave. Dashed line, VHO method at Qa=26;
Full line, CVHO method at Qc= 12. Note that up to y —9 fm the
tail of the CVHO density is proportional to e 2&&/y2 where

y = (M~ E3~/lr2)'/2 with E3 being the calculated ground-state energy.
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