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Results of both Brueckner-Bethe and variational calculations for the binding energy of nuclear
matter as a function of density are presented for several recent nucleon-nucleon potentials. A de-

tailed comparison is made for the Argonne v l4 potential, the Inost realistic potential for which both
methods have been used. The two methods agree reasonably well, with predicted saturation points
of —17.8 MeV at 1.6 fm ' for the Brueckner-Bethe method, and —16.6 MeV at 1.7 fm ' for the
variational method. The variational energies are 1—2 MeV above the Brueckner-Bethe energies for
densities from 1.2 to 1.7 fm '. The results of Brueckner-Bethe calculations are also given for the
Paris and Bonn potentials as well as results of variational calculations for the Urbana vl4 potential.
These potentials all give similar binding energy curves, and all saturate matter at a density signifi-

cantly above the empirical value.

I. INTRODUCTION

Calculations of the binding energy as a function of den-
sity of symmetric nuclear matter have been made for
many nucleon-nucleon potentials using either Brueckner-
Bethe' or variational methods. However, the most realis-
tic potential for which both methods have been used to
date is the Reid v6 model, a modification of the Reid
soft-core potential which includes central, spin, isospin,
and tensor components but does not fit two-nucleon
scattering data. The results for Reid v6 indicated reason-
able agreement between the two methods, ' which
represent rather different ways of solving the many-body
Schrodinger equation. The variational calculation gave
somewhat less binding near the empirical density (1.8
MeV less at kF= 1.4 fm '), but saturated at a higher den-

sity (1.7 instead of 1.6 fm ').
In this work we report results of both Brueckner-Bethe

and variational calculations for the Argonne v~4 poten-

tial, a more sophisticated model than Reid v6, which
gives a good fit to nucleon-nucleon scattering data and
deuteron properties. The agreement between the two
methods is about the same as for the Reid v6 model. We
also present results of Brueckner-Bethe calculations for
the Paris and Bonn potentials, and of variational calcu-
lations for the Urbana v~4 potential.

The nuclear Hamiltonian is taken as:

H=g( —~' /2m) V';+ g v;J ~

The Argonne v&4 potential is expressed as a sum of 14
operator components:

v;J= g v~(r;~)Op(ij),
p =1,14

where the operators p = 1, 14 are

Oz(ij)=l, r;.rj, cr; o~, (o; crj)(r; rj),SJ,S (vJ; rJ), L S,L S(r; r~),L,L (~; rz), L (o; oj),
L (o; oj)(~; r ),J(L.S),(L.S) (~; r~). (3)

The Reid v6 potential contains terms of type p = 1,6 only.
The additional L-dependent terms in Eq. (3) are required
to give good fits to current scattering data. The Urbana

vl4 potential can be written in the same form. The
parametrized version of the Paris potential also has the
same operator structure except that p is used instead of
I.2

The Brueckner-Bethe method has been used to study
nuclear matter with a wide range of two-body potentials, '

including the Reid soft-core, Paris, and Bonn potentials.
However it has not been used to date for potentials like
Argonne vl4. The variational method, using Fermi hyper-

I

netted chain and single operator chain summation tech-
niques, has been developed specifically for potentials like
Argonne v l4 where the L-dependent terms are relatively
weak. It has not been developed for potentials like the
Reid soft core, which lacks a consistent operator struc-
ture, or Paris, which has a very strong p dependence. It
also has not been applied to momentum-space potentials
like the Bonn potential. Despite the limited range of
two-body potentials it can currently be used for, it has
been adapted for the study of three-body potentials' and
also for the study of nuclear and neutron matter at high
densities and finite temperatures. " The interesting con-
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TABLE I. Separable representation used in various channels for the Brueckner-Bethe calculation of
higher-order diagrams in D3, for the Argonne ui4 potential.

Channel

'So
3 3Sr- D
Dp
D

3 3D3- G3
lG

G4
3 3Gs- Is

Separable
representation

2R +1A
4R +3A

1A
1R +1A
2R +2A

1A

1A

Channel

1p
3p
3p
3p 3Q

ly
3Q

I'4- 04

Separab)e
representation

3R
2R +2A
3R
3R +3A
1R
1R

clusions drawn from these latter studies are dependent on
the accuracy with which the variational method solves the
basic nuclear matter problem. The present work tests this
by comparison with the Brueckner-Bethe method.

II. BRUECKNER-BETHE CALCULATIONS

where Q is the Pauli operator and e is the energy denomi-
nator determined from E (k). The two-hole-line, i.e.,
two-body, contribution to the binding energy is given by:

D = —,
' g (kliGikl).

E( k) =k l2m ' Ep, ( k & k—F ),
k /2m, (k)kF), (4)

where m* and Eo are determined self-consistently from
the equation

E(k) =k l2m+ g (kl
i
G

i
kl) .

l (kp

The reaction matrix G satisfies
G = V—V(Q/e)G,

(5)

In the Brueckner-Bethe (BB) calculation the coupled-
cluster equations have been solved in the hole-line approx-
imation, including two-, three-, and four-hole-line contri-
butions. The conventional single particle spectrum is
used, i.e., kinetic energy above the Fermi sea and the
Brueckner-Hartree-Fock (BHF) energy for states in the
Fermi sea. We find that approximating the BHF spec-
trum by a quadratic causes negligible error in the calculat-
ed energy, so in practice we use the single-particle spec-
trurn:

Calculating Dz with a kinetic-energy spectrum above
the Fermi sea amounts to neglecting the interaction of a
particle above the sea with the other particles in the sys-
tem. This interaction is taken into account by the three-
body cluster term D3, which is the dominant contribution
to the three-hole-line energy D3. It may also be possible
to account for this interaction by using a modified single-
particle potential above the Fermi sea. However, the only
way to determine this potential is to do the same three-
body calculation that gives D3. Hence an accurate calcu-
lation of the three-body correlations is essential in any
adequate approximation scheme. This crucial point is dis-
cussed further in Refs. 5 and 12.

The calculations have been done in rnornentum space
and require as input, matrix elements of the potential
(kl

i
V(jST)

i
k'l'). These can be calculated analytically

for the Reid, Paris, and Bonn models. For the Argonne
UI4 potential they have been computed numerically by in-
tegration over r using Simpson s rule with the 400-point
mesh:

0(0.0025)0.25(0.005)0.5(0.01)1.0(0.02)2.0(0.04)4, 0(0.08)12.0 .

This mesh gives Dz accurate to 0.00I MeV and D3 and
D4 to 0.02 MeV. The computing time is comparable to
that required for analytic evaluation of matrix elements
using the Reid potential.

Once the matrix elements of V are available, the calcu-
lation of the two-body contribution Dz is straightforward.
D3 and D4 are calculated as described in Ref. 5, except
that for two-body states in the Fermi sea we include only
10=0,1 (S and P waves) rather than 10&2 (S, P, and D
waves), as was done earlier. This changes the calculated
energy by only 0.2 MeV at the highest density considered
(kF ——1.8 fm ') and is thus an acceptable approximation.

As discussed in Ref. 5, D3 is given by

D3 ——8+8+0,

TABLE II. Self-consistent values of m* and Eo in the
Brueckner-Bethe calculation for the Argonne U i4 potential.

kg (fm '}

m */m
Eo (MeV}

1.2

0.689
62.38

1.4

0.644
83.69

1.6

0.603
105.38

1.8

0.568
125.29

where 8 and R are, respectively, the lowest-order bubble
and ring diagrams, and H is the sum of all higher-order
three-body cluster diagrams. The calculation of H makes
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Channel Argonne v~4 Paris

TABLE III. Partial-wave contributions to Dq in MeV for the
Argonne v~4 and Paris potentials at k~ ——1.4 fm

TABLE V. Bubble (8), ring (R), and higher-order (H) contri-
butions in MeV/nucleon to the Brueckner-Bethe three-body
cluster energy for the Argonne v~4 potential.

'So
Si

1p
3p
3p

'D
3D
3D
3D

l)3
Total D&

—17.16
—17.63

4.52
—4.11
12.17

—7.65
—3.17

1.60
—4.62

0.14
0.79

—35.12

—16.98
—17.98

4.88
—3.83
11.69

—8.14
—3.21

1.69
—4.65

0.13
0.86

—35.54

kF (fm ')

B
R
H

1.2

—0.47
—1.49
—0.95

1.4

0.77
—3.21
—2.04

Dc —2.91 —4.48

The wound parameter a is defined by

/(ab iS2 ikl)
i

3.80
—5.82
—4.10

—6.12

1.8

10.20
—9.45
—7.64

—6.89

(10)

use of a separable representation of the off-shell reaction
matrix:

(kl
~

6
~

k'I')=ggp(kl)Apgp(k'I') .
P

For the Argonne Ui4 potential the number of terms re-
tained in each jST channel is given in Table I, where the
notation 1R +2A means that one repulsive (positive) A,~
and two attractive (negative) Aii's are retained. This trun-
cation causes an error of about 0.25 MeV in the calculated
energy at kF ——1.8 fm ', and the error decreases rapidly
as kz is lowered.

The values of m and Ep obtained from the self-
consistent two-body calculation are shown in Table II.
E(k} was first calculated for four equally spaced values
of k from 0.25 kF to kF. Then m* was chosen to repro-
duce the change of E(k) between 0.5 kF and kp' aild Ep
was chosen to correctly give the average of E (k) over the
Fermi sea. The partial-wave breakdown of D2 at k~ ——1.4
fm ' is shown in Table III. For comparison, the corre-
sponding results for the parametrized Paris potential are
also shown, using m /m=0. 647 and Ep ——84.39 MeV.
Table IV shows the contributions to the calculated energy,
EBB, for various values of kF. The kinetic energy of the
Fermi sea is denoted by T, and D2, D3, and D4 are the
two-, three-, and four-hole-line contributions. The uncer-
tainty given for the total is estimated by the method of
Ref. 5. The breakdown of the three-body cluster energy
D 3 into bubble, ring, and higher-order contributions is
shown in Table V.

where Sz is the two-particle, two-hole amplitude in the
exact many-body ground state. It is necessary to have
a &~ 1 for the hole-line expansion to be valid. The
lowest-order approximation a.z is determined using the
Bethe-Goldstone two-body wave function. An improved
approximation ~~R is obtained by summing the general-
ized ring (GR) series, which includes three-body correla-
tions. Table VI shows these two approximations to x.

III. VARIATIONAL CALCULATIONS

The variational method ' is used to compute an upper
bound E„ to the ground-state energy E:

E„(A,)=(P,(A, )
~

H
~
g„(A,))/(g„(A, )

~
g„(A,)) &E . (11)

Here A, denotes a set of parameters used in constructing
the trial function g„; the parameters are varied to mini-
mize E„and thus-obtain the lowest upper bound on E.
With a flexible choice for P„and an accurate evaluation
of the expectation value, E„should be close to E.

The trial function is constructed as a symmetrized
product of two-body correlation operators FJ acting on

,the Fermi-gas wave function P:

(12}

We expect that the main correlations induced by the po-
tential V& can be represented in an operator format simi-
lar to Eq. (2). For simplicity we use a truncated set of
operator components,

TABLE IV. Contributions in MeV/nucleon to the Brueckner-Bethe energy for the Argonne v~4 po-
tential.

kF {fm ')

T
D2
D3
D4

1.2

17.92
—27.14
—3.12
—0.48

1.4

24.39
—35.12
—4.80
—0.64

1.6

31.85
—42.21
—6.59
—0.84

1.8

40.31
—47.33
—7.53
—1.28

EBB —12.8+0.5 —16.2+0.9 —17.8+1.3 —15.8+2.0
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1.61.2

K2

KGR

0.101
0.190

0.118
0.196

0.144
0.220

0.178
0.25

TABLE VI. The two-body and generalized ring approxima-
tions to K in the Brueckner-Bethe calculation for the Argonne
v &4 potential.

kF (fm ') 1.4 1.8
k~ (fm ')

d (fm)
d, (fm)

1.2

2.41
4.82
0.70

1.4

2.18
4.35
0.62

1.6

2.05
4.09
0.56

1.7

2.17
3.85
0.53

1.8

2.14
3.81
0.50

TABLE VII. Variational parameters for the Argonne v~4 po-
tential.

FJ (A, ) = g fp (r ~;d, d„a )Op (ij ),
p=1, 8

(13)

which includes tensor and spin-orbit correlations, but
neglects I. and (L.S) correlations. The fz's are generat-
ed by solving a set of eight coupled Euler-Lagrange equa-
tions which include all components of the potential and
satisfy the boundary condition FJ(r~ oo ) = 1. The pa-
rameter set A, includes central and tensor healing dis-
tances, d and d„and a quenching factor a for noncentral
interactions.

The expectation value E„ is evaluated in a diagrammat-
ic cluster expansion based on generalized Mayer dia-
grams. The two-body cluster energy is calculated exact-
ly, while three-body and higher-order cluster terms are
calculated using the Fermi hypernetted chain —single
operator chain (FHNC —SOC) approximation. The
FHNC integral equations are used to sum terms involving
f„while the SOC integral equations sum terms contain-
ing fz z 6. The accuracy and convergence of this method
for simple potentials like Reid u6 has been studied and
found to be quite good.

The L-dependent components of the potential and the
L.S correlations are treated less generally, primarily at
the two- and three-body level, because of the difficulty of
chaining gradient operators. The treatment of L.S terms
is described in Ref. 14, while the uz 9 && contributions are
discussed in Ref. 2. One improvement in the results
presented here compared to Ref. 2 is that a complete set

—A /2m fd rg,*(V;g, )

= —A' /8m fd r[g,*(V;P, )

+(V;P„*)P„—2V;g,* V;g, j . (14)

The left-hand side is the PB form and leads to an energy
expression

E,(PB)=T+ 8'+ JFp+ U+ UF, (15)

where T is the one-body (Fermi gas) kinetic energy, W' is
a two-body integral containing both the potential VJ and
kinetic V; FJ terms, U is a three-body integral for
V;FfJ V;F;k terms, and 8'z and Uz are two- and thrce-

of three-body separable diagrams containing uz 9 ~4 and

fz ~ 6 has been calculated, rather than selected samples as
reported for diagrams 1.3—1.5 in Table 2 of Ref. 2. The
accuracy of the treatment of L-dependent terms has not
been thoroughly tested; the present comparison with
Brueckner-Bethe results is probably the best test to date.

Another test of the accuracy of the FHNC —SOC sum-
mations in nuclear matter has been made for the first time
in the present work by computing the energy expectation
value with both the Pandharipande-Bethe (PB) and
Jackson-Feenberg (JF) forms' of the kinetic energy. The
kinetic energy may be written equivalently as:

-l2—
O
0&

C3

-l6—
Q)

LLJ

l.2
I

1.4
kF {fm )

I

l.6

l

l.2
I

1.6
I

l.s

FIG. 1. Nuclear matter energy as a function of Fermi
momentum. The solid line is fit to the Brueckner-Bethe ener-
gies; dotted lines show their estimated uncertainty. The dots
and crosses show the variational JF and PB energies, respective-
ly.

FIG. 2. Nuclear matter energy for four recent nucleon-
nucleon potentials. The solid, dot, and dash-dot curves are fit to
Brueckner-Bethe energies for the Argonne v~4, Paris, and Bonn
potentials, while the long-dash and short-dash curves are fit to
variational energies for the Argonne v~4 and Urbana v~4 poten-
tials, respectively. The two vertical arrows show the effect of
correlated basis function perturbation corrections on the Urbana
v &4 variational energy.
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TABLE VIII. Contributions in MeV/nucleon to the variational PB energy for the Argonne U~4 po-
tential.

kF (fm ')

T
8' (potential)
8' (kinetic)
WF
U
UF
Z„(PB)

1.2

17.92
—43.72

17.12
—2.67

0.14
0.79

—10.42

1.4

24.39
—59.72

23.52
—3.68

0.38
1.48

—13.63

1.6

31.85
—78.24

31.66
—5.44

1.48
2.83

—15.86

1.7

35.96
—87.60

36.28
—7.00

2.56
3.48

—16.32

1.8

40.31
—97.25

40.35
—8.43

4.34
4.70

—15.98

E,(JF)=T+Wg+ Wp+Up, (16)

body integrals for V;Fz VP terms. The right-hand side is
the JF form and leads to an energy expression'

the JF energy and its corresponding pieces are given in
Table IX. The W term of Eq. (15) and the W~ term of
Eq. (16) include both the two-body potential energy and a
kinetic energy piece; these are given separately.

where 8'z is a two-body integral containing V; and
LJ

F~~(V;F~~) (V;F~~)—terms, and W& and U~ are two- and
three-body kinetic energy integrals for V;

~ P ~

terms.
The W, W~, Wg, and W~ integrals require knowledge of
the pair-distribution function g2(rJ), while the U, UF,
and U~ integrals require knowledge of the three-body dis-
tribution function g3(rj, rjk, rk;). The U~ of the JF form
is extremely small (0.02 MeV at 1.8 fm ') compared to
the U and Uz terms of the PB form (9 MeV at 1.8 fm '),
so it is less sensitive to errors in approximating g3 How-
ever the W~ term in E„(JF) is more sensitive to details of
g2 than the W term in E„(PB), particularly at short dis-
tances where the potential is repulsive.

If the two- and three-body distribution functions were
computed exactly, the PB and JF forms would be exactly
equal. In the present case the two forms agree extremely
well; the JF form gives 0.25 to 0.75 MeV more binding
than the PB form for the densities studied. This close
agreement is in sharp contrast to the case of liquid heli-
um, where the JF form gives significantly less binding
than the PB form in the FHNC approximation. ' (Physi-
cally, this is because nuclear matter is a much less dense
system, with the core of the nucleon-nucleon interaction
taking a much smaller fraction of the volume than the
core of the atom-atom interaction in liquid helium. )

The variational calculation was repeated —15 times for
each density, with different values for the parameters d,
d„and a. A least squares fit to the most general quadra-
tic in d, d„and a was then used to find the optimal set of
these parameters; they are given in Table VII. The PB en-

ergy and its contributions are given in Table VIII, while

IV. RESULTS AND DISCUSSION

The Brueckner-Bethe and variational results for Ar-
gonne U~q are shown in Fig. 1. The solid line is a fit to
the Brueckner-Bethe energies, while the dotted lines on ei-
ther side are fits corresponding to the estimated uncertain-
ties given in Table IV. The circles and crosses show the
variational JF and PB energies, respectively. The uncer-
tainty in the variational energy expectation values is com-
parable to that in the Brueckner-Bethe calculations, being
relatively small at low densities, and increasing with den-
sity. The dashed line shows the empirical saturation
curve with a binding of 16 MeV at 1.33 fm ' and an in-
compressibility of 210 MeV.

The variational energies are above the Brueckner-Bethe
energies up to —1.8 fm ', where the calculational uncer-
tainties are much larger than the difference between the
two calculations. The variational calculation gives a
saturation point that is -0.1 fm higher in density than
the Brueckner-Bethe calculation. At the lowest den'sities,
the variational results are 2 MeV above the Brueckner-
Bethe energies, while the sum of the estimated uncertain-
ties is only 1 MeV. This difference probably reflects an
inadequacy in the variational ansatz for the wave func-
tion. Possible improvements could include I. and (I. S)
correlations, or an explicit momentum dependence of the
Feynman-Cohen backflow type. ' Alternatively, pertur-
bation corrections to the variational energy can be made
using the correlated basis function approach. '

The differences between the results of the Brueckner-

TABLE IX. Contributions in MeV/nucleon to the variational JF energy for the Argonne U~4 poten-
tial.

k (fm-')

T
Wjy (potential)
8 ~ (kinetic)
8'p
Up
E„(JF)

1.2

17.92
—43.72

16.19
—1.39

0.00
—11.00

1.4

24.39
—59.72

22.78
—1.76

0.00
—14.31

1.6

31.85
—78.24

32.17
—2.39

0.01
—16.60

1.7

35.96
87.60
37.73

—2.91
0.02

—16.80

1.8

40.31
—97.25

44.00
—3.32

0.02
—16.24
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TABLE X. Breuckner-Bethe (Egq) and/or variational (E„)binding energies in MeV /nucleon for four recent nucleon-nucleon po-
tentials. The estimated uncertainty in Eq~ is also given. The E„are the average of JF and PB energies, while E„(PB)-E„(JF)is given
in parentheses.

kp (fm ')

Bonn Eqg
Paris Egg
Argonne u~4 Egg
Argonne U~4 E„
Urbana u~q E'„

1.2

—12.9+0.5
—12.6+0.5
—12.8+0.5
—10.7(0.6)
—11.3(0.4)

14
—15.9+0.7
—15.9+0.8
—16.2+0.9
—14.0(0.7)
—14.8(0.5)

1.6

—16.8+ 1.1

-17.7+1.1
—17.8+1.3
—16.2(0.7)
—17.3(0.3)

1.7

—16.6(0.5)
—17.7(0.0)

1.8

—13.5+1.9
—15.8+1.8
—15.8+2.0
—16.1(0.3)

- —17.2( —0.5)

Bethe and variational calculations for Argonne Ui4 are
very similar to the differences between the earlier results
for Reid u6. The reasonably good agreement between the
two methods has been preserved with the addition of the
I. S, I. , and (L S) terms to the potential. This is
despite the less complete treatment afforded these terms,
compared to the U6 terms, in the variational calculations.

The results of Brueckner-Bethe and/or variational cal-
culations for four recent potentials are summarized in
Table X and Fig. .. 2. The solid, dot, and dash-dot lines in
Fig. 2 show Brueckner-Bethe energies for the Argonne
UI4, Paris, and Bonn potentials, respectively. The long-
dash and short-dash lines show the average of the PB and
JF variational energies for Argonne Ui4 and Urbana Uiz,
respectively. The Brueckner-Bethe saturation points for
Paris and Bonn were reported previously the full satura-
tion curves are given here. The estimated uncertainty in
EBn for these potentials is similar to that for Argonne Ui4

given in Table IV. Variational calculations for Urbana
ui4 were also reported earlier; the present results reflect

'

the improvements in the calculation discussed above.
Fantoni, Friman, and Pandharipande' have reported

correlated basis function perturbation corrections to the

Urbana viq variational energy of —1.2 MeV at 1.33 fm
and —1.5 MeV at 1.53 fm '. These corrections are
shown as vertical arrows in Fig. 2, and bring the Urbana
v~4 results into close agreement with the Brueckner-Bethe
curves in the region of the empirical saturation density. If
the perturbation correction to Argonne v~4 were about the
same, all the binding energy curves would be in remark-
ably close agreement.

All the potentials considered here give good fits to
two-nucleon scattering data and deuteron properties. As
seen in Fig. 2, all give too high a saturation density.
%'hile the calculated saturation point depends on the po-
tential and on the calculational method, the contribution
of the two-nucleon potential to the nuclear matter binding
energy in the empirical saturation region seems to be well
established. Clearly an additional effect, such as the addi-
tion of a three-nucleon potential to the nuclear Hamiltoni-
an, ' ' is required to obtain the empirical saturation prop-
erties.

This work was supported by the U.S. Department of
Energy under Contract No. %-31-109-ENG-38.
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