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We assess the adequacy of folded diagrams as a practical method for determining a Hermitian,
instantaneous potential derived from meson exchange. The nucleon-nucleon scattering amplitude
calculated from this folded-diagram potential agrees quite favorably with model-exact results. We
compare our results to those based on a recently proposed non-Hermitian folded-diagram descrip-
tion.

I. INTRODUCTION , &=E,

A formal development arising from studies of the nu-
clear shell model showed how effective interactions and
effective operators acting within a restricted "model
space" could be calculated from a more fundamental
description acting in a larger Hilbert space. According to
these theories, the quantum mechanics in the model space
would yield some of the important observable conse-
quences of the more exact theory and possibly simplify
the solution of the many-body problem. The particular
version of this procedure known as folded diagrams
showed how the goal could be accomplished in terms of
an energy-independent effective interaction, i.e., a poten-
tial. The theory of folded diagrams comes in a version
leading to non-Hermitian' and Hermitian forms for
the relevant operators in the model space.

An application of folded diagrams to calculate a Her-
mitian nucleon-nucleon interaction was made in Ref. 5.
An instantaneous, Hermitian potential has many advan-
tages in nuclear physics. Absence of energy dependence is
useful because there are fewer variables to carry through
calculations in many-body systems. The symmetry built
into the effective interaction H by virtue of its Hermitici-
ty is desirable because the eigenstates of the Hamiltonian
are then orthonormal and the eigenvalues are guaranteed
to be real.

The theory of Ref. 5 addressed the solution to the fol-
lowing problem. Suppose that H is the exact Hamiltonian
in the full Hilbert space written in terms of nucleons and
mesons, and I0;I is a set of observables. Let the corre-
sponding quantities in the model space of nucleons only
be H and I 0; I. , Furthermore, suppose that H and H have
eigenstates

Reference 5 shows how to calculate a Hermitian H
such that

~ hatt;& and
~
g;& have the same phase shifts for

nucleon-nucleon scattering below the meson-production
threshold and the set I 0; ] such that

(3)

The equality in Eq. (3) permits calculation of other prop-
erties of the system commonly regarded as probing off-
shell information. Extension to the bound state would en-
able, for example, calculation of magnetic moments and
form factors, in which case I0;I would include the fa-
miliar exchange currents and folded-diagram corrections
to them.

The solution to this problem expresses the interaction
H and the operators I0;I as an infinite series of terms.
Retardation effects are accounted for by folded diagrams
rather than an explicit energy dependence common in
many familiar alternative descriptions. It was shown in
Ref. 5 that the solution to this problem is not unique and
that there is an infinite class of prescriptions leading to ef-
fective interactions and operators having the same observ-
able consequences. The formal theory gives no reason to
prefer one prescription over another. Because all prescrip-
tions are physically equivalent, the only meaningful cri-
terion for choosing one over another is the rate of conver-
gence of its expansion. It was shown that the diagram-
matic expansion for one (called Jl below) was simpler
than all others, and it was singled out for this reason as
possibly converging faster.
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&p'I TV 0=~) ip& (4)

More recently a non-Hermitian prescription for the
nucleon-nucleon interaction was advocated. It was
shown in this paper that the non-Hermitian potential
preserved in principle the half-off-shell nucleon-nucleon T
matrix

PPYPi +
FÃÃil

PEPZ/i
FÃE/i

I t

+ l ~ ~

Because of this property, it was argued that the non-
Hermitian potential should be preferred for practical cal-
culations. Numerical comparisons to the Bonn one-
boson-exchange potential (OBEP) were made in Ref. 8 to
assess the importance of the folded diagrams, and it was
shown that the non-Hermitian potential gave a good
reproduction of the phase shifts.

The purpose of the present paper is to show how well
the Hermitian folded-diagram potential works in practice
and to evaluate the relative advantage of the Hermitian
and non-Hermitian results. In Sec. II we define the
"model exact" problem to which we can compare the
folded-diagram results and assess the rate of convergence
of the expansion. Results are given in Sec. III, and our
conclusion is presented in Sec. IV.

FIG. 1. Illustrating the terms included in the T matrix for
the Bonn OBEP. (a} Expansion for the T matrix in terms of the
quasipotential V, represented by a filled box. (b} Expression for
V in the OBE approximation.

II. THEORY

In order to test the theory of Ref. 5, one would like to
have an exactly solvable field theory. In the absence of a
realistic field theoretical model of the nucleon-nucleon in-

teraction that is exactly solvable, we will utilize the one-
boson-exchange model of the Bonn group. They select a
particular subset of diagrams expected to be important
and sum these to obtain the nucleon-nucleon scattering
amplitude and deuteron properties. %'e will calculate a
Hermitian folded-diagram potential based on this selec-
tion of diagrams and compare the scattering amplitude to
that of the Bonn group.

The theory of Ref. 7 specifies that one should evaluate
the nucleon-nucleon scattering amplitude &p'

I
T(po)

I p)

by summing the series in Fig. 1(a), where the box
& p I

V(pQ )
I p ) includes various one-boson-exchange con-

tributions to the quasipotential. The box is given di-
agrammatically in Fig. 1(b) and has the denominator
structure

& p'
I

I'(po)
I p) -(2&~,—E~ &~ ~~)—'(~q)

where Ez ——(p +m )'~ is the nucleon energy and

~~ = (p'+ p')' ' is the meson energy corresponding to
momentum p. Because the quasipotential includes the
meson retardation explicitly by virtue of the dependence
on E =2E& (the incident energy of the system), the box in

Fig. 1 is drawn extended in time. The series in Fig. 1(a) is
summed by the integral equation

&'p" &p'I I'Vo) lp" &&p"
I
T(») Ip&

p'
I
T no I I = p'

I
I'uo

I p + -,
'

27r 3 Ep —Ep-+ I.g

It is the nature of this three-dimensional equation for T
that a strict nonoverlap in time of the boxes in Fig. 1 is
imposed on the sum. Contributions arising from overlap-

ping boxes such as those shown in Fig. 2 arise in field
theory and could be incorporated in the model by adding
terms to the definition of the quasipotential in Fig. 1(b).

In this paper we will use the folded-diagram method
described in Refs. 4 and 5 to calculate a Hermitian, in-
stantaneous potential corresponding to the selection of di-
agrams in Fig. 1. The method uses time-dependent per-
turbation theory and the resulting potential used in Eq. (2)
gives the same &p'

I T(po) I p) when
I p I

=
I

p'
I
=po.

%"e evaluate the first two terms in the folded-diagram ex-
pansion for the potential; we expect this to be a reasonable
procedure because the higher order terms are of progres-

(b) (c)

FIG. 2. Processes that contribute to the nucleon-nucleon po-
tential in a field theory but that are omitted in the current inves-

tigation. The line pointing backward in time in (c) is an antinu-

cleon state.
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9
Jl )l

to

(a) (b)

FIG. 3. The diagrammatic equation determining the instan-
taneous potential. To solve the equation, the external nucleon
propagators must be removed from the right-hand side.

FIG. 5. Illustrating an unwanted time ordering of the poten-
tial t &t'.

sively shorter range and presumably less important at low
energy.

To obtain the leading term we ask how the retarded
one-meson exchange in Fig. 1(a) can be equated to an in-
stantaneous potential. This clearly cannot be done exactly
because there are two times characterizing Fig. 1(b), but
only one time characterizing the instantaneous potential.
Thus the equivalence can be established only in an average
sense. The instantaneous potential is thus identified as an
average over the extra time variable. In Ref. 5 it was
shown how to do this time average diagrammatically.
The equivalence is illustrated in Fig. 3. The time to is the
"time base" at which the potential acts. The solution of
this equality is obtained by multiplying the left- and
right-hand sides by the inverse of the propagator for the
nucleons attaching to the potential. Each of the propaga-
tors corresponds to a time-dependent factor

[exp( iE~ b t )], —
where Ez is the energy of a nucleon of momentum p
where At is the time difference of the propagator line seg-
ment counted in the direction of the arrow on the line.
The solution is expressed diagrammatically, as shown in
Fig. 4. To get the complete potential, one must sum over
the times t ] and t 2 subject to the constraint that the po-
tential acts at time to, where

to —A $t] +X2t2 p kJ +k2 —I o (8)

Results of the calculation and further discussion of the
motivation is given in Ref. 5. A simple choice of to is the
average of t] and t2, i.e.,

—,
'

[(A, ) ——O, A p ——1)+ (A2 ——0, A, )
——1)] . (10)

(14)

The non-Hermiticity is evident from the fact that b,E
changes sign when the initial and final nucleon momenta
are exchanged.

In second order the folded-diagram contributions to the
instantaneous potential are obtained from the following
considerations. We must ask to what extent the iteration
of Fig. 4 reproduces the second-order piece of T given as
the second term on the right-hand side of Fig. 1(a) with
the box given in Fig. 1(b). Generally, the class of time or-

Explicit expressions for the energy denominators in the
center-of-mass system of the two nucleons are

( —q —p )
2 2 —1

for Jl and

(gE2 q2 2) —1

for J2, where

aE —=&p'+m' —&p'+m'

and q=p' —p. The case J1 is the usual Yukawa potential
and J2 is another form used in the literature. ' We will
also often make comparison to the non-Hermitian
prescription of Ref. 6, which in our notation would corre-
spond to

(A) ——l, k2 ——0) .

We refer to this potential as IC It has .the denominator
structure

We refer to this prescription as J1 below. Another possi-
bility, J2, is

t

t~

FIG. 4. The solution of the equation in Fig. 3.

FIG. 6. Second-order fold diagrams. The horizontal lines on
the mesons in (a) must maintain the time ordering to & to be-
cause this is the time ordering of the potentials in Fig. 5{a).
Likewise, t & t'.
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derings generated by iterating the instantaneous potential
and the quasipotential will be different. If there are extra
time orderings generated by iterating the instantaneous
potential, these must be subtracted by including a special
term in the second-order potential. However, if there are
fewer time orderings, these must be added as second-order
corrections. It is easy to show after a bit of thought (see
Ref. 5) that all relative time orderings of the second itera-
tion of Fig. 1(b) are generated by the second iteration of
Fig. 4. However, the second iteration of Fig. 4 produces
several unwanted terms.

The unwanted time orderings can be found for the
prescription J 1 by substituting Fig. 4 into Fig. 5(a).
When t g t', which must sometimes occur because of the
average performed in the definition of the one-meson-
exchange potential in Fig. 4, one such term arises. It may
be converted to a contribution in the instantaneous poten-
tial by picking a time base and folding the external legs
back to it as in Fig. 4. The simplest choice of time base is
the average of the four times at the vertices in Fig. 5(b).
The appearance of the diagram may be simplified by
straightening out the lines on the right-hand side of Fig.
5(b), which is permissible because of the exponential form
of the propagator in Eq. (7). The result is shown in Fig.
6(a). Figure 6(b) is another time ordering that is included

when Fig. 4 is iterated. This is the same as Fig. 2(a), and
it is interesting to see that the folded-diagram potential
automatically includes the stretched-box diagrams that
must be added explicitly in the theory of Ref. 9. Howev-
er, the model exact results in the present paper do not in-
clude the stretched box diagrams. Therefore, both terms
in Fig. 6 occur in the potential with a minus sign because
they represent time orderings that must be removed.

The rules for evaluating the terms in Fig. 6 are dis-
cussed in Ref. 5. The results of applying these rules lead
to the following denominator structure" for Fig. 6(a):

1 1

2 E—Ek —q

E—Ek —co —coq q

1 1+
67 +CO E—EI —~q q q

(15)

where E= —,(E~ +E~). It turns out that the second term
in the parentheses is numerically equal to (minus) the dia-
gram in Fig. 6(b), and subtracting Fig. 6(b) means elim-
inating this term. We do not consider the second-order
corrections for J2 in this paper.
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FIG. 7. Real part of the second Born approximation to the T
matrix for pions only. The solid curve is the model-exact result.
The one-pion-exchange potential results are the following:
short-dashed/double-dot curve, J2 prescription [Eq. (10)];
short-dashed curve, K prescription [Eq. (13)]; and short-
dashed/dot curve, j1 prescription [Eq. (9)]. The long-
dashed/dot curve includes the second-order fold for the J1
prescription.

l

500
p' (MeV)
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FIG. 8. The R matrix for pions only. The solid curve is the
model-exact result. The one-pion-exchange potential results are
the following: short-dashed curve, non-Hermitian K prescrip-
tion [Eq. (13)]; and short-dashed/dot curve, Hermitian J
prescription [Eq. (9)]. The one-pion plus two-pion folded-
diagram result are the following: long-dashed curve, non-
Hermitian result; long-dashed/dot curve, Hermitian result.
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III. RESULTS 2.0

To indicate the importance of the folded diagrams, we
show in Fig. 7 the various contributions to the second
Born approximation of the T matrix in Eq. (6) for

~ q ~
=qo ——250 MeV/c. The solid line is our model-exact

results, assuming pions only as the meson exchanged in
the box in Fig. 1(a). The short dot-dashed curve is the
iteration of the folded-diagram potential of Fig. 4, corre-
sponding to the Jl choice [see Eqs. (9) and (11)]. The
short double-dot/dashed curve corresponds to J2 [see
Eqs. (10) and (12)]. The K choice [see Eqs. (13) and (14)]
is the short-dashed curve.

The three one-meson-exchange potentials give different
results from each other and the model-exact result because
of the different treatments of meson retardation. When
the two-meson-exchange folded diagrams are added, we
expect the agreement to improve. In fact, for the non-
Hermitian case the agreement is exact for the half-off-
shell matrix elements; the non-Hermitian potential is de-
fined so that the half-off-shell second Born approximation
is the same in the two cases. The result of adding the
two-meson-exchange folded diagram corresponding to the
J 1 prescription is shown as the dot/long-dashed curve. It
coincides with the solid curve for the on-shell matrix ele-
ment as it should according to the definition of the
second-order potential. It is interesting to see how closely
the solid and dot/long-dashed curves coincide for the off-
shell points. For the fully off-shell matrix elements, the
Hermitian, non-Hermitian, and model-exact matrix ele-

S)

aa IO-

6Q

0
0

l l

IOO 200 500
E, , (MeV)

FIG. 10. Phase shift for the Sl channel, pions only. The
legend is the same as Fig. 8 ~

-O, l—

-0.2—

-0.5—

-0.6—

0 IOO 200
E, (MBV)

300

FKJ. 9. Phase shift for the 'So channel, pions only. The
legend is the same as Fig. 8.

ments would all differ. We hasten to remind the reader
that the relevant criterion is how well the phase shifts, or
on-shell values of the full T matrix, agree in the various
cases. We examine this shortly.

We can understand the relative sizes of. the J1, J2, and
E one-meson approximations in Fig. 7 in the following
way. Note that the J2 prescription is further away from
the exact result than either J1 or K. This is generally
true in our calculations and it can be understood analyti-
cally by comparing Eq. (5) (model exact), Eq. (11) (J 1

prescription), and Eq. (12) (J2 prescription). Note that
the correction to —coq in Eq. (5) is negative. (It is the na-
ture of the meson-nucleon coupling that large values of
(p) and (p') are important so that for the energies con-
sidered, qo & (p) and qo & (p'). ) However, for J2 the
b,E correction to —co~ in Eq. (12) is positive. Thus the
J2 potential is generally /arger than the model-exact re-
sult. The J1 potential is intermediate in size because it
has no correction term. The sign of the correction term in
the non-Hermitian results of Eq. (14) is not positive defi-
nite, so it would be expected to be similar to the J 1 result;
one sees in Fig. 7 that whether or not J 1 or K is closer to
the model-exact result depends on the incident energy.

Earlier, in Ref. 5, a formal reason for preferring J 1 was
given, namely that it required fewer folded-diagram
corrections than the J2 prescription suggesting a better
rate of convergence for J1. Now we have seen that J1 is
better than J2 by comparing the numerical results. In the
remaining comparisons of this paper we show results for
the Hermitian prescription J 1 only and refer to it as J.
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The magnitude of all terms in T2 of Fig. 7 is very sen-
sitive to the vertex cutoff V(k) in the pion-nucleon cou-
pling,

p2 2

V(k) =
k'+W'

where m is the mass of the pion and A is the vertex cut-
off. The value of A in Fig. 7 is 2000 MeV. If we reduce
it to A =1000 MeV, the magnitude of the different curves
is decreased by about 60% at small q', but otherwise the
results are very similar. In our.subsequent calculations we
use A as it comes from the one-boson-exchange model of
Ref. 7, which for pions is A =1500 MeV.

Let us now look at the complete scattering amplitude.
This is a complex quantity, so we simplify the discussion
by examining its real part, the R matrix. We show this in
Fig. 8 for the same half-off-shell kinematics as Fig. 7, i.e.,

~ q ~

=qo ——250 MeV/c. As in Fig. 7, the J and K lowest
order approximations undershoot the model-exact result
at small q, but they cross over the exact result at large q.
The addition of two-meson-exchange folds, giving the re-
sults J' for the Hermitian and E' for the non-Hermitian
cases, repairs much of the discrepancy. For the S

~
case

shown here, J' is a better approximation than K', but in
other channels the K' result is sometimes better. Note
that K' is no longer equa1 to the model-exact result, even
though the R matrix is half on shell.

Next consider the calculation of the phase shifts for the
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FIG. 12. Phase shift for the 'Po channel, pions only. The
legend is the same as Fig. 8.
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FIG. 11. Phase shift for the 'PI channel, pions only. The
legend is the same as Fig. 8.
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FIG. 13. Phase shift for the P& channel, pions only. The
legend is the same as Fig. 8.
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FIG. 14. Phase shift for the 'D) channel, pions only. The
legend is the same as Fig. 8.
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FIG. 16. Phase shift for the 'So channel, full OBEP. The
legend is the same as Fig. 8. The experimental phase shifts are
from Ref. 12 (%} and Ref. 13 (I}.
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FIG. 17. Phase shift for the S~ channel, full OBEP. The
legend is the same as Fig. 16.
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FIG. 18. Phase shift for the 'I') channel, full OBEP. The
legend is the same as Fig. 16.
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FIG. 20. Phase shift for the I'I channel, full OBEP. The
legend is the same as Fig. 16.
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FIG. 19. Phase shift for the 'Po channel, full OBEP. The
legend is the same as Fig. 16.
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FIG. 21. Phase shift for the Pq channel, full OBEP. The
legend is the same as Fig. 16.
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case of pion exchange. Figures 9—15 compare the J and
K prescriptions in this case. It is interesting to see that
the lowest order Hermitian potential is always closer than
the non-Hermitian result. One might expect from this re-
sult that when the second-order folded diagram is added,
the Hermitian result would also be closer. This is often
the case, for example, in the channels S&, Po, I'2, and
D2, but not in 'So, 'I'&, and D~. In the latter cases, the

differences between J' and K' are either small or, as in
'I'&, the phase shift is close to zero, where the fractional
differences are large. For the higher partial waves the
Hermitian and non-Hermitian results are essentially in
agreement with the model-exact result.

Next consider the OBEP potential. In second order we
consider only the folded diagrams involving two pions be-
cause this contribution is of longer range than those in-
volving heavier mesons and presumably the most impor-
tant one. The OBEP is a rather different case from the
one-pion exchange because of the strong repulsion at short
distances arising from co-meson exchange. One might ex-
pect that the correlations arising from the repulsion would
diminish the importance of the folded diagrams, which
are intrinsically of shorter range and therefore make the
Hermitian and non-Hermitian prescriptions look more
similar. However, because we omit the second-order folds
involving heavier mesons, such expectation may not be
realized. Figures 16—24 show the results for the OBEP.
We see that the lowest order Hermitian potential is at
least as close to the model-exact result as the non-
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-0.4— Fgll

-0.5

0 l00 200
E„(MeV)

500

FIG. 23. Phase shift for the 'D) channel, full OBEP. The
legend is the same as Fig. 16.
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FIG. 22. Phase shift for the 'D2 channel, full OBEP. The
legend is the same as Fig. 16.

FIG. 24. Phase shift for the D2 channel, full OBEP. The
legend is the same as Fig. 16.
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Hermitian potential in all cases but D&. When the folded
diagram is added, this continues to be the case in the
channels Sj, 'I'&, I'2, 'D2, D~, and D2. The non-
Hermitian result is slightly closer to the model-exact re-
sult for the cases 'So, Po, and I'&.

The rate of convergence of the folded-diagram expan-
sion appears to be quite favorable in the cases shown. The
discrepancies with the model-exact result are on the order
of 10% except for D&, where they are 20—25% at the
higher energies. The discrepancies were smaller in the
one-pion-exchange potential (OPEP) case for D 1, suggest-
ing that the large differences in OBEP may be due to the
omission of folds involving the heavier mesons.

IV. DISCUSSION AND CONCLUSIONS

The basic question being addressed here is whether a
Hermitian, energy-independent potential is an adequate
basis for the description of the nucleon-nucleon interac-
tion. One might believe that the interaction requires ener-

gy dependence to account for the retardation of meson ex-
change. The Bethe-Salpeter kernel, the Bonn potentia1,
and original form of Paris potential are examples of in-
teractions that are more complicated, with explicit energy
dependence. In this paper we have shown that the
folded-diagram potential, including terms through two-
meson exchange, gives an on-shell scattering amplitude
very close to that of the one-boson-exchange (OBE) ver-
sion of the Bonn potential.

Because there exist many expansions leading to instan-
taneous potentials, the question of which one to choose in
practice is of great interest. We have looked at three.
Two expansions discussed in Ref. 5 lead to Hermitian po-
tentials and the one of Ref. 9 leads to a non-Hermitian
potential. We found that of the two Hermitian potentials,
the prescription J 1 gave the best results without the fold
and concluded that it corresponds to the most rapidly
convergent prescription. The OBEP in this case closely
resembles the usual Yukawa interaction.

In comparing the case J1 with the non-Hermitian po-
tential, we found that the J1 is almost always better than

the non-Hermitian potential at the level of one-meson ex-
change, but that when the single folds are added, the two
are nearly equivalent. We conclude that on the basis of
the on-shell comparisons, there is no practical advantage
of using non-Hermitian folded-diagram prescriptions.

Finally, we checked the extent to which the half-off-
shell T matrix is reproduced in the Hermitian and non-
Hermitian prescriptions. We found that even though the
non-Hermitian potential was invented to preserve this
property in principle, in practice it is not easy to accom-
plish. In fact, in the case we chose to examine, the Her-
mitian potential gave a superior reproduction of the off-
shell amplitude.

We need folded diagrams to achieve agreement with the
OBE model of the Bonn potential. This might be con-
sidered a complication. However, in more sophisticated
models two-meson-exchange contributions are required
and at this level the method of folded diagrams is no more
complicated than calculating T with the energy-dependent
formalism.

The numerical results presented here are only a partial
answer to the question of whether the Hermitian or non-
Hermitian potential is the most adequate description. We
have found that for the purpose of calculating phase
shifts the two are roughly equivalent. However, it may be
the case that studies of effective operators would lead to a
different conclusion. Effective operators are required if
one wants to calculate quantities that probe off-shell prop-
erties of the interaction. In any case, meson retardation
effects in observables such as electron-scattering form fac-
tors and magnetic moments have not been sufficiently
carefully investigated in the past, and we believe that a
study of observables paralleling that given here for the po-
tential would be interesting.
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