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Symmetry-conserving higher-order interaction terms in the interacting boson model
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Symmetry-conserving higher-order terms for the interacting boson model are constructed. Their
eigenvalues are explicitly derived within the SU(3) limit. The influence of these interaction terms on
the theoretical energy spectrum of several nuclei is discussed. The classical limit of these operators
is derived and interpreted.

I. INTRODUCTION

The original interacting boson model (IBM), initially
introduced by Arima and Iachello, ' has been rather suc-
cessful in describing collective properties of several
medium- and heavy-mass nuclei. In the first instance
only L =0 ( s) bosons and L =2 ( d ) bosons are con-
sidered. This specific version of the model has an in-
herent U(6) group structure associated with it. In the
framework of this boson model, a dynamical symmetry
arises whenever the Hamiltonian H can be written in
terms of invariants only of maximal subgroups Gj U(6).
Such H gives rise to splitting but not to mixing of the
various G representations. The subgroups G=—U(5) (Ref.
1), G= SU(3) (Ref. 2), and G=—O(6) (Ref. 3) can be con-
sidered in the IBM. Arima and Iachello made the choice
to withhold for each of these cases only up to two-boson
interaction terms in H.

Several extensions of the original IBM have been intro-
duced during the past years. Negative-parity states are
described by coupling f bosons to the s and d ones. The
addition of an extra g, s', and d' boson was necessary
for the explanation of certain experimentally observed
bands. Heyde et al. added to the IBM Hamiltonian cu-
bic terms or three-boson interaction terms, in order to
describe nuclei with triaxial features. They studied the in-
fluence of such terms on the energy spectrum in each of
the three dynamical symmetries. By the introduction of
specific higher-order interaction terms, various G repre-
sentations are mixed. Moreover, the dynamical sym-
metries of the IBM are broken up, so that the eigenvalue
problem of H cannot be solved analytically.

In this paper we shall show that higher-order terms,
which conserve the dynamical symmetry, can be added to
the Hamiltonian in a natural way. Such operators should
belong to the integrity basis of O(3) scalar operators in the
G [G=U(5), SU(3), or O(6)] enveloping algebra. The ex-
tension of H with higher-order terms in the SU(3) limit
will be considered in detail, because the number of O(3)
scalars in the integrity bases is limited and the eigenvalue
derivation for these operators is straightforward. To ob-
tain a more intuitive insight, the classical limit of the add-
ed terms will be calculated. Some comments will be given

concerning the third- and fourth-order symmetry-
conserving operators in the U(5) and O(6) limits.

II. - THIRD-ORDER OPERATORS IN THE SU(3) LIMIT

In the SU(3) limit, the IBM Hamiltonian is written in
terms of two O(3) scalars, i.e., the angular momentum
operator L and the second-order SU(3) Casimir operator
I2.

H =aL +I3I2 . (2.1)

Both operators can be expressed in terms of the SU(3)
generators, which, conforming with the notation used in
previous papers, ' will be denoted by l+, lo, and q„
(p, = —2, —1, . . . , +.2). So L and Iz read

L =l~l +lo(lo —1) (2.2)

(2.3)

Both I. and I2 are diagonal into the Elliott basis"
~
(k,p ),K, l, m ), and their eigenvalues are given by

(2.4)

(2.5)

Adding third-order terms in the SU(3) generators to H,
(2.1), under the restriction of SU(3) symmetry conserva-
tion, yields in first instance the construction of the opera-
tor integrity basis for O(3) scalars in the SU(3) enveloping
algebra. The authors' have proved, with the help of the
shift operator technique, that only two independent
third-order operators can be constructed, i.e., the third-
order Casimir operator I3 and the so-called O(3) scalar
shift operator OI, which will be denoted in this paper
by A. These operators read'
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36z [4(qo 3q+~q ~
—6q+zq —z)qo+6W6(q+zq, +q zq+, ) —9V'6(q zl++q+zl )

and

—18&6(to 1)q i 1+ + 18v'6(to+ 1)q+~ 1 + 18(L —3lo+3lo+ 10)qo]

0=@61(1+1)qo—3(q &1++q+&1 ) —3(q zl+ +q+zl ),

(2.6)

(2.7)

where the given form of 0 may be applied to m =0 states only. Since the 0 eigenvalues are m independent, this re-
striction does not affect further discussions. In the Elliott basis I3 is diagonal and its eigenvalue is'o

(I3)= „,(A, —p)(2A, +p+3)(A. +2p+3) . (2.8)

The operator 0 is not diagonal in the Elliott basis. Its eigenvalues have been calculated by several authors either
analytically, but most of the time numerically, for many cases of physical interest. In a separate paper' two of us will

discuss a new method for the 0 eigenvalue determination, based upon basis states
~
K, l )), which are related to the Elliott

states by

.
i
K, t )) =c (K, l) i

(k,p), K, /, 0),
where the c (K,1) are the Elliott coefficients. " In this basis one can show that for A, &p,

n ~K t)) = g n~~ ~K't)),
K'=E,K+2

with

Q~~=v 6(p+2A, +3)[l(1+1)—3K ],

(2.9)

(2.10)

(2.11)

~Ix+z sc = 3[3(p+K—)(p+K +2)(1+K +2)(1+K + 1)(1+K)(1+K I)&2]1/2

Since

i

—K, t)) =( —1)"+ +'iK, t)),

(2.12)

(2.13)

the relations (2.10)—(2.12) allow one to derive by a diagonalization procedure the eigenvalues of 0 for every SU(3) repre-
sentation. For the interesting representations, (A, ,O) and (A, ,2), which play an important role in the SU(3) limit of IBM,
the following expressions for the 0 eigenvalues are obtained:

(i) for (A, ,O): (0)=V'61(1+ l)(2K+3),

(ii) for (A, ,2), t =0: (Q) =0,
1 odd: (0)=v 6[1(1+1)—12](2A,+5),
1 even: (0)=~6[(t—2)(t+3)(2K+5)+6[1(t+1)(l—l)(1+2)+(2K+5) ]'~ j .

(2.14)

(2.15)

(2.16)

(2.17)

It is worthwhile to mention that these results have already
been obtained piecemeal by several authors. ' '

III. RESULTS OF THE EXTENDED IBM

H' '=aL +PIz+yQ . (3.1)

Since we restrict our analysis to the ( A, =2N, p =0) and
(k =2N —4,p =2) SU(3) irreps (irreducible representa-

In this section we report on a study of two series of nu-
clei, where many of the positive-parity bands can be ex-
plained in the framework of the IBM, i.e., the Gd
(154 (A & 158) and the Er isotopes (162 & A & 166). Our
aim is to compare for levels belonging to the ground-state,
f3, and y bands the results of the original IBM with those
of the extended IBM version, where the following Hamil-
tonian is considered: d, ,=[(E„„E,„,)'/(N —P)]'~z, — (3.2)

where X is the number of levels taken into account and P
is the number of free parameters. For each nucleus the
agreement between theory and experiment is improved by

tions), the introduction of an interaction term proportion-
al to Iq in (3.1) is of no practical importance. The opera-
tors I2 as well as I3 determine the energy difference be-
tween the above-mentioned representations. This means
that the introduction of the third-order Casimir operator
in (3.1) results in a rescaling of the /3 parameter.

For each of the nuclei considered the relevant parame-
ters are obtained from a least-squares fit to all known ex-
citation energies of the levels belonging to the ground-
state, P, and y bands. The derived values are given in
Table I, together with the rms deviation defined by
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adding the Q interaction term. There is a smooth varia-
tion of the parameter values within a given isotope series,
although the fact that in certain nuclei the number N of
known experimental levels is extremely low makes de-
tailed comparison rather difficult. In Fig. 1 we present
the comparison between experimental and calculated spec-
tra for the Cid isotopes and in Fig. 2 the results for the Er
isotopes are shown. Because the eigenvalues (2.4) and
(2.5) do not depend on K, states of the P and y bands with
identical even angular momentum ( I =2,4, . . . ) are in the
original IBM degenerate. In our extended version this de-
generacy is lifted due to the 0 term and the theoretical re-
sults are closer to the experimental situation. One should,

however, realize that the wave functions describing these
specific states are no longer Vergados wave functions' as
the case was in the original IBM. The wave functions in
our extended version are the eigenvectors of the 0 opera-
tor as defined in (2.9) and (2.10) for a (X,2)SU(3) irrep.
One easily derives that

~
(X,2),I'"'",+ ) =[z)

~

(A, , 2),K =0,/'"'", 0)

+z;
~

(A, ,2),K =2,1'"'",0)]/z'-, (3.3)

where the + index corresponds with the two distinct
eigenvalues (2.17) and

z, =I2/ (/+1)(/ —1)[2(A+2) —I(/+1)]I'~

z2 = I(2~+ 5)+ [(2A, +5)'+/(I ~1)(/ —1)(/+2)]'~') X [2(A, +3)'—I(/+1)]'~'/2'~'
(3A)

(3.5)

'

and

+( + )2]1/2 (3.6)

I

operators. One can easily verify that 0 can be written in
the following coupled form:

Note that in the limit of large X our solution (3.3) reduces
to the Elliott states, i.e.,

lim
~

(A, ,2), /'"'", +. )~
~

(A, ,2),IC =O, l'"'",0),
X—+~

lim
~

(A, ,2),I'"'",—)
~

(A, ,2),K =2, /'"'", 0) .
N —+ &g)

IV. CLASSICAL LIMIT OF THE 0 OPERATOR

To obtain a more intuitive insight in the geometrical in-
terpretation of the algebraic operator 0, its classical limit
has to be calculated. This can be realized by using the
technique of Dieperink et al. and Ginocchio and Kir-
son. For this purpose the operator form (2.7) has to be
expressed in terms of s, d boson creation and annihilation

]

/„= &10(d d )p,

q~ ——2V 2(d s +s d )p —~14(d d )p

(4.2)

(4.3)

The introduction of (4.2) and (4.3) into (4.1) and the reor-
dering of the creation and annihilation operators so that
all creation operators stand to the left of the annihilation
operators result in the following 0 definition:

Q = —6v 5(q (//)z)c

= —6v 5 g (2@2—p i
00)(lvlo

i
2 —p)q„/ I, (4.1)

V, O', P

where I„represents the spherical components of the angu-
lar momentum operator. The SU(3) generators I„,q& used
here and defined in Refs. 8—10 can be written in quan-
tized form as

J J 2 20= —60~5 3U 70 g ( —1) ~[(~)+1)(2J2+1)]~~2 (, 2 2 1,[(dtdt)Jtdt]z. [(d d)J2d]J
J)J~J Ji 2 2

l

2 2 J
X +6~10'2 2 1

'[s[(d d ) d ] (d d) +st(dtdt) .[(d d)2d]J W7(dtdt)J (d d—)jjJ

2 2 J
2

'(d d ) (d d) +6v2/M5[s(dtdt) d+stdt (d d) ]—3v 14/v 5dt dJ.'''.
(4.4)

Note that the third-order term in dt —d has a form comparable to the so-called cubic terms introduced by Heyde et a/. ,
I.e.,

+ Or (dtdtdt) (d d d)~ . (4.5)

Such terms however break the IBM dynamical symmetries. In reality they choose all OL ——0, with the exception of 83,
which they retain as a parameter. Expression (4.4) shows that a symmetry-conserving operator is composed, besides
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TABLE I. Values of the parameters a,P, (y) occurring in the Hamiltonians (1.2) and (1.3), as derived in a least-squares fit to the
known level energies in a series of Gd and Er nuclei. The rms deviation as defined in (3.2) is indicated for each of the considered
Hamiltonians and N denotes the number of considered levels.

d, , (keV)
H (2. 1)

d, , {keV)

Parameter 154Gd

17
6.532

—65.466
0.071

112.94
14.245

—59.407
127.56

156G

23
8.331

—73.196
0.032

66.54
12.156

—70.367
72.19

158Gd

11
6.667

—70.985
0.044
9.57

12.447
—68.416

32.00

162Fr

8
—6.780

—56.154
0.148

13.57
14.698

—48.023
119.57

164Fr

26
—4.140

—54.272
0.107

84.27
12.223

—45.647
175.34

166Fr

10
3.055

—37.411
0.056
7.69

12.580
—31.664

14.19

lower order terms, of a specific combination of cubic terms.
Let us for the time being consider the first sum in (4.4). Introducing the short-hand notation

d(J J J)—[(dtdt) 'dt]/ [(d d) d] (4.6)

this first sum can be written down explicitly, by taking into account that only five linear independent combinations of
type (4.6) exist, which can be uniquely characterized by J (0,2,3,4,6), i.e.,

Q(first sum) =v 10/(~3.269 50)[1617d(2,2,0)+39930d (0,0,2) —15 092d (2,2,3)+ 13 622d (2,2, 4) —43 120d (4,4, 6)] .

(4.7)

Van Isacker and Chen have shown that the classicaI lim-
it (CL) of each d(Ji, Jz,J) term is given by

6
d (Ji,J2,J)ci ——X(X—1)(N —2) (A +8 cos 3y) .(1+P')'

(4.8)

I

The coefficients A and 8 for each specific Ji, J2, and J
combination are given in Table II. It is easy to verify that
the classical limit of (4.7) disappears completely. In an
analogous way one can show that the three terms of the
second sum in (4.4) also h'ave a classical limit which van-
ishes identically. Only the last three terms in (4.4) yield a
contribution which is p and y dependent, i.e.,

3I
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a b c a b c
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FIG. 1. Comparison between the experimental and calculated spectra for Gd isotopes (154& A & )58). "a"denotes the results ob-
tained in the original IBM; "b" represents the-experimental data; "c"gives the results in the extended IBM with H' ', (3.1). The ex-
perimental data for ' Gd are taken from Gono and Sugihara and Sousa et al. (Ref. 17), for "Gd from Konijn et al. (Ref. 18), and
for ' Gd from Greenwood et al. {Ref.20) and Lederer and Shirley (Ref. 19).
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FIG. 2. Comparison between the experimental and calculated spectra for Er isotopes, (162&3 &166). The notations a, b, and c
are explained in the caption of Fig. 1. The experimental data for ' Er and ' Er are taken from Lederer and Shirley (Ref. 19), for

Er from Lederer and Shirley (Ref. 21).

n = ' ' (P' 4i~2P'
p2)2 5

42%v'3
(4.9)

5v 2(1+P )

From this it is clear that H' ', (3.1},cannot give rise to a
stable, triaxial shape of the nucleus. The fact confirms
the conclusion formulated by Dieperinck et a/. t'hat the
most general Hamiltonian of the IBM model in its origi-
nal formulation, cannot explain triaxiality.

V. FOURTH-ORDER OPERATORS
IN THE SU(3) LIMIT

It is already known for a long time' that only one
linear independent fourth-order O(3) scalar operator exists
in the enveloping algebra of SU(3). In previous pa-
pers ' we called it QI, but here we shall denote this
operator as A. Its definition in terms of SU(3} generators
is given by Van der Jeugt et a/. ' (again we restrict our at-

tention to an operator form valid when acting upon m =0
states):

with

A=2/(/+ l)qo ' —v 6(q' ', /++q~+I/ )

—~6(q' 2/~ +q+2/ ) —81/+/ (5.1)

g '(2p12p2
I 2p~qp. ,q'„, .

»/"2
(5.2)

A
I
K, /)) = g A IK'/)),

K'=K, K+2

with

(5.3)

The eigenvalue of this operator has been derived for a lim-
ited number of SU(3) irreps and O(3) / values. In Ref. 13
two of us describe a new method for the A-eigenvalue
derivation in the basis (2.9). Again one can show that for
A. )p,

Axx ——2[/(/+ 1)—3K ](2k +p+ 3) —18K +6K [5/(/+ 1)—3]—3/(/+ 1 )[4/(/+ 1)—3]—81/(/+ 1)

+3(p K)(/t +K+2)[3K—/(/+ I )]+.3(p, +K)(p K—+2)[3K /(/+—. 1)], — (5.4)

and

Ax'+2, x' 6[(/ +K)(@+K+2)(/+K +2)(/+K + 1 )(/+K)(/+K 1 )]»2[(2A +&+3) 3( 1 +K)] (5.5)
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35

1

5

3
35

14
55

8
385

Moreover, we like to stress the fact that 0 and A do not
commute, i.e.,

[Q,A]&0 . (5.6)

Although A is the only linear independent fourth-order
operator in the SU(3) enveloping algebra, it is evident that
other fourth-order operators can be constructed as prod-
uct forms of lower-order operators, i.e., L, I2L, and I2.
The most general SU(3) conserving fourth-order Hamil-
tonian reads

H' '=aL +pIz+yQ+oI3+pA+vL +1IQL +pI2

(5 7)

TABLE II. The coefficients A and B [relation (4.4)] in the
expression for the classical limit of d{J1,J2,J) defined in {4.6).
This table has been copied from Van Isacker and Chen (Ref.
24).

J
J1 ——J2

A(~»)'"'= 2[I (& + I)—12)(4&'+20k, —12)

+(—121 —24l +861 +98l —960)

=2[I(l + 1)—12](4X +20k —12)

+ [—12k'(l + I)'+98l (I +1)—960] . (5.9)

Note that these eigenvalues are, besides other terms,
1 (l +1) dependent. Similarly, the eigenvalues of II for
this same set of states are all l (I + 1) dependent [see (2.14)
and (2.16)]. This means that through these eigenvalues
and the ones following from L and L, H' ' reproduces
in a certain way the previously empirically introduced
three-parameter energy formula

E =E&+Al(I+1)+B12(1+1)~

often used for the description of rotational-like bands.

VI. HIGHER-ORDER OPERATORS
IN THE Q(6) AND U(5) LIMITS

It is evident that in a similar way symmetry-conserving
higher-order terms can be constructed in the two other
dynamical symmetries of the IBM.

The generators of the 0(6) algebra can be expressed in
terms of d-s creation and annihilation operators:

It is interesting to compare the results obtained for levels
belonging to the ground-state, p, and y bands derived in
an extended IBM version, where H' ' is introduced as the
Hamiltonian with the experimental spectrum of ' Gd
which exhibits a rich band structure. Due to (5.6), a
least-squares procedure based on H' ' gives rise to a non-
linear set of equations, which we have solved by using the
EO4FDF subroutine of the NAG (Numerical Algorithms
Group) library. By studying the influence of the various
terms of (5.7) on the energy spectrum it became clear that
I3 I2I-, and I2 did not change the theoretical results
drastically; therefore, we have chosen 5=r=p=O. The
other parameter values following from the least-squares
fit are

a = 12.05, P= —71.19, y =0.020,

v= —0.014, p = —5.72X 10

3
E

feeV)
ex pt theory expt theory expt theory

$0

)2

lp =(d d)~, P~ =(d d)~, gp =(d 5+5 d)p (6.1)

while the rms derivation for this fit equals 21.67. Com-
parison of these last results with the ones given in Table I
derived in the original IBM or in the third-order exten-
sian, shows that the a, p (and y) values are not much
changed by adding the fourth-order terms, but that the
rms value is decreased enormously. In Fig. 3 we compare
the theoretically obtained spectrum of ' Gd with the ex-
perimental one. '

It is worthwhile to mention that for the nondegenerate
states [i.e., the states belonging to the (A, ,O) irrep and the
one belonging to the (A, ,2) irrep with add l] the A eigen-
values follow directly from Azz, (5.3):

A(&,0)=21 (& + 1)(4A,'+ 12k, —6I —61 —27)

=21(I + 1 )[4A, + 12k, —6l (I + 1)—27] (5.8)

and

S

2
0

2

0
FICx. 3. Comparison between the experimental and calculated

spectra for "Gd. The theoretical results are obtained in the ex-
tended IBM with H' ', {5.7). The experimental data are taken
from Konijn et al. (Ref. 18}.
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A third-order O(6) symmetry-conserving operator can be
constructed in an analogous way as it was done for Q [see
(4.1)], i.e.,

5 = — f (2, 3,5)+f{2,4,6)+, f (4, 6, 8),5g l3
3X7X&l '' '' 24~7

(6.7)
0'=a [q'(ll) ] (a: an arbitrary constant) .

whereby
6.2

To our knowledge, no systematic study has been per-
formed to calculate eigenvalues of such an operator. Its
classical limit however can be derived quite. easily. The
operator Q' can be transformed to a form of the type
(4.4). Due to the definition of q& in terms of d-s creation
and annihilation operators, it is clear that Q' can be writ-
ten as a linear combination of the second, third, and sixth
term in (4.4). Only the sixth term has a nonzero classical
limit, proportional to P cos3y, again showing that an ad-
ditional third-order symmetry conserving term does not
give rise to a stable, triaxial shape of the nucleus.

The generators of the O(5) algebra can all be expressed
in terms of d and d alone, i.e.,

f(Ji,J2,J)= {[(dtdt) 'dt] dtI ~ I[(d d) 'd]

(6.8)

f(Ji,J2,J)=p /(1+p ) N(N —1)(N —2)(N —3)

X (A +Bcos 3y), (6 9)

where for

By the method of Van Isacker and Chen it is easy to
verify that the classical limit of the three occurring f
operators can be written as

lp —(d d)@, qp =(d d)p (6.3)
f(2,3,5): 2 = —3/(2X5X7), B =3/(2XSX7);
f(2,4,6): 2 =2 /(7 X 11), B=2 /(7X 11);

nd 3nd ——2nd +d (2,2,—0)+ —", d (0,0,2) ——,d (2,2, 3)

+ „d(2,2,4)+d(4, 4, 6),
L nd =6nd —12nd+2L —3d (2,2, 0)——", d (0,0,2)

+ —,d (2,2, 3)+—„d(2,2,4) +4d (4,4,6),
I2nd —, nd , —nd+—3——nd +—2I2+—,d (0,0,2) .3 i 2 5

(6.4)

(6.5)

(6.6)

It is again interesting to consider for each of the above
operators the classical limit of the third-order terms.
Each of the d(Ji, J2,J) terms has, again, a classical limit
of the form (4.8). Making use of the typical A and B
values of Table II, one can easily check that for nd the
classical limit of the third-order terms reduces to

N(N —1)(N —2)P /(1+P )

A few years ago two of the authors developed a method
for constructing operator forms of third- and fourth-order
in the generators, which commute with the Casimir opera-
tors of the groups appearing in the chain U(5)DO(5)
DO(3), i.e., operators which conserve the U(5) symmetry.
There, it has been proven that at the level of third-order
operators there is no room for a new independent opera-
tor. The only existing operators at that level are con-
structed by considering products of the U(5) Casimir
operator, nd, the O(5) one, I2, and the O(3) one, L .
These specific operators can be written in terms of
d(Ji, J2,J) [see (4.6)] as follows:

f(4, 6,8): 3 =2'X79/(5X7X 11X13),
B = —2 /(5X7X llx13) .

Intr oducmg these numbers mto (6.7) results in

3 X5 8N(N —1)(N —2)(N —3)
~CL 2 p2X7'X l & (1+P')

and again triaxiality does not occur.

VII. CONCLUSIONS

We have shown how one can introduce dynamical
symmetry-conserving higher-order terms in the IBM.
The influence of these terms on the energy spectrum has
been studied in the SU(3) limit. It is important to note
that these higher-order terms remove the degeneracies
which exist for members of the p and y bands. The wave
functions for these states approximate in the limit of large
N, the Elliott basis. Since the SU(3) limit is conserved the
conclusions stated in the original IBM for transition rates
between members of the ground state band remain valid.
In the same way, transitions from members of the p and y
bands to levels of the ground state band remain forbidden.
It has been demonstrated, by considering the classical lim-
it, that in general such higher-order terms cannot give rise
to a stable triaxial shape of the nucleus. Thus, triaxiality
can be introduced only by breaking up the dynamical
symmetries of the IBM.

while for I- nd and I2nd these terms produce a complete-
ly vanishing classical limit. Here again no triaxiality can
be introduced in this way.

For O(5) two of us ' have constructed symmetry con-
serving fourth-order operators. They have shown that
there exists an infinity of such operators. The simplest is
given by
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