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Thermal effects and the interplay between pairing and shape deformations
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The interplay between pairing and shape deformations at finite temperatures is studied with refer-
ence to an exactly soluble SU(2) )& SU(2) model which is able to suitably mock up both superconduc-

tivity and the effects of long-range residual forces. Thermodynamic and ground state phase transi-
tions are studied, both in the thermodynamic limit and in the case of a finite number of particles.
Several independent quasiparticle approximations are analyzed with reference to the corresponding
exact results.

I. INTRODUCTION

Thermal or statistical descriptions of nuclear systems
have become quite frequent in the literature during the
last decade, strongly motivated by the availability of ex-
perimental information concerning heavy-ion reactions
(see, for example, Ref. 1). The sheer complexity of the
problem has prompted the study of simple models (as, for
instance, Refs. 2 and 3), and, from the theoretical point of
view, much light has been shed on the intricacies of the
nuclear many-body problem by studying the general prop-
erties and peculiarities of pseudospin Hamiltonians of the
Lipkin type. '

In this sense, recourse to the formidable weaponry of
atomic coherent states has provided a rather clear picture
of several thermodynamic phase transitions that take
place within the scope of these models. "

It is the aim of this paper to study, within the frame-
work of an exactly soluble model, the interplay between
thermal effects and two of the crucial ingredients of the
nuclear many body problem, namely, superconductivity
and deformation due to long-range residual forces. To
this end, a suitable generalization of the thermal approach
of Gilmore and Feng is proposed, which allows one to
apply their methodology to an SU(2) & SU(2) extension of
the original Lipkin model. The extended model' is able
to mock up the interplay between pairing and shape defor-
mations, ' ' and allows thus for the introduction of
thermal effects in a simple fashion. In this way, different
independent quasiparticle approximations [thermal
Bardeen-Cooper-Schrieffer (BCS), thermal Hartree-Fock-
Bogoliubov] can be compared to exact results, at any tem-
perature T, both in the thermodynamic limit and in the
case of a finite number of particles.

The results obtained in this paper allow one to gain
some insight into the machinery that underlies a signifi-
cant amount of the work performed over the years in rela-
tion to the nuclear many-body problem, which, undoubt-
edly, revolves about the mean field approach. In other
words, we deal here with a basic aspect of nuclear theory:
that of describing the independent motion of an appropri-
ately defined quasiparticle in some field (contributed to by
other quasiparticles), and we study features of such an in-
dependent particle motion that arise as a consequence of

temperature-related effects, showing that a special type of
theoretical tool (atomic coherent states) can be advanta-
geously employed.

The paper is organized as follows: the extended
SU(2) &(SU(2) model is described in Sec. II and exact free
energies are discussed in Sec. III. The thermal BCS ap-
proximation is studied in Sec. IV, while both the thermal
Hartree-Fock and the thermal Hartree-Fock-Bogoliubov
approaches are dealt with in Sec. V. Some conclusions are
drawn in Sec. VI.

II. DESCRIPTION OF THE MODEL

The model deals with X fermions distributed in two
(20)-fold degenerate single-particle (sp) levels, separated
by the sp energy e. Two quantum numbers characterize a
given sp state. One of them adopts the values p= —1

(lower level) and @=+I (upper level). The other, which
may be called "p spin, " singles out a state within the
(2fl)-fold degeneracy. Within this context one introduces
Lipkin's quasispin operators

p =1

(2. 1)

J =J,+ —,(J+J +J J+),
and the corresponding SU(2) algebra. We shall denote
with M the eigenvalues of J, and with J(J + 1) the ones
of J . Further, we introduce some additional operators of
the type (2.1), which, following Cambiaggio et al. ,

' we
shall call quasispin pairing (qsp) operators. They are

Q Qt

(2.2)

Q '=Q p+ —,'(Q+Q +Q Q+»
where X is the number operator. It can be easily shown
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4A
D (2.3)

that the Q; obey angular-momentum commutation rules.
Moreover, any Q operator commutes with all the J opera-
tors [SU(2) )& SU(2)]. Obviously, Q+ creates (and Q
destroys) two particles which yield zero contribution to
the M value, and which could then be said to "couple" to
M =0 and J=0. Thus, the Q operators behave (formal-
ly) in the same way as the pairing ones of the theory of
nuclear superconductivity. ' We shall denote by Qo the
eigenvalues of Qo and by Q (Q + 1) the ones of Q

We are thus led to consider an extended [SU(2) X SU(2)]
"Lipkin-like" Hilbert space of dimension

as one deals with X undistinguishable particles that have
to be "distributed" among 4A sp states. These states can
be characterized by the eigenvalues J,Q, QO, M, although
there exists yet a further symmetry to be accounted for, as
every Q or J operator commutes with any of the (20)!
permutation operators that exchange two given p spins.

This additional symmetry gives rise to a certain multi-
plicity Y'(J, g) for a given

~
J,Q, M, QO) state. In order to

label the members of that irreducible representation of the
permutation group (for 20 objects) to which

~
J,Q, M, QO)

belongs, one additional quantum number is needed. How-
ever, given the structure of the Hamiltonians to be studied
in this work, no physical quantity will actually depend
upon this extra-quantum number.

It is shown in the Appendix that the above referred to
multiplicity is given by

(20+2)!(20)!(2J + 1)(20+ 1)
(0+J+g+2)!(0+J—Q+1)!(0—J+Q+1)!(0—J —Q)!

' (2.4)

where the possible values of J and Q are constrained by
the relationships

0&J&0—ig, i,
I go I &Q &0

~ Qo ( &J+Q&0.
(2.5)

U =20—2Q, (2.6)

which indicates the maximum possible number of "un-
paired" particles compatible with a given value of Q.

Two different Hamiltonians will be considered in this
work. The first is a pure qsp Hamiltonian

H=eJ, ——Q+Q, G&0,z (2.7)

In studying ground states, ' only the J+Q =0 "band"
needs to be considered. However, as soon as the tempera-
ture ceases to be zero, a host of states belonging to other
bands will become "accessible"' as one endeavors to con-
struct the corresponding statistical ensemble.

A useful concept is that of quasispin seniority, defined
as"

which mocks up the effects of a typical pairing force. '

The other one is of the form

H=eJ, ——Q+Q +—(J++J ), (2.8)

i.e., a monopole force is added to (2.7), so as to mock up
now the interplay between pairing and shape deforma-
tions.

III. FREE ENERGIES

As the Hamiltonians (2.7) and (2.8) commute both with
J z and with Q, the exact free energy at a given tempera-
ture T can be easily computed by recourse to

F= —kT ln Tr(e ~ )

kT ln g Y(J,—Q)Tr'e
J,Q

(3.1)

where k is Boltzmann's constant, P= 1/kT, and Tr' is the
trace over that subspace characterized by J and Q. For
the Hamiltonian (2.7) this reads

J
Tr'e ~ = g exp —P eM ——[Q(g+1)—Qo(QO —1)] .

M= —J 2
(3.2)

It will be useful later on to consider the thermodynamic
limit of (3.1), that is, the situation in which (20)~ co

with X proportional to A. For this limit to exist, the cou-
pling constants must satisfy the (scaling) condition

G=, g finite,
2A '

Thermodynamic limits within the context of the Lipkin
model have been carefully studied by Gilmore and Feng.
We shall here endeavor to investigate the "BCS-like" as-
pects of them.

Let us introduce the quantities

V=, v finite .
2A

(3.3) J
2Q

(3.4)
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which are to be regarded as continuous in the thermo-
dynamic limit, and subject to the restrictions [cf. Eq.
(2.5)]

s (r,q) = lim ' = g (t;)(r, q)ln(t;)(r, q) .lnI'(J, Q)
2n ~ 2A

(3.7)

10(p( 2
—cjo

1Vo(q( 2

1

Q'o (P'+g (
(3.5)

P, (q, r) =( —,
' +q+r),

$2(q, r) =( —,
' —q —r),

(t 3(q, r) =( —, +q —«),

P,(q, r) =( —,
' q+ r)—,

(3.6)

and using Stirling's approximation, we immediately find
the "entropy per particle" to be [cf. Eq. (3.14)]

with qo ——limen
~ Qo ~

/2Q. Introducing, additionally,
the quantities

%'e shall now employ the formidable weaponry of
atomic-coherent states in order to obtain some in-
teresting results. Gilmore et al. have shown that, for a
wide variety of pseudospin operators 0 (that are functions
of J+, J, and J,), the following important inequality
holds:-

Tre ~ & f exp I
—P(JA'

~

0
~

JQ') Id 0',
(2J + 1) —

4w

(3.8)

with equality in the thermodynamic limit. In this rela-
tionship

~

JA') stands for an atomic-coherent state
and the trace is to be taken over a subspace of dimension
(2J+ 1). Within the present context, (3.8) translates into

PH —y e
—PE(J, Q, M(

(ZJ+1) (2J+1)

exp — J O' H J 0' dQ'
4a

(3.9)

where E(J,Q,M) is the Mth eigenvalue of H within a
given ( J,Q) multiplet' and

~
J,Q, Q') refers here to

atomic-coherent states in the extended [SU(2) && SU(2)]
Hilbert space. In the thermodynamic limit, we can re-
place sums over J,Q, M by integrals over r, q, Q', and, by
recourse to the saddle-point (or Laplace) method we
obtain

so that we are finally led to

f= min I er —,
'—g ( q q() ) —kTs( r,—q) ]—,

r, q

(3.13)

(3.14)

min (J,Q, Q'
~

H
~

J,Q, Q') =(J,Q, —J
~

H
( J,Q, —J)

()(J,Q()')= (JQ, ()' J ()()') —kTs (rq),
2Q

(3.10a)

which, together with (3.10c) suggests that s (r,q) plays the
role of an entropy per particle, or "intensive" entropy.

IV. THE THERMAL BCS SOLUTION

I3 —— f f f expI —2AP(t)(J, Q, A') Idr dq dQ'
A. Generalities

f= lim = kT lim (lnI3 /20)—
2Q~ oo 2A 2Q~ oo

= min t((((r,q, Q') kTs(r, q)I +0-lnQ

r, q, Q'

where

h(r, q, ()')= )im J, (),()' J, (),(l');
2n ~

' '
2A

(3.10b)

(3.10c)

(3.1 1)

The finite-temperature BCS (FTBCS) equations have
been derived by Goodman, ' the main idea of the ap-
proach being that of suitably approximating H in the ex-
ponent of the density (or statistical) operator p (grand
canonical ensemble). H is replaced there by an indepen-
dent quasiparticle Hamiltonian.

The starting point is that of introducing quasiparticle
operators Q~„(Ref.12)

a& z
——cosyC& z

—p sinyC
(4.1)

ap p =cospCp p+p slnpCp p

as

so as to be in a position to write an approximate density
operator of the form

T

P=K exP —j9 H()+ QE((QppQrp
PP

For the Hamiltonian (2.7) we easily find

min h (r, q, Q') = er —,
'
g(q q() ), — ——

0' (3.12)
(4.2)
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where K is a normalization constant, Hp the quasiparticle
vacuum, and E& the quasiparticle energy (p independent
within the present context). The single-quasiparticle den-
sity matrix and the corresponding pairing tensor become'

r

A( Qp~Qq~)
=Tr pQppQq~ = tp5pgqp

(4.3)

S=—k Trplnp

= —2Qk g [t„lnt„+(1 t„)—ln(1 t„—)] . (4.7)

According to the FTBCS methodology, one should now
minimize the free energy with respect to both the angle y
and the occupation number t&,

& +p/l+qT &
= & app~qT & =0 i

where tz is the occupation number

tp
——[1+exp(PEp )] (4.4)

By inversion of (4.1) one obtains, with the aid of (4.3),

F= min (H TS—),
t

where the so-called "entropy-operator"

S=—k lop

(4.8)

(4.9)

and

( Cpp Cq ~ ) =5pq 5p~[ cos 1 tp +sin 7'( 1 —t p ) ] (4.5)

(4.10)

has been introduced. The minimization procedure is car-
ried out subject to the "number-conserving" constraint

N=(N) =Tr PQC,'„C,
„

PP

(Cp Cp+ ) =(Cp+Cp )*=sinycosy(1 t+—t ) .—

(4.6)

For a system of independent quasiparticles the entropy
attains the form

The procedure just described is tantamount to that of
directly minimizing the grand canonical potential
H —TS —XN, with a Lagrange multiplier A, taking care of
(4.10). By recourse to the finite-temperature version of
Wick's theorem, and with the aid of (4.6), one finds

(H) =2Q (t+ t ) ————[2Qsin ycos y(1 —t+ t ) +[t+ —s—in y(t +t+ —1)][t —sin y(t . +t+ —1)]I
2 +

(N) =2Q[t +t++2sin'y(1 t+ t —)], —
(4.11)

(4.12)

the present value of (H ) becomes identical to the one ob-
tained in Sec. III [cf. Eq. (3.12)] by recourse to coherent-
atomic states. Moreover, by substituting (4.16) into (4.7)
we also reproduce the result (3.7), as the sum t++t can
be confined, without loss of generality, to lie in the inter-
val 0& t++t (1. As t ) t+ (E (E+) and sin y is a
definite positive quantity, we arrive again, within the
present approach, at the situation described by the set of
restrictions (3.5). Consequently, we are led to conclude
that the thermal BCS approach is exact in the thermo-
dynamic limit within the present context. Further, by
evaluating

so that, after introduction of

N 2Qo
d = =1+ =1+2qp

2Q 2Q
(4.13)

one solves for sin y in terms of t+ and t in (4.12)

' 2 d —t+ —t
sin y=

2(1—t+ t )— (4.14)

and recasts (H) as

(H& e
2Q 2

(t+ t ) ———,g (d t+— t )(2——d —t+ t ), ——

(4.15)

where, as usual, ' we have neglected the "self-energy"
contribution [the last term in the curly braces on the rhs
of (4.11)] of the pairing force, as its contribution vanishes
when Q —+ ce. A first point to be made here is that the rhs
of (4.15) does not depend upon the degeneracy Q. A
second, and a very important point indeed, is that, by sub-
stituting into (4.15)

r = —,(t —t+),

(4.17)

we find that also at finite temperatures we regain the
T =0 result

(N') —(N)'
(N)2 N

(4.18)

B. The case N =2Q

(N2) =N2+2N 2Q(t++t—— 2t+t )—20

q = —,
' (1—t+ t ), —

(4.16) Thus far our results apply for any given number N of
particles ((4Q). We shall restrict ourselves herefrom to
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the so-called' "Lipkin case" in which X equals 2Q. In
this situation we have, consequently, Qo =—0 and sin y = —,

'

[cf. Eq. (4.14)]. The free energy per particle acquires the
shape

+kT g [tqlnt„+(1 t„)—ln(1 t—~)], (4.19)

an expression that must be minimized with respect to the
t's, paying due respect to the restriction

0(t++t & 1 . (4.20)

By taking the corresponding derivatives and equating to
zero we are thus led to the gap equation

—w+1= Il+exp[( —,
' e+ —,'gw)/kT] j

+ I 1+exp[( ——,
' e+ —,

' gw)/kT] j

i.e., the usual Fermi distribution, with the spectrum of the
unperturbed Hamiltonian eJ, . This solution could cer-
tainly be called a "strange" one, as the occupation proba-
bility t ~1 and not to zero as T~O. The present,
"thermal, " method, yields thus the exact nonsupercon-
ducting ground state at T =0 (the one with Q =0,
J =N/2), as one of the solutions of the gap equation,
something that does not happen in the case of the ordi-
nary (T =0) treatment. '

For g ~ 4e, the gap equation allows for other solutions,
and they should be compared with the one previously dis-
cussed. The "ordinary" superconducting solution (w =1,
u =0) is the "lowest-lying" (energy wise) at T =0 (as ex-
pected). As T starts to rise, the gap (and w) decreases,
eventually vanishing at some critical temperature T =T, .
For T )T„w=0 becomes once more the only solution
to the gap equation. By expansion of (4.21) around w =0,
one is led to the conclusion that T, is that temperature for
which

(4.21) 8kT, cosh2(e/4kT, ) =g, (4.29)

or, equivalently,

m =1—t+ —t (4.22)

and the occupation numbers I& adopt the appearance
(remember that the "number of particles" is explicitly
taken care of [cf. (4.13) and (4.14)])

t„=I 1+exp[( ,
'

p, e+ —,
'

gw —')/kT]j,
so that the independent quasiparticle energy becomes

Ep= 2pe+ 4gM .

(4.23) ~

(4.24)

It is worth noticing that m is linearly related both to q
and to the gap 5 (Ref. 18)

b, =—siny cosy(1 t+ —t )—
2

= 4gM
1 (4.25)

Of course, one could have gotten the gap equation
(4.25) by following the standard FTBCS treatment. '8 We
chose here a "direct-minimization" procedure because it
resembles somewhat more closely the "exact" one.

It must be pointed out that w =0 is always a solution
to the gap equation, and that, moreover, the number-
conserving restriction (4.10) is automatically satisfied
whenever t+ + t = 1, in which case the angle y is left un-
determined and the pairing force contribution vanishes
(b, =q =0, u =N). This is the only solution, at all tem-
peratures, for

g (4g (4.27)

and the corresponding t& become

t = 1 t+ ——[1+exp( —,
' e/kT)]—— (4.28)

so that, if we denote by 60 the zero temperature gap, we
get

(4.26)

an expression that, for e =0, reduces itself to the well-
known result that applies for the so-called "degenerate
model. "' In studying the solutions to (4.29) two different
situations arise, according to whether g is larger or small-
er than g, =4.4668':

(i) g )g, . There are two solutions. However, as the
smaller of these corresponds to the disappearance of a lo-
cal maximum of the free energy (4.19), only one of them
attains physical meaning.

(ii) g (g, . There is no solution for T„meaning that
the gap, as T increases, will "suddenly" vanish, as depict-
ed in Fig. 1, where the gap is plotted as a function of T.
The behavior of the mean energy per particle,
E(T)=(H/2Q), is illustrated, for different values of
N =20 and two values of g (smaller and greater than the
critical one, respectively), in Fig. 2(a). (g =4.2 and

g =5.0; e is set equal to unity and kT is measured in units
of e.) The curve labeled FTBCS is that for the case
Q= (x). Two different types of "discontinuities" are seen
to occur (i.e., first order and second order transitions).
For g =4.2 ((g, =4.4668), E(T) exhibits a discontinuity
at T =T„while, when the coupling constant reaches the
value g = 5, the slope of E is the one that suffers a discon-
tinuity. (The entropy S exhibits, in this respect, a similar
behavior. ) For T )T„allthe state functions behave as
those that correspond to the unperturbed Hamiltonian
(i.e., the one with g =0). All discontinuities are smoothed
out when the number of particles is finite. As the number
of particles increases, the corresponding results become
closer and closer to those of the thermodynamic limit (see,
for example, Fig. 3).

One should also notice [cf. Eq. (4.19)] that in the ther-
modynamic limit, the state of the system is univocally
determined by t+ and t (or, equivalently, by q and r),
which in turn are functions of the temperature. As T
grows from zero to infinity, the evolution of. the system
can then be followed in the "q-r" plane. At T =0 the
system "starts" either from q = ,', r =0 (superconducting-
state) or from q =O, u = —,

' (unperturbed, or "normal, "
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I

0 Ot
I . I I I I

0.2 0.3 0.4 0.5 0 6
t(T

FIG. 1. Gap as a function of the temperature. 60 is the gap
at T =0. Both g and kT are expressed in units of e.

0,1 0.2 0.3 Q& Q5 QG 0.7 k T

FIG. 3. The behavior of the relative gap as a function of tem-
perature for the exact FTBCS treatment {thermodynamic limit)
and for %=50 and 20. The pairing coupling constant is
g/@=5.0.

I

state). At T= oo both q and r vanish, as the entropy is
maximized by these zero values.

V. PAIRING PLUS MONOPOLE FORCE

We shall now turn our attention to the Hamiltonian
(2.8), with the hope of gaining some insight into the inter-
play among three competing effects: temperature, pairing
(favors seniority zero), and monopole force (favors seniori-
ty U =X). Working out things as in Sec. IV (see also
Refs. 7 and 8), one easily obtains

(5.2)
C' = —i sinaC&+ +coscxC&

The pairing term ——,GQ+Q of the Hamiltonian is

left invariant after application of (5.2), so that the "rotat-
ed" Hamiltonian reads now

sponding FTHFB transformation can be accomplished by
first performing a HF transformation among "particle"
operators (C&), followed by a BCS one in the correspond-

ing "rotated" basis. The first step is, then,

C&+ ——coscxC&+ —i sinaC&

minh(r, q, Q')= Er ——,—g(q2 —qo2), r &0' 2v

Q2—Vr-
4V

——,g(q —qo), r &
2

2v

(5 1)

In the thermodynamic limit the monopole interaction
does not play any role for U & e. The question we want to
answer now could be posed as follows: Can a thermal
Hartree-Fock-Bogoliubov (FTHFB) treatment of the
Hamiltonian (2.8) reproduce the exact results (5.1)'?

By recourse to the Bloch-Messiah theorem, the corre-

H =e (J,'cos2a+ J~sin2a )

——,
'
g sin y cos y(1 t+ t )— — (5.4)

+ V[J~ —(J,'sin2a —Jrcos2a) ]——Q+Q, (5.3)

where the primed operators are constructed with the Cz .
Neglecting terms that vanish in the thermodynamic limit,
and assuming for the sake of simplicity /V=20, we are

straightforwardly led to

(H ) = — (t t+ )cos2a ———, U sin —2a(t+ t )—2

2Q 2

E(T)
—O'] — (c(j

-0.5

, ' ..-.' &=20

v=o

;J=5p

cos2a = 1 for t t+ & elu, —
(5.5)E

cos2cx = for t t+ &——
U(t t+) 2ur — U

where, once again, we are using the abbreviations

r =(t —t+)/2,
(5.6)

The recipe is then that of minimizing (,H —TS ), taking
care of the number conserving restriction (see Sec. IV),
with respect to t+, t, y, and a. The last variable is easi-

ly dealt with, the result being

l I 1 I l I I 1 I l 1 1 1

0 0.2 O,c O.C} I(T 0.2 O.& O.G

FIG. 2. Mean energy per particle E{T) as a function of tem-
perature for different pairing coupling constants {a) and dif-
ferent monopole strengths &b). X denotes the number of parti-
cles. Full lines correspond to the thermodynamic limit.

q =(1 t+ —t )l2, —
so that one is immediately led to (5.1), and thus to the
conclusion that the FTHFB approach is exact in the ther-
modynamic limit, a result that holds for a variety of pseu-
dospin Hamiltonians (even if one adds a term of the form
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——,gQ+ Q ). Taking now the derivatives of (,H T—S )
with respect to the t& and, afterwards, equating to zero,
one finds the corresponding critical ("gaplike") equations

w= I —t+ —t (5.7)
I

1 —w=(1+e +) '+(1+e )

I

2r =(1+e )
' —(1+e +)

e& ———,'pe+ —'gw for r &r, =e /2U

(5.8)

(5.9)

r = —,tanh(e/4kT), r & r, ,

which immediately leads to a critical temperature

(5.11)

kT, = ln
U+6 E'

(5.12)
U —E 2

such that for T & T, the influence of the monopole in-
teraction entirely vanishes. The system "evolves" as T in-
creases in a form similar to that corresponding to the
pairing Hamiltonian (2.7). This kind of behavior of the
monopole interaction as the temperature grows has been
extensively studied by Gilmore and Feng, although from
a different point of view, and is related to the crossover
theorem which relates ground state (T =0) phase transi-
tions, that arise as the coupling constant changes, with
those that appear as T grows (for a fixed value of U). At
T = T, a phase transition takes place, and a discontinuity
in the slope of E (T) (or of S) ensues, although no discon-
tinuity whatsoever is to be detected, neither in E(T) [see
Fig. 2(b}] or in S. As expected, one finds, as in the
preceding section, that the mean energies for X finite tend
to the FTHF values as X grows. As here the gap obvious-
ly vanishes, the q, r plane trajectory of the system (cf. Sec.
IV) runs always along the r axis, and the phase transition
takes place when r "crosses" the critical value T, .

S. The pairing versus monopole competition

Returning now to the full Hamiltonian, the set (5.8),
(5.9) has to be simultaneously solved. The main result one
obtains is that, for a nonzero gap, one has always r & r, (a
equals zero), and, conversely for r & r, and u&0 the gap
always vanishes. For T high enough, both a and y be-
come zero and things are arranged as if one were dealing
only with the unperturbed Hamiltonian. The interplay be-
tween both interactions is illustrated in Fig. 4. At T =0,
the ground state will be the superconducting one (q = —,',
r =0) for

g2
8 &Re=2 U+ (5.13}

=pur+ —,'gw for r &r, , (5.10)

where the e& are, of course (independent) quasiparticle en-
ergies.

A. A pure monopole force

It may be of interest to consider first, in the present
vein, the case g =0. FTHFB reduces itself to a thermal
HF approach and the Hamiltonian to the ordinary Lipkin
one. Equation (5.8) is trivially solved and w =0 (zero
gap). For r & r, (5.9) is also trivially solved, and one finds

2-
~=0

lI I l f l t

0 2 4 6 v
FIG. 4. Normal, superconducting, and "deformed" phases in

the pairing coupling constant g vs monopole strength U plane.
For more details see the text.

within the FTHFB framework (exact in the thermo-
dynamic limit). For g &g„the ground state is "de-
formed" (q =0, r = —,', a&0). Finally, for g &4e and
v & e, the system could be described as normal (nonsuper-

0.5

0—

I l I 1 I

0 02 04 l(T
FICi. 5. Single-quasiparticle energies (e„—A, ) as a function of

temperature for different coupling constants. A, is the chemical
potential. %'hen either g or U is finite, the other coupling con-
stant is taken to be zero.
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conducting) and "spherical. "
For T&0, the situation remains, qualitatiuely, the same.

The "critical" values, however, change as T grows. More-
over, the ratio 6/A0 becomes smaller than unity in the su-
perconducting region of Fig. 4, while —, & r & r, in the de-
formed one. As the monopole interaction favors large
values of J (Ref. 12) while the qsp one, on the other hand,
tends to favor J =0 (Ref. 12), it is intuitively clear gust
from the multiplet structure of our model) that there is a
larger degree of "order" for a large J than for a small one.
Consequently, for low temperatures, the monopole force is
"downplayed" to a smaller extension than the qsp one by
temperature effects. As a result, the separatrix between
the "deformed" and the "superconducting" regions moves
into the latter one as T & 0.

Figure 5 displays the behavior of the independent quasi-
particle energies for different situations. At T =0 they
equal + —,

'
U in the "deformed" case and +@+—,g in the su-

perconducting one. As T grows, they tend to the unper-
turbed values + —,

' e.

VI. CONCLUSIONS

identified with the occupation probabilities t+ and t
The thermal BCS approach is seen to yield the unper-

turbed ground state in a natural fashion, as a solution of
the corresponding gap equation, a fact which suggests
that the thermal approach may be useful even at T =0.

The interesting results of Refs. 1—4 can be straightfor-
wardly generalized so as to encompass pairing-like effects.
The theoretical approach used there is seen thus to be able
to cope with a rich variety of ground state and thermo-
dynamic phase transitions within a unified and simple
context. As superconductivity is a crucial ingredient of
the nuclear many body problem, we believe that the
present effort is a useful complement to the work of Gil-
more and Feng.

APPENDIX: THE MULTIPLICITY FACTOR

In order to derive Eq. (4), we introduce first the opera-
tors:

(A 1)

The interplay between pairing and shape deformations,
on one hand, and thermal effects, on the other, has been
studied within the framework of an exactly soluble model,
with the idea of gaining, by comparison with the exact re-
sults, some insight into the behavior of several indepen-
dent quasiparticle approximations, mainly with respect to
their ability to describe phase transitions. These phase
transitions arise as a result of the competition between
three different factors: a pairing-like force, a monopole
interaction, and finite temperature effects, and a rich
variety of situations thus ensues.

An important result is that all independent quasiparti-
cle methods become exact in the thermodynamic limit.
The intensive group quantum numbers q and r are thus

which "count" the number of particles with a given p.
Let P denote the number of particle "pairs" (i.e., eigen-
value of nz equal to 2) and S the number of "hole pairs"
(i.e., eigenvalue of n~ equal to 0). The value of Q will be
determined by the configuration of the P+S "paired"
states while that of J by the remaining 20 P —S, wit—h
eigenvalue of n& equal to one.

If
2Q P S — —P+S

2 2

the number of states, say M, with a given value of J,Q
and P+S is

2Q
M=

20 —P —S 2Q —P —S P+5 P+S

(2II )!(2J+ 1)(2Q + 1)

2Q P —S J t
2—0—P —S J t

P+S
(

P+S
2

' '
2

+'+' '
2

'
2

+ +' '

(A2)

Clearly, J +Q satisfies the relationship

0&J+Q&Q . (A5)

If there are X particles present, 0 & N (4Q, then
1

Qo ———,N —0, and, as a consequence,

I Qo I
&Q&~I

Moreover, as
~

X —20
~

&P +S(20, Jwill satisfy

0&J&Q—
f

—,X —0/ =0—/Qo( . (A4)

2Q &P+S &2Q —2J . (A6)

Summing up expression (A2) with respect to P +S over
the interval (A6) one is led, finally, to Eq. (4). It is possi-
ble to verify that

0 Q —Q 4Q ' 4Q
& (~+"~(JQ'= 2(Q, +n) = X

Q=QO J=0

and

Now, for a given value of J and Q, P+S will lie in the
interval

0—J 2Q
& ~(JQ)= n JQ=0 0—J—1

'2
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