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Interacting boson model with surface delta interaction between nucleons

S. A. Moszkowski
Department ofPhysics, Uniuersity of California, Los Angeles, California 90024

(Received 16 November 1984)

Expressions for the matrix elements of the interaction between proton and neutron bosons have
been obtained for the case of a surface delta interaction acting in n2p configurations. Boson-boson
interaction matrix elements involving only bosons of angular momenta 0 and IC are particularly sim-

ple, being proportional to the particle-particle interaction energy for orbital angular momentum E.
The results obtained with the boson model are very similar to those previously obtained by diagonal-
ization of the four-particle energy matrices for selected configurations of degenerate orbits.

I. INTRODUCTION

The development and application of the interacting bo-
son model (IBM) (Ref. 1) is currently one of the most ex-
citing areas of nuclear structure physics. There are, how-
ever, two important unresolved problems connected with
the IBM. First, most work has been restricted to a con-
sideration of s and d bosons, leading to the well-known
SU(5), O(6), and SU(3) symmetries in limiting cases.
However, there is increasing evidence that also g bosons
can play a significant role, and there is some recent work
dealing with the effect of g bosons in renormalizing the
boson-boson interaction. Second, much work remains to
be done in relating the parameters of the IBM to the
underlying nucleon-nucleon interaction. Until now, much
of the work has been done using a pairing-plus-
quadrupole model, which is meant to represent the major
part of the effective nucleon-nucleon interaction. Yet it is
becoming increasingly clear that we also need higher mul-
tipoles. In the absence of a microscopic theory, this will
lead to more parameters in the theory.

II. THE SURFACE DELTA INTERACTION

A. General properties

In the present paper we use the surface delta interaction
(SDI) as an effective nucleon-nucleon interaction. The
SDI has only a single parameter, the strength. The SDI
provides a surprisingly good first approximation to some
nuclear spectra. The SDI has the remarkable property
that the strengths of all multipole-multipole components
in the NN interaction are equal, a condition which is well
satisfied empirically (for %=2, 3, and 4). In addition,
for an SDI the strengths of the multipole pairing terms
are equal as well, which is also found to hold.

First, consider the case of a degenerate shell with an
SDI, which is essentially a delta interaction in angular
coordinates:

VsDi ——4n 65(Qtj. ),
i.e., like an ordinary delta interaction, except that all radi-
al integrals are equal.

This interaction has the special property of being a sca-
lar with respect to quasispin. Thus seniority, viz. , the
number of unpaired nucleons, is still a meaningful quan-
tum number (no configuration mixing between states of
different seniority), even when we have seueral different
single particle orbits.

There are, in general, several ways for two particles to
couple to a given value of the angular momentum A.
However, for an SDI, only a single state of each A is
shifted in energy. All other states have zero interaction
energy. Several authors have previously shown how to
map a four-nucleon problem into one involving two in-
teracting bosons. ' In this paper we use this method
(generally known as the OAI mapping), and point out that
things simplify considerably for an SDI nucleon-nucleon
interaction.

B. Two identical nucleons

For two neutrons (or protons) in the shell, the first two
excited states generally have angular momenta and pari-
ties 2+ and 4+. These states may be regarded as d and g
bosons. For typical configurations, for example a degen-
erate (s,d) shell, i.e., j;= —,', —', , —,', the interaction energies
of these states, which have seniority u =2, are roughly 2i

and ~ that for the 0+ ground state (the s boson, corre-
sponding to seniority zero).

C. Four identical nucleons

Next consider configurations of four identical particles
with surface delta interactions. For four identical parti-
cles, the (u =0) ground state occurs at an energy just
twice as large as for the two-particle ease. Again there are
U =2 states with J =2+ and 4+ at exactly the same exci-
tation energies as for the two-particle case. These three
states can be interpreted as states involving two nonin-
teracting like (i.e., neutron or proton) bosons, s for 0+,
sd for 2+, and sg for 4+. The validity of generalized
seniority for mixed configurations with general interac-
tions was discussed by several authors. " It is well
known that for single closed shell configurations, the exci-
tation energies calculated in a generalized seniority
scheme agree well with exact shell model calculations. "
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For four identical particles, we can also have states of
u=4. For example, the (s,d) spectrum with SDI has
three such states 0+, 2+, and 4+, with excitation energies
2.33, 1.58, and 2.05 times that of the U =2, 2+ state.
(There are also some other u =4 states which we will not
consider here. ) In the boson picture, with no interactions
between like bosons, these three states should occur at just
thrice the energy of the d boson (u =2, 2+) state, which is
fairly close to what happens in the exact shell model cal-
culation. The relation between four-nucleon and two-
boson spectra is discussed, for example, in Refs. 12.

III. TWO-PROTON —TWO-NEUTRON
CONFIGURATIONS IN DEGENERATE

ORBITS WITH SDI (INTERACTION
BETWEEN PROTON BOSON

AND NEUTRON BOSON)

This is the main topic considered in this paper.

A. Multipole expansion

We wish now to calculate the interaction between the
proton and neutron bosons. ' For this case (unlike for the
case of four identical particles) the Pauli principle does
not play any role, since it is possible to put all four nu-
cleons into the same orbit. Let us then interpret the low-
lying four-particle states with S = T =0 (which have
maximum spatial symmetry) in terms of an interacting
neutron and proton boson. It turns out that one can fit
the energies of all these states with a particular prescrip-
tion for the interaction between neutron and proton boson.
The SDI can be expanded in multipoles:

VsDi =G[1+5Pz(cos8N N )+9P4(cos8N&N2)+ ' ' ' ] .

Similarly we can make a multipole expansion for the
boson-boson interaction.

o+5 2

+9F4P4(cos8I1, g, ) +
We do not specify here a relation between 0& & and

1 2

0~ ~, but require that the four-particle and two-boson
1 2

matrix elements agree for each multipole order. We then
find that

F~ ——4GVx/Vp, (2)

where Vz is the interaction energy for two nucleons cou-
pled to angular momentum E. This is the key relation de-
rived here. It appears not to have been noticed previously.
We sketch here the proof for the case OK~EO.

We will find it convenient to express our results in
terms of V~, the maximum possible interaction energy of
two particles coupled to angular momentum A.

The two-particle matrix elements for an SDI are given
b 3 7

A. A A.

V(JiJ2&JIJ2~A) YJ1J 1J2J2

j&
X

2

A j)
0 1

2

j2 A
6,

2

where j=(2j+I)'~ .
For two particles in degenerate orbits interacting via an

SDI, coupled to any given A, only a single state is shifted
in energy. All the other states have zero interaction ener-

gy. The energy of the shifted state is

j j' A
V~= g g z (2j+1)(2j'+1)

2
—

2

The sum j,j' extends over the set of degenerate orbits,
which will be labeled by [j] from now on. The corre-
sponding wave function is

j j' A+~=~+ QJJ' i i
O

'P[JJ']t
J J' 2 2

where ~ is a normalization constant. This is a "A" bo-
son. In particular, the wave function for the s boson is

g(2j+1) -'" g(2j+1)'"+(j'),
J J

B. Matrix elements involving s bosons

The multipole coefficients Fx. involving transitions
with U =O~U =2 for both neutron and proton bosons
(i.e., where we have s bosons in the initial or final state)
can be obtained directly from the two-nucleon interaction
energies. For boson-boson OO~E and OE~EO riiatrix
elements we find that

regardless of the detailed configuration. This is expected
since we have two neutrons and two protons.

We can express the boson-boson interaction in terms of 3j
and 6j coefficients:

Ap Ap E A„ A„' E Ap
Vp p (ApA&&ApA&p J):ApA pA&A & g (2K + 1 )

O O O O O

A„J
P

In this section we will consider the case OE —+EO, the exchange interaction between an s boson and one with angular
momentum E. For this case, we have J=E, and only a single multipole E appears in the sum. We obtain the simple re-
sult

Vg ~ (OK,KO;K)=F~ .
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For two neutrons and two protons in the same degenerate orbits j&, j2, etc. , interacting via an SDI of strength G, it can
be shown that

F~(A@A„,A@A„';J)=4G Np@„
Ap Ap K A„A„' K
0 0 0 0 0 0

where

j
(2j + 1)(2j'+ 1)(2A, + 1)

~=Ul 2 2

A,' j' A;
1 1 1 10 02 2 2 2

A; A,'- KX, , G(V, V, , )-'"

(i =p or n). This result simplifies greatly for the case OK~KO:

F~ ——4G(2X + 1 )@

where

J K
(2j+1)(2j'+1), , G[(2K+ 1) Vp Vz] '~ = [V+/(2IC+ I) Vp]'~ G

J
2

—
2

from which we immediately obtain Eq. (2). We give results for two cases:

C. General expressions
for boson-boson interaction multipoles

~re
F~ =4G (2j + 1)

Vo

Ap

. J
Ap

Ap E A„

Ap

J. , J
E A„

A„' K

J
A„' K

0 0 0 0 0 0

This may be obtained from the general expressions in the
preceding section. Of course, if K =0, or if s bosons are
involved, we again obtain Eqs. (1) and (2).

D. Quadrupole interaction
between d bosons

The quadrupole-quadrupole term is the most important
component of the boson-boson interaction not involving s
bosons. The case of quadrupole bosons with general in-
teractions has been considered by Zirnbauer and Brink.
They worked out the relation between the boson-boson
matrix elements and the particle-hole nucleon-nucleon
matrix elements.

We consider here the interaction between two d bosons,
i.e., the case that A;=A,' =%=2 for both protons and
neutrons.

The interaction energies involving U =2 bosons, i.e., no
s bosons, are somewhat more complicated, but can still be
obtained in closed form, at least for degenerate configura-
tions with SDI. Note that for K &0, all of these involve
U =2~V =2.

We give here the result for a single j shell, for which we
have j'=A, =j.

(a) single j shell and (b) degenerate shells with
J.= 2, 2, 2, . . . ,j. The latter is equivalent to a degen-
erate harmonic oscillator shell with principal quantum
number X=j——, which has I =X,X—2, . . . , 0 or 1.

For j= —,', we obtain Vz/Vp ———,
' and F2/I'p ——0. Note

that our "key" relation [Eq. (2)] does not hold here, since
we have only d (and no s) bosons. As j increases, so do
both ratios, toward the value —, for j—+ oo.

For the case of mixed configurations, j;=—,
' to j, we

have to perform the triple summation to obtain 4. How-
ever, again analytic expressions for the above quantities
can be obtained. We found (by inspection) that

V2/Vp [(2j—1)/(2j+2)]

~./~p=[(4j+1)/(4J+4)]'
For j;=—, , —,, we have V2/Vp ———, and I'2/I'p ——

,~.
Note that these ratios are closer to each other than for the
pure j case. (We recall that for the interaction involving s
bosons, the ratios are identical regardless of the detailed
configuration. ) For j» 1, both ratios approach
1 —( —, )j

The author, in collaboration with Druce, has shown
that analytic expressions can also be obtained for other
configurations of degenerate orbitals. We are hopeful that
these results will be useful for the calculation of IBM pa-
rameters in nuclei.

E. IBM and shell model results
for simple four-particle

T =0 configurations

We consider now the well-known example of four parti-
cles in the p shell. For this (single orbit) case, the SDI
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TABLE I. Boson multipole coefficients and energies. All energies are given in units of the surface
delta interaction strength G. F2(s) and F2(d) denote F2{sd-ds) and F2(dd-dd), respectively.

Degenerate
Js

Boson energies
Vp V2 Vg

Multipole coefficient
Fo F2(s) F2(d)

Two-boson —(four-particle)
E

Energies
E4

3
2

1 3
2~2

1 3 5
2&2&2

2 0.4

3 1.2

6 3.43 1.43 4

0.8

1.6

2.29

1.96

8.8(8.8)

13.2(13~ 2)

2.47 23.6(23.9)

7.2(7.2)

11.4{11.4)

21.8(22. 1)

4.8(4.8)

7.2(7.2)

18.9(19.1)

reduces to an ordinary delta interaction. Results are
shown in Table I. For four particles coupling to T =0,
we get an SU(3)-type spectrum with two rotational bands.
In this case (unlike that of identical particles), interactions
between neutron and proton bosons play a crucial role. '
Only monopole and quadrupole terms enter here. For this
case, the interacting boson model reproduces the four-
particle energies exactly. It should be noted that although
the boson model in the form used here is not manifestly
isospin invariant (see Ref. 14 for a discussion of an isospin
invariant form of the interacting boson model), the results
for the energies and also the two boson wave functions are
the same as the T =0 states obtained with an isospin con-
serving delta function nucleon-nucleon interaction.

It is interesting to consider also four particles in a j= —,

orbit. Here again, the SDI is equivalent to a 6 interaction.
However, the energies are different from those for the p
shell case.

For (s,d)T p, the exact shell model calculations give a
near rotational spectrum. This time the boson-boson in-
teraction contains multipoles up to order 4. The energies
of the yrast (T =0) states are very closely reproduced
with the IBM.

IV. CONCLUSIONS

We have seen that if an SDI is used as an effective N-N
interaction, the implementation of the mapping of four
fermions into two bosons is greatly simplified. It is par-
ticularly encouraging that analytic expressions can be ob-
tained for key quantities in the application of the IBM, at
least for degenerate orbits. It is also interesting that, at
least for an SDI, the boson interactions are closely related
to their structure, especially for Inatrix elements involving
s bosons. Indeed, for rough estimates, it might be ade-
quate to use the relation F~/I'p= Vx-/Vp. It is a chal-
lenging task to try generalizing the simple results obtained
in this paper to the more realistic case with nondegenerate
single particle orbits.
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