¹⁴⁴Nd levels fed in β decay of ¹⁴⁴Pr isomers

J. Dalmasso, H. Forest,* and G. Ardisson

Laboratoire de Radiochimie, Faculté des Sciences et Techniques, Université de Nice, 06034 Nice Cedex, France

(Received 7 November 1984)

The decay of radiochemically separated ¹⁴⁴Ce source in equilibrium with ¹⁴⁴Pr isomers has been reinvestigated with HPGe detectors. The energies and intensities of 19 γ rays were measured, of which three are new. A ¹⁴⁴Nd level scheme allows the incorporation of most of the transitions between 13 excited states. Levels at 2072.8 (2⁺), 2368.3 (2⁺), 2581.8 (3⁺), and 2742.8 (0⁺) keV, observed earlier in nuclear reactions, are found to be fed in these decays. A 2675.3 keV ($J^{\pi}=0^+$) level seems to be a component of the 2.663 MeV multiplet observed in the (p,t) reaction.

Because of the nearness of the N = 82 closed shell, the knowledge of the excited levels in ${}^{144}_{60}$ Nd₈₄ is of great interest as regards nuclear models. Excited states of this nucleus have been investigated in past years by single and two particle transfer reactions: (d,p) and (p,t) (Ref. 1) or (t,p) (Ref. 2). More recently, Al-Janaby *et al.*³ used 144 Nd(n,n' γ) inelastic scattering, and Snelling and Hamilton⁴ carried out a neutron capture experiment to investigate 144 Nd nuclear levels up to 3.8 MeV.

Concerning the radioactive decay of ¹⁴⁴Pr, the study of Behar *et al.*,⁵ adopted in the Nuclear Data Sheets,⁶ leads to a relatively simple ¹⁴⁴Nd level scheme with six excited levels. A preliminary study by Pravikoff *et al.*⁷ added five more levels to this known decay scheme. A more recent reinvestigation of ¹⁴⁴Pr decay by Krane *et al.*,⁸ carried out to confirm the $J^{\pi}=0^+$ character of the 2084.5 keV level, did not mention these additional levels. Because $J^{\pi}=0^-$ and 3^- , respectively, for ¹⁴⁴Pr(g.s.) and ¹⁴⁴Pr^m, it seemed to us that other $J^{\pi}=0^+-4^{\pm}$ levels in ¹⁴⁴Nd found in nuclear reaction studies¹⁻⁴ in the range of 2–3 MeV could be fed in the decays of ¹⁴⁴Pr isomers. We decided to carefully reinvestigate these decays by means of single γ -ray and γ - γ coincidence measurements in order to verify our preliminary results.

The ¹⁴⁴Ce mother source, provided by the Laboratoire de Métrologie des Radiations Ionisantes (LMRI), had a standard activity of 7.40 MBq g⁻¹. This source was weakly contaminated by long-lived fission products such as ¹³⁷Cs and ¹⁵⁴Eu, as well as by ⁶⁰Co and ²²Na. A radiochemical separation was performed as described in Ref. 7; briefly, we extracted Ce⁴⁺ in a 0.15 F HDEHP [Di- (2-ethylhexyl) phosphoric acid] organic phase (*n*heptane) from the 11 *M* nitric solution and we backextracted the Ce³⁺ by means of a reducing (10 *M* HNO₃, 1 *M* H₂O₂) aqueous solution.

The γ -ray spectra were measured with two different size detectors. The first one was a 75-cm³ HPGe detector (EG&G Ortec) having a relative detection efficiency of 17% and a peak to Compton ratio of 53:1. Its energy resolution (FWHM) measured at 1.33 MeV was 1.75 keV. Low-energy measurements were performed with a planar HPGe detector of 2 cm³ active volume with an energy resolution (FWHM) of 180 eV for the Fe K_{α} line. The γ -ray spectra were analyzed using a 4096 channel Norland 5400 analyzer coupled with a 350 Professional (DEC) computer. γ - γ coincidence experiments were realized using the 17% HPGe detector and an 8% Ge(Li) detector viewing the source in a 90° geometry. The resolving time of the conventional fast-slow coincidence unit was $2\tau = 50$ ns.

The ¹⁴⁴Ce-¹⁴⁴Pr equilibrium source was mainly counted with a coaxial HPGe detector inside a 10 cm thick lead castle in order to minimize background contribution. A 2 mm thick lead, 1 mm thick Cu absorber was interposed between source and detector to exclude the intense 133.5 keV γ ray belonging to ¹⁴⁴Ce decay. The spectrometer was calibrated in energy and relative efficiency, as has been described elsewhere.9 Precise energy values of ¹⁴⁴Pr main photopeaks were obtained by simultaneous calibra-tion with ²⁰⁷Bi, ¹⁸²Ta, ¹⁵²Eu, and ¹³⁷Cs as standard. We also used internal calibration with precise energy values from ¹⁴⁴Ce and ¹⁴⁴Pr decays.^{10,11} Several counting runs of duration between 30 and 120 h, and energy dispersion ranging from 0.4 to 0.9 keV/channel, were carried out with a pileup rejection system. Figure 1 shows a typical γ -ray spectrum measured with the coaxial HPGe detector. Table I summarizes the energy and intensity values of the γ rays attributed to ¹⁴⁴Pr isomer decay, and compares them with earlier studies of Pravikoff et al.⁷ and Behar et al.⁵ Good agreement can be noted between these three measurements concerning most of the γ rays. However, a 2842.9 keV γ ray, observed earlier with a larger detector,⁷ could not be found in this work. A 1631.36 keV line was misinterpreted earlier⁷ as the double escape peak of the 2654.9 keV γ ray. Two additional lines were observed at 1182.0 and 1885.3 keV. γ - γ coincidence experiments were performed with the system described above, using a 696.5 ± 5 keV gate in the Ge(Li) detector. Due to the weakness of γ rays, the γ - γ experiment was counted for about 120 h. Table II gives the list of γ rays coincident with this gate. A ¹⁴⁴Nd level scheme was built using the γ data of Table I assuming that the 696.5 keV photon accounts for 1.34% of the 144 Pr^{m+g} decays.¹² Excluding the possible β feeding to the 1314.3 keV $(J^{\pi}=4^+)$ level (see the discussion below), it seems possible that four ¹⁴⁴Nd levels can be fed by the ¹⁴⁴Pr^m isomer $(J^{\pi}=3^{-})$, i.e., 696.5 keV (2⁺), 1510.6 keV (3⁻), 2581.8 keV (3⁺), and 2945.6 keV. Since the 696.5 keV level β feeding from ¹⁴⁴Pr^m

FIG. 1. γ -ray spectrum of ¹⁴⁴Pr^{m+g} isomers in equilibrium with ¹⁴⁴Ce, measured with a 17% HPGe detector. Energies are in keV; the energy dispersion is 0.76 keV/channel. SE and DE stand for single and double escape peaks, respectively. An asterisk denotes a γ ray from the background; Σ indicates summing a peak from 2185.6 and 696.5 keV γ rays.

could not be determined, the intensity balance was calculated only for the last three levels and normalized to 100 β decays of ¹⁴⁴Pr^g, giving a total β feeding of 0.000 87%; assuming that ¹⁴⁴Pr^m is fed in 1.51% of the ¹⁴⁴Ce β decay,⁶ we could deduce the value 0.055% for the β branching ratio of ¹⁴⁴Pr^m. Comparative half-lives for β decay were calculated using $T_{1/2}$ =17.3 min and 7.2 min, respectively, for ¹⁴⁴Pr(g.s.) and ¹⁴⁴Pr^m; $E_{\beta_{max}}$ =2996±3 keV; and the matrix elements f^0 given by Gove and Martin.¹³ Because

 $J^{\pi}=0^{-}$ for ¹⁴⁴Pr(g.s.), $\log f_1 t$ values were calculated for unique first-forbidden transitions to 2⁺ states in ¹⁴⁴Nd. As it appears from Fig. 2, the 1314.3 keV ($J^{\pi}=4^+$) level was found to be indirectly fed by a γ transition from a tentative 2945.6 keV level; otherwise, we must assume a β feeding from the ¹⁴⁴Pr^m isomer with a high log ft value (9.1). For the 1560.96 keV ($J^{\pi}=2^+$) level, using the measured 36% E2 mixing ratio of the 864.4 keV transition,⁸ we can deduce the experimental reduced probability ratio

TABLE I. Energy and intensity of γ rays from ¹⁴⁴Pr^{*m*+*g*} decays. Uncertainties on energy and intensity values (in brackets) are given on last digits.

Present work		Pravikoff et al. (Ref. 7)		Behar et al. (Ref. 5)	
E_{γ} (keV)	Ιγ	E_{γ} (keV)	I_{γ}	E_{γ} (keV)	I_{γ}
617.8(2)	0.16(7)	618.2(5)	0.15(7)		
624.7(1)	0.84(2)	624.89(20)	0.92(9)	624.66(20)	0.85(15)
674.95(10)	2.2(2)	675.02(10)	1.95(20)	675.02(20)	2.07(15)
696.50(5)	1000	696.50(2)	1000	696.49(20)	1000
814.10(10)	2.4(2)	814.03(10)	2.31(25)	814.15(15)	2,45(13)
864.45(10)	1.8(2)	864.44(10)	1.97(20)	864.53(15)	1.93(12)
1182.0(3)	0.04	• • • • • • • • • • • • • • • • • • •			,
1376.27(10)	0.29(3)	1376.31(30)	0.29(3)		
1388.02(10)	5.01(4)	1388.20(10)	5.06(20)	1388.00(15)	4.45(16)
1489.17(5)	220(12)	1489.16(5)	218(9)	1489.15(5)	203(7)
1560.97(10)	0.15(2)	1561.0(2)	0.16(5)	1562(2)	0.17
1631.36(10)	0.30(3)				
1885.3(2)	0.10(3)				
1978.82(10)	0.65(6)	1978.67(10)	0.71(7)	· · ·	
2046.3(2)	0.20(4)	2046.5(5)	0.21(4)		
2072.9(2)	0.17(2)	2072.7(7)	0.16(4)		
2185.65(5)	561(25)	2185.60(5)	557(22)	2185.70(6)	522(20)
2368.3(3)	0.04(1)	2368.4(10)	0.031(10)		
2654.9(2)	0.11(2)	2654.1(5)	0.16(2)	2654.6(7)	0.14(2)
		2842.9(10)	0.08(2)		

$B(E2;2_2^+ \rightarrow 0_1^+)/B(E2;2_2^+ \rightarrow 2_1^+) = 0.012 \pm 0.002$

which is about twice the theoretical interacting boson approximation (IBA) calculation of Krane *et al.*⁸ The population of the 2072.8 keV level, observed as $J^{\pi}=2^+$ in the ¹⁴²Nd(t,p) reaction,² ¹⁴⁴Nd(n,n', γ),³ and neutron capture⁴ experiments, has been suggested in ¹⁴⁴Pr decay.⁷ Assuming a pure *E* 2 multipolarity for the 1376.3 keV transition, the experimental reduced branching ratio

$$B(E_{2};2_{3}^{+}\rightarrow 0_{1}^{+})/B(E_{2};2_{3}^{+}\rightarrow 2_{1}^{+})=0.19\pm0.04$$

rules out the interpretation of this level as a component of a three phonon multiplet. It seems more reasonable to emphasize that this level is the band head of a $K^{\pi}=2^+$ quasi- γ band. The energy of this level is well predicted by unified model calculations,¹⁵ but it should rise above 3 MeV in IBA calculations.

A 2368.3 keV level, previously reported in ¹⁴⁴Pr decay,⁷ was also observed in (d,p) and (p,t) experiments¹ as well as in (n,n' γ) (Ref. 3) and (n, γ) (Ref. 4) reactions. The spin and parity $J^{\pi}=2^+$, proposed by Rabenstein *et al.*,¹⁶ is confirmed here owing to the log f_1t value (10.2) consistent with unique first forbidden transitions.¹⁴ The 1671.8 keV γ ray, which should deexcite this level to the 2⁺ state,

TABLE II. Energy of γ rays observed in γ - γ coincidence with a 17% HPGe detector (696.5±5 keV gate).

E_{ν}	(keV)
	· · /

511.0 (annihilation line), 675.0, 814.1, 864.5, 978.4(SE1489), 1489.2, 1630.9, 1671.8,^a 1978.3, 2045.6

^aNot resolved in single γ -ray spectra from the single-escape peak of the 2185.6 keV γ ray.

could not be resolved in our spectra because it overlapped the strong 2185.6 keV single escape (SE) peak in the γ -ray spectrum.

A 2581.8 keV level is proposed on the basis of a 1885.3 keV γ ray feeding the 2⁺ level as it was interpreted in $(n,n'\gamma)$ (Ref. 3) and (n,γ) (Ref. 4) experiments. The absence of the crossover transition suggests J=0 or 3. The value $J^{\pi}=3^+$ deduced by Al-Janaby *et al.*³ implies that this level is fed from ¹⁴⁴Pr^m.

A 2675.3 keV state is proposed to account for the

FIG. 2. ¹⁴⁴Pr^m $(J^{\pi}=3^{-})$ and ¹⁴⁴Pr^g $(J^{\pi}=0^{-})$ decay schemes. Energies are in keV. The left and right column give the percent of β feeding from ¹⁴⁴Pr^m and ¹⁴⁴Pr(g.s.), respectively. [(-3) means 10⁻³.] For $\Delta J = 2$, $\Delta \pi = +\beta$ transitions, $\log f_1 t$ values are given (lower subscript 1). The intensity of the 1671.8 keV γ ray was deduced from the branching ratio measured in Ref. 3. The semicircle with a bar symbol means that the indicated coincidence was observed with a 696 keV gate.

1978.8 keV γ ray which was found in coincidence with the 696 keV gate. This state could be identified as the $J^{\pi}=0^+$ member of the 2663 keV multiplet found in the (p,t) reaction.¹

The existence of a 2742.8 keV state had been proposed earlier on the basis of a 2046.3 keV transition to the 2^+ level. The new 1182.0 keV γ line (Table I) is interpreted as deexciting this level to the 2^+_2 state. Assuming E2 multipolarity for both aforementioned transitions, the reduced probability ratio

$$B(E_2;0_n^+ \rightarrow 2_1^+)/B(E_2;0_n^+ \rightarrow 2_2^+) = 0.32 \pm 0.15$$

suggests a two-quasiparticle character to be assigned to this $J^{\pi} = 0^+$ state.

The tentative level at 2945.6 keV allows the incorporation of the 1631.4 keV γ ray observed here in singles spectra and in γ - γ coincidence with the 696 keV gate, or else, this transition should deexcite a 2328 keV level which was never observed until now; however, this transition was found earlier in the (n,γ) (Ref. 16) and $(n,n'\gamma)$ (Ref. 3) reactions but unplaced in the ¹⁴⁴Nd level scheme. Taking account of the β feeding of this excited state from the ¹⁴⁴Pr^m isomer, it is more likely that the assignment is $J^{\pi} = (3-5)^{\pm}$. Moreover, a 2945.6 keV level was deduced from the occurrence of a 727.6 keV γ ray in coincidence measurements,⁴ populating the 2218.1 keV level $(J^{\pi} = 5^+, 6^+)$. Indeed, no strong argument appears to substantiate the idea that the two 2945.6 keV levels are different.

*On leave of absence from Faculté des Sciences, Université Omar Bongo, Libreville, Gabon.

- ¹S. Raman, R. L. Auble, J. B. Ball, E. Newman, J. C. Wells, Jr., and J. Lin, Phys. Rev. C 14, 1381 (1976).
- ²R. Chapman, W. McLatchie, and J. E. Kitching, Nucl. Phys. A186, 603 (1972).
- ³T. J. Al-Janaby, J. D. Jafar, K. M. Mahmood, H. M. Youhana, A. M. Demidov, and L. I. Govor, Nucl. Phys. A402, 247 (1983).
- ⁴D. M. Snelling and W. D. Hamilton, J. Phys. G 9, 763 (1983).
- ⁵M. Behar, Z. W. Grabowski, and S. Raman, Nucl. Phys. A219, 516 (1976).
- ⁶J. K. Tuli, Nucl. Data Sheets 27, 97 (1979).
- ⁷M. S. Pravikoff, G. Barci-Funel, and G. Ardisson, Radiochem. Radioanal. Lett. **40**, 123 (1979).
- ⁸K. S. Krane, S. Raman, and F. K. MacGowan, Phys. Rev. C

27, 2863 (1983).

- ⁹C. Ardisson-Marsol and G. Ardisson, Phys. Rev. C 28, 1334 (1983).
- ¹⁰R. G. Helmer, P. H. M. van Assche, and C. van der Leun, At. Data Nucl. Data Tables 24, 39 (1979).
- ¹¹J. Dalmasso, H. Maria, A. Hachem, and G. Ardisson, Nucl. Instrum. Methods Phys. Res. 221, 564 (1984).
- ¹²K. Debertin, U. Schotzig, K. F. Walz, and H. M. Weiss, Ann. Nucl. Energy 2, 37 (1975).
- ¹³N. B. Gove and M. J. Martin, Nucl. Data Tables **10**, 220 (1971).
- ¹⁴S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973).
- ¹⁵K. Heyde and J. P. Brussard, Nucl. Phys. A104, 81 (1967).
- ¹⁶D. Rabenstein, Y. Y. Berzin, A. E. Kruminya, and P. T. Prokofev, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 68 (1976).