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Microscopic calculation of the imaginary Lane isospin potential 8'&
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Results of a determination of the imaginary Lane potential 8'& are presented, based on a second-
order calculation of the 25 MeV Ca(p, n) Sc 0+ analog reaction. Inelastic (p,p '), (n,n ') and
charge exchange (p,n ') particle-hole intermediate nuclear states are used, and an exact treatment of
the continuum and of second-order knockout exchange are included. A complex-energy
intermediate-projectile Green s function is used to account for energy averaging of the incident
beam. The sign of W~ is shown to be positive, in agreement with phenomenological results, but the
calculated magnitude is about a factor of 2 weaker than the Becchetti-Greenlees phenomenological
potential. The contribution from an intermediate ground-state deuteron projectile is calculated in

the zero-range approximation for pickup and stripping and is found to be about 3 of the contribu-

tion from the sum of all intermediate particle-hole states.

I. INTRODUCTION

In the past few years the calculation of the imaginary
nuclear optical potential from microscopic models of nu-
clear matter' and of finite nuclei has been undertaken
by several groups with considerable success. In the nu-
clear matter approach, the complex two-body t matrix in
the continuum is calculated using the Bethe-Goldstone
equation to take into account the Pauli principle, and a
local-energy approximation is made to allow t to be ap-
plied to finite nuclei. The t matrix, which is complex, is
then folded with the nuclear density to obtain both real
and imaginary parts of the nuclear optical potential for
finite nuclei. In the nuclear structure approach, the
optical potential is calculated in finite nuclei using a set of
random-phase approximation (RPA) transition densities
to describe fairly realistically the response of the nucleus
to the "external field" of the projectile. Realistic nuclear
forces are usually used to calculate an effective projectile-
target nucleon interaction, which should, however, be cali-
brated against nuclear inelastic scattering cross section
data. The optical potential is calculated to second-order,
proceeding to the RPA particIe-hole intermediate states
and back to the ground state. The propagation of the pro-
jectile in the intermediate state is described by an optical-
potential Green's function, which for open target channels
is complex and accounts for absorption.

The transition form factor for inelastic scattering is
also complex. In the collective model this form factor is
calculated as the derivative of the optical potential includ-
ing the imaginary part. The imaginary term is not only a
natural result of using the collective model, but is also re-
quired to fit the data. ' In the nuclear matter approach
to inelastic transitions, the complex form factor results

.-from folding a complex t matrix with transition densi-
ties, although these form factors do not satisfy the cri-

terion of Ref. 8. In the nuclear structure approach, ' a
complex form factor results from second-order excitation
of the final state via some intermediate open channels.
Realistic calculations of the imaginary form factor in the
nuclear structure approach are difficult but technically
possible.

The (p,n) reaction to the analog of the target ground
state is a simple example of a nonelastic scattering process
which should also have a complex transition form factor.
The theoretical approaches discussed in the preceding
paragraph also apply to charge exchange. Computational-
ly, analog charge exchange in even nuclei is simpler than
inelastic scattering because the requirement that AJ=O
restricts AJ~ ——AJ2 for the individual steps of the two-step
mechanism.

Brown et al. " have undertaken a calculation of the
two-nucleon isospin potential V using ~ and p meson ex-
change potentials in first and second order. Since these
particular meson potentials are purely of the spin-isospin-
flip type (central plus tensor), a contribution to v r comes
in first order only from the exchange term, which is, how-
ever, small and varies slowly with energy. " The principal
contribution both to magnitude and energy dependence of
the r r potential is due to the tensor force in second order,
which gave a positive V&, in satisfactory agreement with
phenomcnological interactions. Reference 11 did not treat
the imaginary contribution to the second-order interac-
tion, but claimed it to be small ~ By contrast, the
phenomenological value' is large and also positive.

Because of the intrinsic interest in calculation of the
imaginary part of a nonelastic process, and, because of the
importance of 8

~
for charge exchange and for semidirect

photocapture, ' ' we have undertaken a calculation of
W& in second order for the closed-shell nucleus Ca.

In calculations of the imaginary optical potential, col-
lectivity in the intermediate inelastic transitions is impor-
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tant. The residual interaction pushes isoscalar strength
downward and into the open-channel region of energy,
thereby enhancing the absorption by inelastic channels
and therefore increasing the imaginary optical potential.
The strong isoscalar collective inelastic states do not have
strong matrix elements, however, for charge exchange to
the analog state, Furthermore, isovector states, which
~ould couple strongly to the analog state, are pushed up
in energy by the interaction, and therefore the collectivity
would tend to diminish rather than increase the absorp-
tion. We therefore choose to calculate IV~ using pure
particle-hole states, knowing that we are not losing a large
fraction of the charge-exchange strength. We treat the
particle continuum by generating exact scattering wave
functions in a Woods-Saxon potential.

Section II contains a description of the theory, Sec. III
gives numerical results and compares calculated results
with empirical values, and Sec. IV contains a summary
and discussion.

II. THEORY

A. Derivation of the second-order Lane potential

The V, v"v. operator acting in second order results in a
sum of isovector and isoscalar operators. By considering
second-order charge exchange we are certain to pick out
only the isovector part. There are four types of intermedi-
ate particle-hole excitations which will contribute in
second order to the excitation of the isobaric analog state.
These involve intermediate inelastic excitations and inter-
mediate charge exchange excitations, each with either the
intermediate particle or intermediate hole scattered in the
second step of the excitation as in Fig. 1. The sum of the
contributions from all these diagrams gives a second-order
charge exchange operator V'~ ', which adds to the first-
order real operator and contributes an imaginary part to
the transition operator.

n p '

Pjl

n n'~g, p

Alternatively, one may obtain V'&
' by considering the

difference between neutron and proton elastic scattering
for the nucleus. The various second-order contributions
to elastic scattering are shown in Fig. 2. Subtracting the
contributions of diagrams (a), (b), and (c) from those of
(d), (e), and (f) and equating this to the difference between
nuclear neutron and nuclear proton potentials based on
the Lane model gives us an expression for the second-
order contributions to the Lane potential:

X—Z X—ZV„—V = V+ V, — V — Vi

X —Z
2A

V) .

However, Eq. (1) need not be correct. The difference
between V„and V& can. be due not only to the isospin
conserving Lane potential but also to isospin nonconserv-
ing Coulomb corrections (see Sec. IIB). We must there-
fore directly calculate the four terms of the second-order
charge exchange amplitude shown in Fig. 1. Details of
the derivation are carried out in the Appendix with the re-
sult

(a)

FIG. 1. Second-order particle-hole diagrams leading to the
charge-exchange (p,nj reaction. These four diagrams contribute
to the Lane potential Vl+i 8'~ when the final nuclear state is an
analog state.
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where mi are various particle hole states; n refers to neu-
trons and p to protons; f~ and f„are Fermi energies for
protons and neutrons, respectively; Vo and V„are central
and tensor noncharge-exchange and charge-exchange po-
tentials (with the r r operation on target and projectile al-
ready carried out); and g~; is the projectile Green's func-
tion representing the propagation of the projectile in the
intermediate state. Because V, and Vo+V have opposite

signs, and because V~ is small, all terms of Eq. (2) except
the spin independent third and fourth have signs opposite
to that of the Green's functions, which has a negative
imaginary part. The third and fourth terms are the hole-
scattering terms of Figs. 1(b) and (d), which were found in
Ref. 10 to subtract from the particle-scattering terms.
These terms tend to be relatively small and confined to
the interior of the nucleus. They therefore suppress the
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The difference between neutron and proton second-order
optical potentials is then

p n
I

I( n n p Jj ~l n

V(2) V(2) + Z V(2) V(2)
n p 2+ 1 cc (3)

"jl I"

(d) (e)

FIG. 2. Second-order particle-hole diagrams contributing to
the neutron and proton optical potentials.

where V,', ' is the Coulomb correction to the second-order
optical potential. The two functions on the right are not
uniquely determined by the single equation Eq. (3). How-
ever, from the charge exchange we may define V'&

'

uniquely from the matrix element for charge exchange,

M(2) ~ o V(2) +N Z V(2)
~ r'2T

2A 2A

where the right-hand side is the charge-exchange matrix
element of the Lane potential. Eliminating VI between
Eqs. (3) and (4) then gives us a formula for the second-
order Coulomb correction,

(5)

interior contribution to V&
' but leave the overall sign of

Eq. (1) as positive in both real and imaginary terms. The
sign of W& is therefore in agreement with the phenomeno-
logical Lane potential.

As an estimate of the dependence of VI ' on N, Z, and

3, note that in each term there is a sum over a large set of
single-particle states, for example, over particle statesI ~f„ in the first term. Ignoring the energy dependence
of the Green's function, which provides an upper cutoff
on particle-hole energies related to the closing of channels,
and ignoring the incompleteness of the sets of states, we

may think of carrying out the infinite m sums using clo-
sure. There remains in each term a sum over the neutron
excess (f~ to f„) which should give a magnitude roughly
proportional to X—Z. Furthermore, the remaining two
single-hole wave functions are each normalized to the nu-
clear size, the product having a dependence on mass num-
ber of I/A. This closure argument cannot be used for the
sum over hole states in the third and fourth terms of Eq.
(2). For these terms we can estimate that the sums over
hole states i from 0 to f~ and 0 to f„, respectively, are
proportional to Z/A and N/A, respectively, which are
then roughly mass independent. The remaining particle
sum, cut off by the interaction with (bound) hole states,
should again depend on N, Z, A as (N —Z)/A. According
to this argument VI

' as given by Eq. (2) should be rough-
ly independent of 2 and X—Z.

B. Coulomb correction

Equation (2) was calculated using second-order process-
es including one inelastic scattering and one charge ex-
change. If the Lane potential is calculated from the
difference in neutron and proton optical potentials as in
Eq. (1), we must assume that the optical potential other
than the Coulomb potential is isospin conserving. This is
not the case for the real potential, for which a correction'
for the diminished kinetic energy of protons compared to
neutrons inside the nucleus is normally made. On the
basis of what is known about phenomenological poten-
tials, ' it also need not be true for the imaginary potential.

Although Eq. (2) and our numerical calculations ignore
Coulomb effects, Eq. (5) gives us a way of defining and
calculating the Coulomb correction to the second-order
real and to the imaginary potential for a neutron excess
nucleus.

C. Calculation

Following the formalism of our earlier paper, the cal-
culation of Eq. (2) was carried out including direct and
exchange matrix elements in second order but with
particle-hole intermediate states. Thus in the densities of

Jxj~ Jxj~
Ref. 4 the spectroscopic amplitude, xj J "+yj J in Eq.
(15), was replaced by the particle-hole spectroscopic am-
plitude, namely 1 for j&jz ——jhjp.

The bound particle and hole states and the continuum
particle states were calculated in a real Saxon-%'oods po-
tential. These particle-hole states are regarded as door-
ways to more complicated configurations, 2p-2h, 3p-3h,
etc. , all of which contribute to the spreading width. These
configurations are approximately taken into account in
leading order in the sense that we excite only the doorway
part of each one. The spreading interaction just redistri-
butes the particle-hole strength.

As our effective nucleon-nucleon interaction we have
used the Eikemeyer-Hackenbroich (EH) r operator. '

This interaction is quite close in its charge-exchange
spin-flip strength to the vr-plus-p interaction used in Ref.
11. Its strength for inelastic scattering has been tested'
by calculating direct 3 and 5 inelastic cross sections in

Ca, and its V strength has been tested by calculating
the (p,n) analog cross section. ' The tensor part of the EH
interaction is in very close agreement with the ~-plus-p in-
teraction up to about q=

~
kf —k;

~

=2.5, which would
cover the relevant range in our calculation. In addition,
the central and tensor spin-isospin forces are both in close
agreement in their effective interactions' to that of Love
and Franey, ' based on the impulse approximation.

For computational convenience the actual calculations
are done as though isospin is conserved, so the final state
nuclear wave function is taken to be exactly
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T+
~
g.s. }/VX —Z, and the intermediate projectile is al-

ways calculated as a proton. The former approximation
would seem to be very good, but one might worry about
Coulomb correction effects in the intermediate propaga-
tor. In an early paper we showed that for " Ca(p, p) and

Ca(n, n) propagator differences and differences in two-
fold charge exchange (p,n,p) and (n,p,n) were rather large.
In charge exchange, however, there is no twofold charge
exchange, and furthermore, the Coulomb force and the
symmetry potential tend to cancel. On the average the ki-
netic energy is only about 0.7 1vfeV different in Ca
(smaller for protons), whereas in Ca the average kinetic
energy of protons in the nucleus is 8 MeV lower than that
of neutrons of the same incident energy. Thus the neglect
of differences in the intermediate propagator is justified
for Ca.

I [

Ph doorways/ N
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y4p-
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D. Energy averaging

The optical model represents an energy average over de-
tails of the scattering process. ' ' Resonances due to ex-
citation of individual compound states thus contribute
only in an average way to the absorption. Calculation of
the optical potential to second order using particle-hole
states does not involve detailed compound states, but rath-
er doorways as described above. Nevertheless, rather
sharp potential resonances in the projectile Green's func-
tion do appear in calculation of Eq. (2), particularly for
closed channels. To eliminate this undesirable feature we
use here averaging over the beam energy of g; in Eq. (2),
thus broadening out these resonances. This is done by us-
ing a Lorentzian distribution of beam energy E and width
2I and folding it with Eq. (2). Since the beam energy ap-
pears only in the Green's function g;, which is evaluated
at energy E —(e~ e;), where e~ —e—'; is the particle-hole
energy, the averaging process involves only g;. The
averaging over energy simply replaces E by E+iI. For
this purpose and also for the treatment of closed channels,
E—(e~ —e;) &0, we have developed a code for calculat-
ing the Green's function at complex wave number
k=a+Pi. The results presented below were calculated
with a width of 2I =4 MeV.

III. RESULTS

The imaginary optical potential calculated using Eq. (2)
is shown in Fig. 3 along with results of a zero-range cal-
culation of the contribution from a single intermediate
ground-state deuteron channel. Since the intermediate
deuteron channel also represents a particle-hole state of
the nucleus, it is not orthogonal to inelastic and charge-
exchange intermediate states. We have therefore not add-
ed the contributions from these two types of doorways but
have displayed them both to give an estimate of the rela-
tive strength of this one strong intermediate channel. The
sum of the deuteron doorway and particle-hole doorways
therefore represents an upper limit of the contribution
from both kinds of doorways. Also shown in Fig. 3 is the
Becchetti-Greenlees' (BG) phenomenological potential
8'&. The volume integral of the BG potential is a little

0
1 2 3 4 6 7 8

r (fm)
FIG. 3. The imaginary Lane potential 8'~. The solid curve

is the calculated result based on inelastic and charge-exchange
particle-hole intermediate doorway states. The dashed-dot
curve is the calculated result for the triplet ground state deu-
teron intermediate configuration, and the dashed curve is the
Becchetti-Greenlees phenomenological 8'~ potential.

greater than double that of the theoretical particle-hole
potential.

In Table I the contribution from various multipolarities
of the intermediate states is shown. The numbers are ac-
tually the values of the diagonal nonlocal second-order
charge-exchange operator summed over all particle-hole
states coupled to a given multipolarity. For computation-
al convenience the calculation was cut off at J=5. All
important multipoles are included. There will be small
but non-negligible contributions from J=6,7, 8,9. 'The
contributions from multipolarities beyond 9 fall off dras-
tically; they will involve at least an i ", particle (c—oupled

to the f , hole), which t—he angular momentum barrier ef-
fectively keeps out of the Ca nucleus. Thus although we

0+
0
1+
1

2+
2
3+
3
4+
4
5+
5

0.010 MeV fm
0.262 MeVfm
0.032 MeV fm
0.064 MeV fm
0.131 MeVfm
1.597 MeVfm
0.0834 MeV fm
0.241 MeV fm
0.103 MeV fm
0.136 MeV fm
0.098 MeV fm
0.166 MeV fm

TABLE I. Contributions to 8'&(r, r) at the nuclear surface
from different multipoles.

8 )(4.0,4.0)
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FIG. 4. A comparison of the differential cross sections calcu-
lated microscopically to first order and including the second-

order imaginary terms with experimental data (Ref. 22).

IV. SUMMARY AND DISCUSSION

In summary, we have calculated the imaginary Lane
charge-exchange interaction 8'~ for the second order

Ca(p, n)0+ analog reaction using all intermediate
particle-hole states compatible with the Pauli principle.
The second-order exchange mechanism and the particle
continuum were treated exactly. The resulting 8'~ poten-
tial is smaller than the phenomenological potentials by a
factor of about 2.

The Eikerneyer-Hackenbroich effective interaction, '

which we have used, is close in its charge-exchange, spin-
exchange components to the w-plus-p exchange force used

have missed a small amount of strength in the higher
multipoles, there is no question of a large contribution
from many high multipolarities due to a slow convergence
of the sum.

There is also a second-order real contribution to the
Lane potential, because the Green's functions g; in Eq.
(2) are complex. The real part of g; oscillates in sign
with excitation energy and therefore tends to cancel itself
out when many doorways are summed. For highly closed
channels it has a steady sign corresponding to a positive
contribution to V&. Calculations carried out up to parti-
cle energies e of 150 MeV show that the imaginary part
of V'&

' has converged but the real part has not. It can be
shown, by exact integration over all plane wave particle
states, that for a zero-range force the real part does not
converge at all.

In Fig. 4 is shown the differential cross section for the
Ca(p, n) reaction calculated microscopically with and

without the second-order imaginary contribution. It is
clear that the 8'& term improves the phasing at back an-

gles, but at the expense of a poorer fit to the data22 at for-
ward angles. The second-order real potential was not in-
cluded because of the problems with convergence dis-
cussed above. In spite of the neglect of this correction, we
obtain the correct magnitude of the (p,n) analog cross sec-
tion and an angular distribution which, though not good,
does bear a resemblance to the data.

by Brown et al. " in a second-order calculation of the V,
two-nucleon interaction. Our calculation is in principle
similar to theirs except that we use all components of the
EH force, whereas the vr pf-orce has only the spin-isospin
parts. The ~-p interaction was used in Ref. 11 as the bare
interaction to the U, component of the real, effective two-
nucleon interaction. The authors of Ref. 11 have stated
that the imaginary part was very weak. We find that the
unnatural parity states, which are mainly excited by the
~-p exchange force, contribute in second order about half
of the calculated 8'& strength. The other half comes
from natural parity intermediate states, which are excited
through inelastic scattering or charge exchange involving
Vo+V, and V, .

We have used particle-hole intermediate states instead
of RPA states, the collectivity of which is known to be
important in the calculation of the optical potential. It is
argued that collectivity should not be so important, how-
ever, for charge exchange. If anything, collectivity should
lead to a reduction rather than an increase in 8'&.

The contribution to 8'& from an intermediate deuteron
configuration has been calculated in the zero-range ap-
proximation. This single channel gave about one-third as
much contribution to 8'& as all particle-hole channels. A
similar result has been found by Coulter and Satchler in
calculation of the imaginary optical potential in Ca,

Ca, and Pb. It is not appropriate to try to include all
intermediate states of the deuteron, since these are redun-
dant with the inelastic and charge-exchange particle-hole
states. Thus, considering the fact that the zero-range ap-
proximation gives an overestimate of the (p,d,n) mecha-
nism, and that even for the ground state deuteron there is
redundancy between deuteron and nucleon particle-hole
channels, it appears that the intermediate (p,d,n) process,
though by no means negligible, cannot make a major con-
tribution to 8').

The contribution to the optical potential from higher-
order processes, leading to more complicated configura-
tions than one-particle —one-hole states considered here, is
being considered within a soluble model. The results,
which will be published in a separate paper, 24 indicate that
excitation of such configurations from the doorway chan-
nels leads to a broadening of the single-particle resonances
of the intermediate projectile but not to additional
strength. Coupling among doorways is also considered in
R.ef. 24. Because of the typical weakness of coupling be-
tween doorways, and because third- and higher-order pro-
cesses do not lead to a sum of individual contributions
which are necessarily constructive, as they are for excita-
tion followed by deexcitation of doorways, it seems also
unlikely that coupling between doorways can make a very
large contribution to imaginary optical potentials. For
analog charge exchange, which we have calculated here,
however, there exists a particular set of three-step process-
es 0+—+J ~J analog~0+ analog, for which the nu-
clear matrix elements are all in phase. The analog transi-
tion J ~J analog represents a coupling between inelas-
tic doorways from the initial or final states. The phase of
each such three-step amplitude then depends on the prod-
uct of the propagators in the two doorway excitations. It
has been shown for low-lying collective doorway states,



32 MICROSCOPIC CALCULATION OF THE IMAGINARY LANE. . . 113

both assumed open, that the three-step amplitude is ap-
proximately out of phase with the one-step amplitude,
which means that such processes make mainly a negative
contribution to the real potential. For two highly closed
channels, the phase will be constructive with the one-step,
therefore contributing positively to the real potential.
%'hen one channel is open and one closed, as will be the
case for excitation energies between Ep„,—AEc,„~ and
Ep zj there should be a significant imaginary contribution
in phase with the two-step part which we have calculated.
Realistic calculation of these three-step amplitudes for
many intermediate states is beyond our current capability
of computation and beyond the scope of the present pa-
per.

The work of V.A.M. was supported in part by a grant
from the U.S. Department of Energy under Contract No.
DE-AT06-79ER 10405.

APPENDIX: DERIVATION OF SECOND-ORDER
LANE POTENTIAL

In this appendix we calculate the projectile isospin ma-
trix elements and the entire target matrix elements for the
second-order Lane potential with intermediate particle-
hole states. Exchange may be automatically included
with a nonlocal space potential when the two-body space-
exchange potential is multiplied by the spin-isospin ex-
change operator. No details of the space-spin dependence
are included since that part of our calculation is the same
as in Ref. 4 applied to the special case of particle-hole
states. The two second-order charge-exchange matrix ele-
ments from the ground state of the target and proton state
of the projectile through intermediate particle-hole state
mi to the analog-plus-projectile-neutron state are

M„= &T„T, 1, —,', —,
'

I g—V, , „.g '~,.l
T„T,,', ——,

' )—
imv

Xg &To?o» 2 I

a ~,g(V +V,rp r„) To?o Tl )

= 2&To To —1
I 2 V r, Xa ~;. I To, To&g &To»0

I
a'~ g(Vo —V r 3)

I
To To&

K imv K

+like terms for spin forces (A 1)

for inelastic intermediate states of isospin projection v, and
1 1 1 1I = &To, To —1 z 7 I g( Vo+Vro r~)ga 1/2ai, 1/2I To, To 2 2 )gml

im

1 1 1 1x&T0 Tp 2 z lai, l/2am, —1/2g Varp ra'I TQ T0 2 2 &

K=1

2& T0 T0 1
I g ( V0+ Vr'rgc3) g am, —1/2ai, 1/2 I

To»o &gmi & To To
I
a; »2am 1/2 g V,(ii')t„

I To To &

+like terms for spin forces

ml K

(A2)

for charge-exchange intermediate states. In Eqs. (Al) and (A2) g; is the intermediate projectile Green s function at en-
ergy E Em;, and V is—the two-body interaction between the projectile nucleon and nuclear target nucleon. In the first
matrix element of Eq. (Al) the operator Vo —V,r„3 must produce the particle-hole pair and the operator V,t, must
(charge exchange) scatter either the hole or particle (see Fig. 1) to give the final analog state

I Tp, To —1); that is,

& To»o —1
I g V~r ~ amaivl To To& &To To 1

I g &c
I

V~ ld &ac —1/2ad 1/2amaivl? oTo&
K cd

= & To To —1
I g & c

I
V

I
m &a, —1/2a, 1/2~, 1/2

C

—+&i I V. ld)&., -l/2a, 1/2ad, l/2l T—o To) .
d

(A3)

Only those particle-hole states in J=0 pairs with common neutron and proton single-particle quantum numbers can con-
tribute to the analog state. We can write Eq. (A3) using

I Tp Tp —1)= T
I

TT ) /+2TQ as

1
&ToTo

I T+ g &c
I V. I m&&., 1/2a. , —1/2ai, l/2 g &1

I
V ld)~, —1/2a, —1/2ad 1/2 I

To To&
2TQ

(A4)

in which the T+ operator must destroy the particle-hole operator in each term. The matrix element in Eq. (A3) is then

(5~1/2&iI V lm) —5~ 1/2&i I
V lm)).1

2Tp
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The other factor in Eq. (Al) is likewise

vo+ vi+3
I

v& = & mv
I
Vo+»Vi

I
iv&

Thus ignoring the difference between neutron and proton orbits, Eq. (Al) gives simply

fN oo fz fN
Mis= 2 2 &i

I
v. lm&g &m

I
vp —v. li& —2 2 &i

I v. lm&g &m
I
vo+v. li&2T0 i=fz m=f~ m =fz

(A6)

(A7)

Likewise for Eq. (A2) we may write the intermediate charge-exchange matrix elements (A2) as

~ce= &ToTo —1
I g &cp

I
Vo+ Vr'73

I
diM &a,&ad&a~ ii2ai, in I

ToTo&
cdp

&g &ToTo la, ina, in' &e
I
v—If &a. , —iaaf, ill ToTo& .

ef
(AS)

In the first step V creates the particle-hole mi and in the second step V scatters either the particle or the hole, leaving a
different particle hole and giving

2 (TpT, ll X (c——
~ I(Vo+V~r3)

I

m —
2 &a., ii2ai, in-

—2 &'2 I
vo+ v r3

I
d &a, —inad, irz I

ToTo &
'g

d

2
& ToTo

I T+ g &c
I

vo —v
I

m &a, —ii'2a, i/22 Tp

g &'
I
Vo+ v

I
d &a, —inad, i/2 ToTo &g

d

With ab, ii2ab, in Eq. (A—9) g~~e~

(A9)
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O I=fz m=fz
ce
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(A10)

Thus combining Eqs. (A7) and (A10) gives us the second-order charge-exchange matrix element of a pure ~ r two-body
force. If we are to interpret this as the Lane potential this sum must be equal to

& TpTp 1 Ti
2 {vi+iIvi)

I
TpTp 2 Ti&= &2Tp(vi+iwi)

2A
(Al 1)

Thus combining (A7) and (A10) and equating the sum to Eq. (Al 1) we have for the second-order contributions to the iso-
spin potential
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i=fz m &fz i =1m &fz

J. P. Jeukenne, A. Lejuene, and C. Mahaux, Phys. Rep. 25, 83
(1976).

F. Brieva and J. R. Rook, Nucl. Phys. A291, 299 (1977); A291,
317 (1977);A307, 493 (1978).

N. Vin Mau and A. Bouyssy, Nucl. Phys. A257, 189 (1976).
4F. Osterfeld, J. %ambach, and V. A. Madsen, Phys. Rev. C 23,

179 (1981).
F. Osterfeld and V. A. Madsen, Phys. Rev. C 24, 2468 (1981).
H. Dermawan, F. Osterfeld, and V. A. Madsen, Phys. Rev. C

29, 1075 (1984).
7G. R. Satchler, Phys. Lett. 358, 279 (1971).
H. V. von Geramb and P. E. Hodgson, Nucl. Phys. A246, 173

(1975).
F. Brieva and B. Z. Giorgiev, Nucl. Phys. A308, 27 (1978).

' G. Baur, F. Osterfeld, and V. A. Madsen, Phys. Rev. C17, 819
(1978).
G. E. Brown, J. Speth, and J. Wambach, Phys. Rev. Lett. 46,
1057 (1981).



32 MICROSCOPIC CALCULATION OF THE IMAGINARY LANE . ~ ~

F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182, 1190
(1969).

3M. Potokar, Phys. Lett. 46B, 346 (1973).
~4F. Dietrich, in Capture Gamma-Ray Spectroscopy and Related

Topics, Proceedings of the 5th International Symposium on
Gamma-Ray Spectroscopy and Related Topics, Knoxville,
1984, AIP Conf. Proc. No. 125, edited by S. Raman (AIP,
New York, 1984).

~5J. Rapaport, Phys. Lett. 928, 233 (1980).
~ K. A. Amos, H. V. von Geramb, R. Sprickmann, J. Arvieux,

M. Bernard, and G. Perrin, Phys. Lett. 52B, 138 (1974).
~7J. Wambach, F. Osterfeld, J. Speth, and V. 'A. Madsen, Nucl.

Phys. A324, 77 (1979).
~8J. Wambach, thesis, University of Bonn, Spezielle Berichte der

Kernforschungsanlage Julich No. 42, 1979.
~9W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).
~OH. Feshbach, V. Porter, and V. F. Weisskopf, Phys. Rev. 96,

448 (1954).
~~G. E. Brown, Unified Theory of 1Vuclear Models and Forces,

3rd ed. (North-Holland, Amsterdam, 1971),Chap. 9.
R. R. Doering, D. M. Patterson, and A. Galonsky, Phys. Rev.
C 12, 378 (1975).

3P. W. Coulter and G. R. Satchler, Nucl. Phys. A293, 269
(1977).

V. A, Madsen and F. Osterfeld (unpublished).
V. A. Madsen, V. R. Brown, S. M. Grimes, C. H. Poppe, J. D.
Anderson, J. C. Davis, and C. Wong, Phys. Rev. C 13, 548
(1976).


