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Exact boson mappings for the nuclear neutron (proton) p shell
with the symmetry SO(7) &SU(3)
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A special closed set of commutation relations satisfied by the fermion pair and multipole opera-
tors for a major shell in LST coupling is found. The case of the neutron (proton) p shell with the
structure SO(7) &SU(3) is studied in detail. An exact Dyson boson mapping is constructed, which is
subsequently hermitized. The method is directly applicable to higher shells and through the use of
the experimentally plausible pseudo-SU(3) symmetry may lead to a theoretical foundation for the in-
teracting boson model near the SU(3) limit.

I. INTRODUCTION

Since the introduction of the phenomenological in-
teracting boson model (IBM),' which gives a good
description of the collective low-lying states in inedium
and heavy even-even nuclei in terms of monopole (s) and
quadrupole (d) bosons, many attempts have been made to
provide a theoretical justification. A crucial step is the
transition from the fermion space to a boson space, i.e.,
the boson mapping, through which an expansion of the
fermion operators in terms of the boson operators is deter-
rnined. As it is weH known, IBM contains three limiting
symmetries, namely the SO(5) (vibrational) limit, suitable
as a starting point for spherical nuclei, the SU(3) (rota-
tional) limit, suitable as a starting point for describing de-
formed nuclei, and the O(6) limit, which applies to y-
unstable nuclei. Most of the number conserving theoreti-
cal methods developed so far deal with seniority scheme
boson mappings (Ref. 3 and references therein), studying
small perturbations around the seniority limit. Thus they
offer a way towards the theoretical justification (i.e., con-
nection with the shell model) of the IBM in the vibration-
al limit. They are not expected to work, however, for de-
formed nuclei (i.e., in the rotational limit). It appears to
us that a new kind of mapping is needed in the deformed
region, involving a perturbative expansion around the
SU(3) limit. A major difficulty about mappings in the de-
formed region has been so far the identification of suitable
small parameters, since the small parameters used in the
seniority limit, which are proportional to the number of d
( J=2) bosons, g (J =4) bosons, etc., are not, in general,
small for deformed nuclei, where there is no reason to be-
lieve that s (J=0) bosons have a predominant presence.
It is the purpose of this paper to make the first steps to-
wards the direction of finding a special mapping applic-
able to the deformed case. We are then looking for an
algebra which has an SU(3) subalgebra. [The single-j
shell, which has the symmetry SO(2(2j+ 1)) and includes
an SU(2j+ 1) subalgebra, lacks an SU(3) subalgebra, and
thus it does not seem particularly suitable for our pur-
poses. ]

In this paper we first discover a special closed set of
commutation relations satisfied by the fermion pair and

multipole operators in a many nondegenerate I level sys-
tem. Then we find an exact boson mapping for the spe-
cial case of a single neutron (or proton) p shell, which has
the symmetry SO(7) that includes an SU(3) subalgebra.
Another important new feature is that although the fer-
rnions in our model explicitly have spin and isospin in ad-
dition to orbital angular momentum, the (s and d) bosons
used for this mapping only have one kind of (total) angu-
lar momentum, in contrast to the bosons used by EHiot
et al. in IBM-3 and IBM-4. Once the commutation
relations are established, one can either try to directly find
a Hermitian boson mapping (as in Ref. 3), or try to first
find a (non-Hermitian) Dyson mapping and then hermi-
tize it (as in Ref. g). Dyson boson mappings can be easily
obtained, since the boson expansions of the operators of
the pair algebra are finite and include only two-boson
terms in the case of the multipole operators, or one-boson.
and three-boson terms in the case of pair operators, in
contrast to Hermitian boson mappings, where the boson
expansions of the operators of the pair algebra can be in-
finite and include all possible terms of any even (odd)
number of bosons in the case of the multipole (pair)
operators. It turns out that a Dyson boson mapping is
particularly useful as an intermediary for a class of map-
pings where all the pair creation operators (and also the
annihilation operators) of the pair algebra belong to the
same irreducible representation (irrep) of the correspond-
ing multipole subalgebra. Then one can allow each of the
operators belonging to one of these two sets to be mapped
simply onto the corresponding boson operator, the opera-
tors belonging to the other set being mapped as cubic po-
lynomials in the bosons, still belonging to the same irrep
of the multipole subalgebra. It turns out that this is the
case for the mapping studied in connection with the
present SO(7) model [as it was for the so-called BZM
(Belyaev-Zelevinsky-Marshalek) mapping of the SO(5)
algebra, which has an SU(2) subalgebra, encountered in
Ref. g]. Thus in this paper the Dyson boson mapping is
found first. It is subsequently hermitized. We find the
Dyson mapping by a straightforward algebraic approach,
in which we directly satisfy the commutation relations. It
turns out that the number of equations obtained is larger
than the number of unknown coefficients, the surplus
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equations then providing internal self-consistency checks.
Then the hermitization procedure is carried out, in a way
parallel to the work by Klein et al. for the BZM map-
ping of the SO(5) algebra. It must be emphasized that if
the pair creation operators of the pair algebra do not
group themselves into one irrep of the multipole subalge-
bra, the Dyson mapping turns out to be rather complicat-
ed and not particularly useful as a technical device. This
was the case for the two seniority mappings given in Ref.
8.

A few clarifying remarks are appropriate at this point:
(i) Since a p shell of identical nucleons can hold at most

six particles, using particle-hole conjugation it is easy to
see that one can have at most one fermion pair, since four
particles are equivalent to a pair of holes and the six-
particle state is the conjugate of the 0-particle state. Thus
it may seem, at first thought, very strange to attempt a
boson mapping for such a small fermion system. There
are two reasons for doing so, though. First, the tech-
niques developed in this paper for the p shell are to be ap-
plied to higher shells, where a larger number of fermion
pairs is allowed. Work is already in progress for the
s- d neutron (proton) shell, which has the symmetry
SO(13)D U(6) & SU(3); further remarks concerning this
case are made in Sec. VIII. Second, one can always in-
crease the number of particles in the p shell by replacing
it with a "toy" model of a nucleon with /=1 and a very
high spin quantum number, or, as in Ref. 9, by a series of
spins differing by three units at least (so that a given an-
gular momentum j does not occur more than once), such

will confront the "fatal flaw" mentioned by Ginocchio in
Ref. 9 for his Sp(6) DU(3) model, namely, the number of
states allowed in this model is smaller than the number of
states allowed in the IBM, and, most importantly, the
missing states happen to be the states belonging to the
leading irreducible representations of the SU(3) subalge-
bra, which are expected to lie lower in energy. Because
the Lie algebras Sp(6) and SO(7) are locally isomorphic,
this conclusion holds for the SO(7) model, too.

(ii) Since protons and neutrons occupy the same major
shell in the cases of the p shell or the s-d shell, our SO(7)

model for the p shell [or equivalently the SO(13) model
for the s-d shell] cannot provide a theoretical justification
for the IBM in these cases, since proton-neutron pairs
have been ignored so far. We choose to do so, because our
long-term goal is to open a road to the theoretical justifi-
cation of the IBM in heavy nuclei, where protons and
neutrons occupy different major shells, and proton-
neutron pairs are not expected to contribute. In order to
get some idea about how to apply the IBM in light (e.g. ,
s-d) shell nuclei, one has to generalize the present tech-
niques in order to allow proton-neutron pairs to be
present.

Our results immediately invite comparison with those
quoted by Ginocchio et a/. in Refs. 9 and 10, for the so-
called Ginocchio model with the symmetry SO(8), which
has also been studied in a unified boson expansion frame-
work by Dobaczewski. " This model describes a single

j= —', level and has an SU(4) subalgebra but not an SU(3)
subalgebra. We refer to our concluding remarks for this
comparison.

In Sec. II of this paper the closed set of commutation
relations for the many nondegenerate / level system will
be found and the special case of a single / shell will be de-
duced from it in Sec. III. In Sec. IV the exact Dyson
mapping for the /=1 single shell (the p shell) will be
found through use of the commutation relations. The re-
sults will be put in a more elegant form, clarifying their
group structure in Sec. V, and mill be subsequently hermi-
tized in Sec. VI. A slightly different solution will be
given in Sec. VII, while Sec. VIII will contain a discussion
of the results and plans for future work. Details of the
calculations of Secs. IV and V are left for Appendix A
and Appendix 8, respectively.

II. COMMUTATION RELATIONS FOR
A MANY NONDEGENERATE / LEVEL SYSTEM

Let us consider several nondegenerate levels character-
ized by orbital angular momenta l;. The associated pair
algebra is generated by the pair and multipole operators,
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I 1 1

&&( —, s 1 —, s2
~
5 s)( —, tl —, t2

~

T t)at& ~& i&2» i&2, &a!2m2 &/2@2 ]y2 g2

ml m2 sl s2 tl t2

X (/2 m 2 /1 m 1
~

L M)( —,
' s 2 —,

' s 1
~

S s)( —,
' t 2 —, t 1

~

T t)

X~l2 m 2 1/2 s2 1/2 t2 1 1 m 1 1/2 s 1 1/2 g 1

l(LllfSsTt)
(2.1)



DENNIS BONATSOS AND ABRAHAM KI EIN
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F(LMSsTt) = [F'(LMSsTt) j',
G "(LMSsTt) = [G (LMSsTt)]

A general property following from these definitions is

G (LMSsTt) =( —1) ( —1) "(—1)'( —1)'G(L —MS sT t) .— —

(2.3)

(2.4)

(2.5)

In the above at »2»i2t (at »2, )i2t) are fermion creation (annihilation) operators and (l 1 ml l2 m 2
I
L M) are the usual

Clebsch-Gordan coefficients.
In Eq. (2. 1) we remark that if l 1+l2=even, even values of L are possible for (S=0,T=1) or (S=1,T=0). If

(S =O, T =0) or (S =1,T =1), odd values of L will occur. We intend to choose to study a system of neutrons (protons)
with ( T, t) =(1,1) [( T, t) =(1,—1)] and we are interested in states of even L. Then T= 1 implies S=O and the following
commutation relations hold:

[Ft(L 1 M 1 0 0 1 1),F (L2 M2 0 0 1 l)]=0,
[Ft(L 1 M 1 0 0 1 1)F(L2 M2 0 0 1 1)]

= —26L, )L25M)M2[1+( —1)"+ ' ]+—,&I/2
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[G(L 1 M 1 0 0 Tl 0),G(L2 M2 0 0 T2 0)]

T1 T2 T"
=&(I/2) g ( —1)' [(2 T 1 + l)(2 T2 + I)]'~~ ~, , , (T 1 0 T2 0

~
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where the curly brackets are the usual 6-j symbols.
A few comments are appropriate at this point:
(i) Our long-term aim is to provide a way towards the

theoretical justification of the IBM, which describes low-
lying collective states in medium and heavy even-even nu-
clei. Since protons and neutrons occupy different major
shells in these nuclei, our choice to study a system of neu-
trons (protons) only (with T=l) is justified, because no
proton-neutron pairs are expected to be present in the
realistic case.

(ii) Since the collective low-lying states we have in mind
are states of even L, we choose L =even in our model and
then we are forced by (2.1) to consider pairs with
S+T=odd only, since major shells contain levels of the

III. COMMUTATION RELATIONS
FOR A SINGLE-1 SHELL

Considering a single-l shell, and remarking that

1 1 T
( —1) (1 1 1 —1~TO) ~. . . =3v'1/2

2 2 2

(3.1)

for both T=0 and T= 1, the commutation relations
(2.6)—(2.9) take the simplified form

same parity, thus guaranteeing l]+lq ——even. This result
is in agreement with the well-known fact that states with
S+T=odd lie lower than states with 5 +T=even. Since
we already have T=1, this implies S=O.
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[F (L 1 M 1 0 0 1 1) F(L2 M2 0 0 1 1)]=—5i i g~5~, ~~

+ g ( —1)~ ( —1)~'[(2 L 1 +1)(2L 2 + 1)]'~'
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(3.2)
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+ G(L" M 1 —M2 0 0 1 0)], (3.3)
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[G(L 1 M 1 0 0 0 0)+G(L 1 M 1 0 0 1 0),G(L 2 M2 0 0 0 0)+6(L 2 M2 0 0 1 0)]

I1 I2 L"
= g [(2 L 1 +1)(2 L2 +1)] (L 1 Ml L2 M2 ~L" M 1 M2) '

l l l [( 1)L" ( 1)L(+L2]

&&[6(L"M 1 +M2 0 0 0 0)+G(L" M 1 +M2 0 0 1 0)] . (3.5)

%'e see that it is always possible to keep the multipole
operators

G (L1M1 0000)

Thus an important new result emerges: The pair and
multipole operators of a system of neutrons (protons)
which have explicit spin and isospin dependence can be
mapped onto boson operators which satisfy the same com-

- mutation relations but do not have any spin or isospin
dependence. Finding this exact boson mapping for the p
shell will be the subject of the rest of this paper.

IV. EXACT DYSON BOSON MAPPING
FOR THE p SHELL

Let us consider a single p shell (l =1). The commuta-
tion relations for this shell can be easily found from Eqs.
(3.2)—(3.S) by putting I= l.

The fermion pair and multipole operators appearing in
these relations can be mapped onto functions of boson
operators as follows (involving at the moment only a
change of notation):

F'(OOOO11) (4.1)

F"(2 p, 0 0 1 1)~A„''

F(0 0 0 0 1 1)~A( ',
(4.2)

(4.3)

G~(L 1 M 1 0 0 1 0)

together, mapping them onto a multipole operator B~I"
characterized by one kind of angular momentum only,

Gt(L 1 M 1 0 0 0 0)+G (L 1 M 1 0 0 1 0)~BM("

(3.6)

Furthermore, since F (L 1 M 1 0 0 1 1) is the only pair
operator appearing in these commutation relations, we can
also map this onto a pair operator A~I" characterized by
one kind of angular momentum only,

Ft(L1 M 1 0 0 1 1)~AM I" (3.7)

(4.9)

a(2)„=(—1)"a(2)„. (4.10)

We thus turn to the problem of finding an exact boson
mapping for the operators 8&',8&', forming the SU(3)
subalgebra. As discussed in the Introduction, we expect
the multipole operators 8&" and 8&

' to be of the form

Bp =~[&(2) Xa(2)]p", (4.1 la)

B~ =II'(»p o+P~e(», +7 [~(2)'X~(2)]"'

(4.11b)

where a, P, P', and y are unknown numerical coefficients,
to be determined through use of the commutation rela-
tions.

The condition

8(2)t
( 1 )PB(2&

P —P

immediately implies

(4.12)

These 21 functions of boson operators are to form the
algebra SO(7). The nine multipole operators alone are to
form the algebra U(3). If the operator 8' ' (which is
essentially the number operator) is removed, the subalge-
bra SU(3) is obtained.

We seek an exact boson mapping for this set of opera-
tors. We will first find an exact mapping for the SU(3)
subalgebra, then we will enlarge it into an exact Dyson
mapping for the whole SO(7) algebra. Since we are study-
ing the p shell, where only fermion pairs of angular
momentum 0 and 2 are present, we expect to find an exact
boson mapping employing s (J =0) and d ( J =2) bosons
only, satisfying the commutation relations:

[&o &ol= 1 (4.8)

[q (2)p,a (2) ]=5„,,
where ao, a (2)„[ao,a (2)z] are creation [annihilation]
operators for the s and d bosons, respectively. %'e will
also be using

F(2 p 0 0 1 1)~Ap',
Gt(0 0 0 0 0 0)+G (0 0 0 0 1 0) +8''—
Gt(1 p 0 0 0 0)+Gt(1 p 0 0 1 0)

G (2 p 0 0 0 0)+G~(2 (M 0 0 1 0)~Bp '

(4.4)

(4.5)

(4.6)

By means of the commutation relation

[Bp",8„'"]=—(1(M 1 v(1 p+v)Bq'+

(4 7) using (4.11a), it is easy to find that

(4.13)

(4.14)
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1 1 J
[B&",B„'"]=3ag '2 2 2

'[( —1) —1](l p 1 v~ J p+v)[a(2) Xa(2)]&+, .

Then substituting (4.15) and (4.1 la) in (4.14) and equating the coefficients of the tensor [a (2) X a(2)]"' we obtain

a=v5.
We still need to find the coefficients P and y. We first check the commutation relation

[B(1)B(2)] ~3(1 2
~

2 + )B(2)

Using (4.11a) and (4.11b) it is straightforward to find that

[B„'',B'„']= —aPV'3/5(1 p 2 v
~

2 p+v)a (2)~+ ao —aPv'3/5(1 p 2 v
~

2 p+v)aou(2)~+„
r

+2& 15 '2 2 2 (1 P 2 v
~

2 P+v)[a (2) Xa(2)]„+„ay.
122

(2)

Substituting (4.18) and (4.11b) in (4.17) and equating the coefficients of

0 (2)&+vQO

a oa(2)„+„,
[~(2) Xu(2)]„'',,

(4.15)

(4.16)

(4.17)

(4.18)

in the right- and left-hand sides of the equation, we get three equations which do not provide any additional information.
(This was expected because B&" is essentially the angular momentum operator and B&' already has good angular
momentum. )

By use of the commutation relation

[Bp,B~ ]=v 5(2 p 2 v
i

1 p+v)B~+~

and (4.11b), it is straightforward to find

(4.19)

[B& ',B'„']=p5+ [(—1) —l](2 p 2 v
~

J p+v) '2 2 J '[a(2) Xa(2)]&+,
J

+y 5 + [(—1) —1](2p 2 v
~

J p+v) 2 2 J '[a(2) Xa(2) j„'+
J

(4.20)

Substituting (4.20) and (4.11a) in (4.19) and equating the coefficients of [a (2) Xa(2)]"' in both sides we obtain the equa-
tion

220 222
221 ~ 221

Equating the coefficients of [a (2) X a(2)]' ' we obtain

220 222
2 2 3

~'+ ~ 2 3 "='
The system of (4.21) and (4.22) provide

(4.21)

(4.22)

(4.23)

Thus P and y are found, up to some signs which will be fixed later.
Our next task is to find an exact Dyson boson mapping for the whole SO(7) algebra. Letting

a '=ao,(O)

Ap
' ——a(2)p,

we expect

(4.25)

(4.26)
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L =0, 1,2, 3,4

A' ' =yoao+y&aoaoao+y2[a(2) Xa(2) ]' 'ao+y3ao[a(2)tXa(2)]' '+y4[[a(2)tXa(2)t]' 'Xa(2)j' ',
A&' ——5oa(2)&+5&a(2)„aoao+52acaoa(2)&+53ao[a(2) Xa(2)]„''+54[a(2)Xa(2) ]& ao

+ g 55L [[a(2) Xa(2)t]' 'Xa(2)]&'+ g 56I [a(2)tX[a(2)tXa(2)]' ']„''.
L =0,2,4

(4.27)

(4.28)

In (4.27) and (4.28), as discussed in the Introduction, all
possible one-boson and three-boson terms were included.
The three-d-boson terms deserve some discussion though.
Since

[a(2) X [a(2) Xa(2)]"']"'
=[[a(2)tXa(2)t]' 'Xa(2)]' ', (429)

no complication arises in the case of A' 't. But in A„' ',
the terms

P' '=[[a(2) Xa(2) ]' 'Xa(2)]' ', L =0,2, 4

and

P' '=[a(2) X[a(2)tXa(2)]' ']' ', L =0, 1,2, 3,4

sors, although any of the form of the solution is equally
adequate. Special care is required during the calculations,
though, because only coefficients of linearly independent
tensors can be used to provide equations for the unknown
numerical coefficients.

The calculation of the unknown numerical coefficients
in (4.27) and (4.28) is rather lengthy but otherwise
straightforward. We choose to present here only a small
part, serving to fix the unknown signs of P and y, leaving
the rest of the details for Appendix A and presenting here
only the final results.

Let us first demonstrate how the signs of P and y are
fixed. We know that

(4.30)
are not all linearly independent. - In fact, only three of
them are linearly independent, since the vanishing of P'"
and P' ' (because of the boson principle) implies two con-
ditions among the P' 's. Either the P' 's (L=0,2,4) or
any three of the I" 's can be used as the three indepen-
dent tensors. In order to avoid confusion and have a
unique expression for the solution we choose to use the
three P' 's (L=0,2,4) as the linearly independent ten-

Using (4.25) and (4.11b) it is very easy to find that,

[A' ',Bp' ]=Pa(2)„.
Substituting (4.31) and (4.26) in (4.30) we obtain

2p=+ ~

(4.31)

(4.32)

Thus the sign of P has been already fixed. We then em-
ploy the commutation relation

[Ap', B„'']=10(—1)" (2 p 2 —p F00) 'I
1 1

'A' '+(2 p 2 —vi 2 p —v) '1
1 1

Ap', (4.33)

From (4.26) and (4.11b) it is very easy to find that

[A& ',B„''] =5„+ao+ya(2)„z(—1)"(2 ju, 2 —v
~

2 p —v) . (4.34)

2
(4.35)

Using (4.34) and (4.26) in (4.33) and equating the coeffi-
cients of ap in both sides we obtain

f

Having shown how the missing signs of P and y are
found, we just give the final result of the calculation, leav-
ing the rest of it for Appendix A. There the values of the
numerical coefficients in (4.27) and (4.28) are found to be

which just provides a consistency check. The coefficients
of a (2)& „yield

222
y= 10 ' '=+ v'7y3 (4.36)

thus fixing the sign of y' as well.

fp —+ 1

1

+1

5

3

2vS
3

(4.37a)

(4.37b)

(4.37c)

(4.37d)
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v35f4—
6

&o=+1
2

51————,
1

2 3

v7
3

v7
6

1
550

&52= 6

3
'554

~60 ~61 ~62 ~63 ~64 O ~

(4.37e)

(4.38a)

(4.38b)

(4.38c)

(4.38d)

(4.38e)

(4.39a)

(4.39b)

(4.39c)

(4.40)

1/3[B( ) XB( )](0)+I/5[B(2)XB(2)](0) (5 9)

Using

B =~N(o)

it is easy to put (5.7) and (5.8) in the following form:

(p)g g 11=ao
6

N 1——[c2 aol
3 8

(A31)

(5.10)

We again choose to present only the final result here,
keeping the details for Appendix B. Using (5.6) in (5.1)
and (5.2) we find the complete form of the final result:

A' 't=ao(1 2N—)+ —,[5[B( )XB( ']( ) —C2,ao], (5.7)

A„'' =a(2)„(1—2N)+ —,[5[B' 'XB' ']' ' —C2,a(2)z],
(5.8)

V. GROUP STRUCTURE OF THE EXACT
DYSON MAPPING FOR THE p SHELL

g (2)'t (2)tP
N 1————[C»a(2) l .

8
(5.1 1)

In Sec. IV an exact Dyson mapping for the pair opera-
tors A' ', A& ', 2' ', and A„' ' was found. We will now
try to put these results in a more elegant form, which will
clarify their group structure and give a hint for the way
they can be hermitized. Led by similar results in the
SO(5) (Ref. 8) and the SO(8) (Refs. 9 and 10) cases, we. ex-
pect our results to be of the form:

A( '"=ao(1 xN)+[C, a—o] ~ (5.1)

Ap
' ——a (2)p(1 xN)+ [C,a (—2)„], (5.2)

where

N =a()ao+V 5[a(2) Xa(2)]' ' (5.3)

C =e [B'0'XB' ']' '+& [B"'XB"']' '

+&2[B(2)XB(2)](0

In addition we expect

~ [B(I)XB(1)](0)+~[B(2)XB(2)](0)

(5.4)

(5.5)

56'P=
8

1

8 (5.6a)

(5.6b)

In the above, X is the boson number, C2 is the quadratic
Casimir invariant of SU(3), and x, Eo, EI, t2, and e aI'e UI1-

known numerical coefficients to be determined. It turns
out that A' ' and 2&' indeed have the form given in
Eqs. (5.1) and (5.2), respectively, the numerical coeffi-
cients being

We remark that both A' ' and 2@' have the same
structure, namely there is a one-boson term multiplied in
each case by the same coefficient, followed by a term in-
volving the commutator of C2 with the. corresponding bo-
son. This result is a very general one, i.e., the exact Dyson
boson mapping of the pair operators of an SO(N) algebra
having an SU(N') and (N'&N) subalgebra involves a
one-boson term multiplied by a boson-number dependent
coefficient and a term which can be expressed as the com-
mutator of the second-order Casimir invariant of SU(N')
with the appropriate boson. More specifically, in the case
of a single-j shell with the symmetry SO[2(2j+ 1)], which
has an SU(2j+ 1) subgroup, the second term will involve
the commutator of the second-order Casimir invariant of
the SU(2j+ 1) subalgebra with the appropriate boson. It
is obvious that to have an exact mapping we need as many
bosons as we have pair operators, i.e., in the case of the
single-j shell one has to include bosons up to angular
momentum 2j —1. A11 the bosons present must belong to
the same irrep of SU(N'). Since the three-boson terms in
the pair operators must belong to the same SU(N') irrep
as the one-boson -terms, it turns out that they must consist
of the commutator of the second-order Casimir invariant
of SU(N') with the corresponding boson, since the
Casimir invariant does not change the irrep of SU(N').
This also is a hint about the form of the pair operators of
a Hermitian mapping, where higher order terms will be
present: these additional terms are expected to be com-
mutators of higher order Casimir invariants of SU(N')
with the corresponding bosons, since these higher terms
also have to belong to the same irrep of SU(N').

eI ——v 3/8,
e2 ———v 5/8,

(5.6c)

(5.6d)

(5.6e)

VI. EXACT HERMITIAN MAPPING
FOR THE p SHELL

Dyson mappings are elegant and easy to obtain, but
there is some difficulty in using them, due to their non-
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hermiticity. Leaving aside the question of direct use of
the results of the previous section, we seek a way to her-
mitize them. The hermitization procedure we are going to
follow is essentially the one given by Klein et al. in Ref.
8. %'e seek a similarity transformation S which will make
the pair operators Hermitian, without changing the mul-

tipole operators, i.e.,

Substituting (6.4) and (6.5) in (6.9) we get the condition

V 'a(J)tV=a(J)t 11
6

(6.11)

We want to study the condition (6.11) by taking all non-
vanishing matrix elements in the basis

SXS ' =N, (6.1) IN(A, ,)u) J 1 m ) . (6.12)

Sa„"'S-'=a"'.
(6.2)

(6.3)

[g(J)t] a (J)t
6

1V 1——[C„a(J)],
3 8

(6.4)

where 7=0,2, while the Dyson operators A' ' and A„''
have the general form

These conditions imply that S commutes with N, 8&",
and B& '. Consequently, it can be a function only of the
boson number N and the Casimir invariants C2, C3 of
SU(3) [or equivalently the symmetrized Casimir invari-
ants Iq, I3 of SU(3) (Refs. 12 and 13)], since Bz"',Bz ' are
the generators of the SU(3) subalgebra.

Our next task is to find conditions which will provide
the form of S. The Dyson pair operators A( 't and A&

'

given in Eqs. (5.10) and (5.11) have the general form

Here A, ,p are the quantum numbers introduced by
Elliot'4 "

)( =f) f2-
P=f2 ~

(6.13)

(6.14)

where f, (f2) is the number of boxes in the first (second)
line of the Young tableau corresponding to the SU(3) irrep
in question, and 7 is the additional quantum number
needed to distinguish states with the same angular
momentum l belonging to the same SU(3) irrep (A, ,p).
[This can be the Vergados quantum number X, ' which
corresponds to an orthogonal basis, since the Elliot quan-
tum number K (Refs. 14 and 15 corresponds to a
nonorthogonal basis. ] Since our ao and a(2)t bosons
belong to the (2,0) irrep of SU(3), there are in general
three nonvanishing matrix elements of a(J) (J=0,2) be-
tween the states (6.12), as shown below in two different
notations:

[A( ']D=a(J),
where J=0,2. We demand that the similarity transforma-
tion S hermitizes them, i.e., we want

s[~""]s-'=~("',
[f),f2] && [2,0]=[f)+2,f2]

(6.6)
+[f) fr+2]+[f) —»f2 —2] .

(6.5)
(&,)M) X (2,0)=--(&+Z,p)+(A, —Z,@+2)+(A.,p —2),

s[w(J)] s-'=~(", (6.7)

(6.8)

where

V=S S. (6.10)

g (J)t [g (&)]'t

where by [A ( ' ]D, [A ( ']D we mean the Dyson pair opera-
tors and by A' '~, A' ' their Hermitian counterparts.

Equations (6.6)—(6.8) imply the condition

V
—)[[g(J)] ]fV [g(J)t) (6.9)

In the last term of (6.15) the SU(3) property

[f),f2,f3]=If) —f3,f2-f3,0] (6.16)

has been used. We do not need to calculate the nonvan-
ishing matrix elements of a (J)t, since they cancel when
we get the nonvanishing matrix elements of (6.11) (the in-
terested reader can find them in Ref. 17, anyway). Taking
the nonvanishing matrix elements of (6.11) and applying
the Wigner-Eckart theorem we get the following three
conditions:

V (N + l, A, +Z,p) V(N, A, ,p) = ————[C2(g+Z,p) —C2(g,p)],11 X 1

6 3 8
(6.17)

V (N+ 1,A, —2,p+ 2) V(N, A.,p) = ————[C2(A, —2,)((, +2)—C2(A. ,p)],—1 11 X I
(6.18)

V (N+ l, k, ,p —2) V(N, A, ,)M) = ————[C2(A, ,(M
—2) —C2(A, ,p)] .—1 11 N 1

(6.19)

Assuming

S =S=real, (6.20)
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V=S
using the weH-known formula

Ci ———', [A, +p +3(A, +p)+Ap],

11 N 1

6 3 12
(4A, +2p+ 10)S '(N+1, A, +2,p)S(N, A.,p) =

and taking the square roots of (6.17)—(6.19) we get the conditions
1/2

=R1,
1/2

(6.21)

(6.22)

(6.23)

S '(N + 1,A, —2,p+2)S(N, A, ,p) = 11 N 1

6 3 12
( —2A, +2p+4)

1/2

=R2, (6.24)

S '(N + 1,i,,p —2)S (N, A, ,p ) = ——— ( —2A. —4p —2)
11 N 1

6 3 12
=R3 . (6.25)

+h (N, A.,p)[a (J),Ii], (6.27)

where f(N, A, ,p), g(N, A, ,p), and h(N, A, ,p) are unknown
functions to be determined. It must be emphasized that

As we remarked at the end of Sec. V, the hermitized form
of the pair operators is expected to contain the commuta-
tors of the Casimir invariants (or the symmetrized
Casimir invariants) of SU(3) with the corresponding boson
operator, since all terms have to belong to the same irrep
of SU(3). We choose to use the symmetrized Casimir in-
variants I2 ——Ci (Refs. 12 and 13) and Ii, thus we expect
the hermitized pair operators to be of the form

~' ' =a(J) f(N, A, ,p)+[C2,a(J)t]g(N, A, ,p)

+[I3,a (J) ]h (N, A, ,p), (6.26)

&' '=f(N, k,p)a(J)+g(N, j,,p)[a(J),C2]

the number of terms of Eqs. (6.26) and (6.27) is equal to
the number of nonvanishing matrix elements of the boson
creation [annihilation] operator a(J) [a(J)], J=0,2, be-
tween states of the basis (6.12) and that the quantities A, ,p
appearing in the unknown functions f(N, A, ,p), g(N, A, ,p),
and h (N, A, ,p ) are meant to be operators that can be ex-
pressed in terms of the Casimir operators C2 and I3 if
one solves the system of Eqs. (6.22) and (6.43) (given in
the following) for k and p.

Equations (6.23)—(6.25) provide a set of conditions to
determine the similarity transformation S. Another set of
conditions can be found from Eq. (6.7), after substituting
(6.5) and (6.27) in it and taking all possible nonvanishing
matrix elements of the resulting equation. Using again
the signer-Eckart theorem and having in mind that the
boson annihilation operators ao, a (2)& belong to the (0,2)
irrep of SU(3), we find the following conditions:

S(N, A, ,p)S i(N + 1,A +2,p) =f(N, A, ,p)+g (N, A.,p)[C2(A +»p) —C2(~iP)1+h (N, A, P)[Is(A +2,P)—Ig(A, ,P)],

S(N, A, ,p)S '(N+ 1,A. —2,p+2) =f(N, A, ,p)+g (N, A, ,p)[C2(A, —2,p+2) —C2(A, ,p)]
+ h (N, k,p)[I3(A, 2,p+2) —Ii—(A,,p)],

(6.28)

(6.29)

)S
—1(N + 1 g p 2) f (N g p)+g (N, g,p)[—C2(gp —2) —C2(A, ,p)]+h (N, A,,p)[I3(A, ,p —2) —Ii(A, ,p)] . (6 30)

We remark that there are again three nonvanishing matrix elements, and the left-hand sides of (6.28)—(6.30) corre-
spond to the known left-hand sides of (6.23)—(6.25), thus providing the equations

f(N, i.,p)+g (N, A, ,p)b Ci +h (N, A, ,p)AI, =R, ,

f(N, A,,p)+g (N, A,,p)b C2+h (N, A, ,p)bI2 ——R2,

f(N, A, ,p)+g(N, A, ,p)AC&+h (N, i.,p)AI3 R3

where we have used the following definitions:

b, Ci ——Cp(A, +2,p) —C2(A. ,p),
hC, =C, (A, —2,p+2) —C, (A, ,p),

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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EC3 —C2(A, ,p —2) —C2(A, ,p)

b, I, =I3(A, +Z,p) —I3(k,p),
6I2 I3

——( A, —2,p +2 ) I3
—( A, ,p ),

EI3 —I3(A p 2) I3(A, ,p)

(6.36)

(6.37)

(6.38)

(6.39)

Equations (6.31)—(6.33) are a system of three equations for the three unknown functions f(X,A, ,p), g(X, A, ,p), and
h (X,A, ,p), which yields the final results

f(N, &,p)=[(9A, p+9Ap +24Ap+9A~+3p2+lsi+7p+4)R)+(9A~p+9gp +36Ap+3A, +15p +11A+35p+10)Rp

+(9A, p+9Ap +15k, +9p +48Ap+551+39p+40)R3]/[27(A, p+Ap +A, +p +4Ap+32+3p+2)],
(6.40)

g (XA, ,p) = [(p +2k p+ ZA+2p+ 1)R, + (A2 —p2+4k +4)R2

—(A, +ZAp+6A, +Zp+5)R3]/[12(A, p+Ap +A, +p +4Ap+3A, +3p+2)],
h (X,A, ,p) = [(1+p}R~

—(A, +p+2)Rq+(1+A)R3]/[6(A, p+Ap +A, +p +4Ap+3A+3p+2)] .

(6.41)

(6.42)

In obtaining this result we have used the formula' '
I3 ———,(A, —p)(ZX+p+3)(A, +Zp+3) . (6.43)

thus p and y have' opposite signs. Then, instead of
(4.32)—(4.40), the exact Dyson mapping for the SO(7)
algebra contains the coefficients

&(0) ao, (4.25)

(4.26)

was made. With these definitions, p and y came out hav-

ing the same (positive) sign [cf. (4.35) and (4.36)]. Since it
is well-known that the SU(3) subalgebra can be satisfied
equally well with p and y having opposite signs, we asked
if it is possible to obtain an SO(7) mapping in which p
and y would have opposite signs. It turned out that this
is in fact the case. Since all calculations are exactly the
same, up to some different signs, only the final results will

be reported here.
In this second mapping we use the definitions

VII. A SLIGHTLY DIFFERENT EXACT
MAPPING FOR THE p SHELL

In Sec. IV an exact mapping for the SU(3) subalgebra
was first found. We remark that the coefficients p (4.23)
and y (4.24) of B&

' had arbitrary signs, which were fixed
later, through use of the commutation relations (4.30) and
(4.33), where use of the arbitrary definitions

go= —1

Ws
3

Z~S
3

+3S
6

60——1,

1

62 ————, ,

v'7
3

v7
6

1
~50

l
&S2= 6

(7.5a)

(7.5b)

(7.5c}

(7.5d)

(7.5e)

(7.6a)

(7.6b)

(7.6c)

(7.6d)

(7.6e)

(7.7a)

(7.7b)

~„"'=a (2}„.
(7.1)

(7.2)

3
~54 (7.7c)

Then the commutation relations (4.30) and (4.33) fix the
signs of P and y as follows:

60 ~61 ~62 ~63 64 (7.8)

2

y=&7/3,

(7.3)

(7.4)

Notice that the signs of yp, y&, y2, y3, 63, and 64 have
changed, the rest of them remaining unchanged. These
changes have as a result that instead of (5.1) and (5.2) we
obtain the equations
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—A' )t=ao(1 —xN)+[C ao] ~

A„( 't =a (2)~(1—xN)+ [C,a (2)„],
where (5.3)—(5.6} remain unchanged. This has as a conse-
quence that ihe final Hermitian result reads

—A' ' =ao f(N, A,,)M)+[C2,ao]g(N, A, ,p)

+[I3,ao]h (N A (M) (7.11)

Ap
' ——a (2)pf(N, A, ,(u )+[C2,a (2)„]g(N, A, ,((()

+ [I3,a (2)&]h (N, A. ,(M ), (7.12)

(7.10)

where f(N, A, ,p), g(N, A, ,p), and h(N, A, ,p) are still given
by Eqs. (6.40)—(6.42), respectively.

VIII. DISCUSSION

An exact boson mapping for the neutron (proton) p
shell is found, by first constructing an exact Dyson map-
ping and then hermitizing it. A test similar to that of
Ref. 10 can be easily performed, namely one can choose a
schematic shell-model Hamiltonian and do both the exact
diagonalization and the diagonalization in the boson
space, after mapping the Hamiltonian and consistently
keeping terms up to some order. For the latter case,
either the

i
N(i, ,p)+1m }basis mentioned above or the al-

ready existing' seniority basis of the SO(5) limit of the
IBM can be used. Of more interest is the fact that the
method can provide exact boson mappings for higher
shells as well, the relevant commutation relations having
already been given in general form in Sec. II. The number
of bosons needed in these exact mappings is equal to the
number of fermion pairs which can be formed in the shell
under discussion. Work on the s-d shell is already in pro-
gress. It turns out that in the case of a neutron (proton)
s-d shell, which has the symmetry SO(13)DU(6) &SU(3),
five bosons are present, namely two s bosons, two d bo-
sons, and one g boson, all of them belonging to the
(2,0,0,0,0,0) irrep of the U(6) subalgebra, thus allowing an
exact Dyson mapping to be found, which involves the
second-order Casimir invariant of U(6), and in addition an
exact Hermitian mapping to be found according to the
procedure discussed in this paper, which involves all
Casimir invariants of U(6).

The present method also implies that the SO(8) map-
pings of Ref. 10 are incomplete, since in this case there
are four nonvanishing matrix elements of the boson opera-
tors, thus implying that all possible symmetrized Casimir
invariants C2,I3,I4 must appear in the hermitized results.
The complete form of the SO(8) mappings will be given in
a forthcoming publication.

So far we were dealing with exact boson mappings only.
It is interesting to see how one can get approximate boson
mappings, especially for higher shells, as perturbative ex-
pansions around the SU(3) limit. It is well-
known' ' ' that the leading SU(3) irreps are the ones
which dominate in reality. By leading SU(3) irreps we
mean the irreps with maximum X+p, and, among those
with equal A. +p, the ones with maximum k. It is obvious
that for leading SU(3) irreps p/A. (and 2N —A, /A, ) will
remain small, being hopeful candidates for the small pa-
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APPENDIX A

In this appendix we apply the commutator method in
order to determine the unknown numerical coefficients in
Eqs. (4.27) and (4.28). The numerical coefficients in Eqs.
(4.11a) and (4.11b) have already been calculated in Sec.
IV.

We first make use of the commutator

g(0)[g(0) g(o)t]
v'3 (A1)

Using (4.25) and (4.27) it is very easy to find

[A' ', A' ' ]=yo+2y)aoao+y3[a(2) Xa(2)]' ' .

Substituting (A2) in (Al) implies

3'0=+-&

(A2)

(A3)

8(o)= —2V 3y)a(tao —W3y3[a (2) Xa(2)]' ' . (A4)

rameter role in such an expansion. [It is well-known that
one of the main obstacles in obtaining approximate map-
pings in the SU(3) limit has been so far the identification
of a small parameter. ] Such an approximate mapping will
certainly be of physical interest for the s-d shell' '
[which has an SU(3) subgroup], and work in this direction
is already in progress. It turns out that one can select the
five bosons mentioned above in a way that one s boson,
one d boson, and the g boson belong to the (4,0) irrep of
the SU(3) subalgebra, while the next two bosons (one s bo-
son and one d boson) belong to the (0,2) irrep of the SU(3}
subalgebra. It seems plausible that the first of these two
sets of bosons will be predominantly present in states be-
longing to the leading irreps of the SU(3) subalgebra. Be-
cause the SU(3) symmetry of the three-dimensional har-
monic oscillator is destroyed by strong spin-orbit coupling
in higher shells, the method is not directly applicable
there, but the presence of a pseudo-SU(3) symmetry'
can provide the intermediate link previously missing. It is
at least possible that by pushing in this direction, there is
a chance of finding a way to theoretically justify the IBM
in the SU(3) limit. It is worth mentioning that by con-
trast the SO(8) model and any single-j model with the
symmetry of SO[2(2j+ 1)], in general, cannot be useful in
this direction, since they lack an SU(3) subgroup.

It is also of interest to generalize the commutation rela-
tions of Sec. II to include proton-neutron pairs, in addi-
tion to proton-proton and neutron-neutron pairs. Then
one can find exact boson mappings which will be applic™
able to the realistic p-shell and s-d shell nuclei, where pro-
tons and neutrons occupy the same major shell and thus
presence of proton-neutron pairs is expected.
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We know that

(A6)

(A5)

[B(o)B(2)] ()

These imply that B' ' has to be proportional to the boson
number

2v5
3

The coefflclent of [a (2) Xa(2)] p gives:

v35
74

. 6

(A12)

(A13)

N =aoao+ V 5[a (2)t Xa(2)]' ' . (A7)
Then (A8) provides

1

71 (A14)

y3
2l )

5

%'e then use the commutator

(A8)

(A9)

Thus all coefficients in (4.27) are already found. Our
next task is to find the coefficients in (4.28). We first use
the commutator

(A15)

From (4.26) and (4.27) it is easy to find

[A& ', A' ' ]= ( —1))'y2a(2) &ao
5

Using (4.25) and (4.28) in (A15) it is easy to find

[A' ', A@
' ]=5)a (2)pao+252aoa(2)p

+5,[a (2) Xa(2)]„"'. (A16)

( —1)&y3ao a(2)
5

+ —
( —1)~y4[a(2) Xa(2)]' „'

5
(A10)

The coefficient of aoa(2) & gives:

Substituting (A10) and (4.11b) in (A9) and equating coef-
ficients of the same tensor in the left- and right-hand sides
we obtain the following conditions:

The coefficient of a (2)" &ao gives:

y2= —
~

v5
3

(Al 1)

2
5) ————.

The coefficient of aoa(2)& gives:

The coefficient of [a (2)tXa(2)]z ' gives:

v73=—
3

From the commutator

(A17)

(A18)

(A19)

Substituting (A16) and (4.11b) in (A15) and equating coef-
ficients of the same tensors we obtain the following condi-
tions:

The coefficient of a (2)zao gives:

220
[AI, ' A."' ]=5„.—( —1)"5 (2 —}u 2}M (00) '1

1 1
'B'"+(2 —p 2 v~2 v —p)

it is immediately seen that

221
+(2 —p2v~ 1 v —)u) "1

1 1
'B"'„

(A21)
Finally, we use the commutator

[B(~) A(o)t] 2
P ' v3 v

From (4.11b) and (4.27) it is straightforward to find

[B„'', A' ' ]=Pa(2)„+2Py)a(2)„aoao—Py)aoaoa(2)„+Py3a(2)„[a(2)Xa(2)]' '

t t t(o)- p» t t-—~ a(2)&aoao+ ~ a(2)&aoao —Py2[a(2) Xa(2) ] a(2)&+ aoaoa(2)5 P P 5 P

V4—py4[a(2) Xa(2) ]z'ao+ aofa(2) Xa(2)]~ + yy2[a(2) Xa(2) ]' 'ao
5

(A22)

+ ~—yy4[a(2) X[a(2) Xa(2)]' ']„''— yy&[[a(2) Xa(2)t]' )Xa(2)]&'.
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'550 (A25)

The coefficient of [[a (2) Xa (2) ]' 'Xa(2)]& ' gives:
1

52 —6 ~

The coefficient of [[a(2) Xa(2)"]' )Xa(2)]z' gives:

3
'554 (A27)

The coefficients of a (2)&, a (2)&a0a0, a0(20(2(2)&, and
a0[a(2) X(T(2)]&' provide equations which are already
identities. In obtaining (A2S)—(A27) the recoupling for-
mula

[a(2) X [a(2) Xa(2)]' ']z

22I.= g [(2 L +1)(2 J +1)]'

Substituting (A23) and (4.28) in (A22) and equating coef-
ficients of the same tensors we obtain the conditions:

The coefficient of [a (2) Xa (2) ]„''a 0 gives:

V74—
6

The coefficient of [(2(2) Xa(2) ]' )a(2) gives:

[g(0)t g(2)t] () (A30)

are satisfied. Also (A4) provides

B' '= a()a0+ [a (2)tXa(2)]( '= N . (A31)
3 3 3

[8„',C2] =0,
[g(2) C ] 0

(81)

(82)

The first of these conditions is always satisfied, without
imposing any restrictions on the unknown coefficients
ei, e2, since 8&" is the angular momentum operator and
the terms included in C2 already have good angular
momentum. But using (5.5), (4.14), and (4.19) in (82) we
obtain

APPENDIX 8
In this appendix we verify that our results of Sec. IV

can be put in the form (5.1) and (5.2) and we calculate the
constants 6, 60, e), e2, and x, appearing in Eqs. (S.l), (5.2),
(5.4), and (5.5).

If the quantity C2 of Eq. (5.5) is the second-order
Casimir invariant of SU(3), it has to commute with the
generators of this algebra, i.e., it must satisfy the condi-
tions

X[[a(2) Xa(2) ]' 'Xa(2)]& (A28) [g(2) ( ]
1 2 ~3yS ([~(1)Xg(2)](2)

has been used. Since we are using the

[[(2(2) Xa(2) ]' 'Xa(2)]&" (L =0,2,4)

as the three linearly independent 3-d boson terms, no

[(2(2) X[a(2) Xa(2)]' )]&' (L =0, 1,2, 3,4) This vanishes if the condition

&) = —&(3/5)e2

[g(2) Xg(1)](2))
p

(83)

(84)
terms appear, thus

560 ~61 ~62 563=~64 (A29)

By now all the unknown coefficients have been found.
It is straightforward to check that all the remaining com-
mutation relations, e.g., (A20) and

holds.
~e then check if our result for A' ' of Sec. IV agrees

with (5.1). Using (5.3) and the explicit form of (5.4) [ob-
tained when 8' ', B„'",and B&' are substituted into it
from Eqs. (A31), (4.1 la), and (4.11b), respectivelyj in (5.1)
we obtain

=a0 —x120(20(20 —x&5a0[a(2) Xa(2)]' '+ TE0(a0+2a()(2()u0)+ @&@0[a(2) Xa(2)](0)

+ —,@22[a(2) Xa(2) ]' 'a0+ —,6'2a0[(2(2) Xa(2)j' '+ —,e2(20[(2(2)Xa(2)t](0)

X &2[(2(2) X[a(2) X(2(2)]' ']' '+ 62[[a(2)tXa(2)]( 'Xa(2)t]'0'.t t — 2 0

Notice that the above expression is not in normal order.
It can be put in such a form using the relations [(T(2)Xa(2) ]' '=[a(2) Xa(2)]( '+~5, (86)
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5
&O= 8

The coefficient of aoaotto gives:

(89)

[[a(2) Xa(2)]' 'Xa(2)t]'o'=[a(2)tX[a(2)tXa(2)]' ']' '

(87)
Equation (85) must agree with Eq. (4.27). Equating

coefficients of the same tensor in these two expressions,
we obtain the following conditions:

The coefficient of [a (2) Xa(2)t] ao gives:

vS
8

(88)

The coefficient of a o gives:

(811)

Agreement between Eqs. (5.2) and (4.28) can be checked
in the same way. All tensors give results consistent with
the values of the coefficients found above.

We still need to find the constant e. In order to deter-
mine e, we first act with the explicit form of @CD [which
can be found from (5.5) after substituting B„"'and Bz '

with their equals from Eqs. (4.11a) and (4.11b), respective-

ly] on the state ao
~
0), where ~0) is the boson vacuum.

Putting the expression C2ao in normal order, we remark
that only the term

aoao[a(2) Xa(2) ]' '

x =2 .

The coefficients of

(810) of C2 makes a nonvanishing contribution when C2a o acts
on the boson vacuum. In fact we find that

[a(2) X[a(2) Xa(2)]' ']' '
e C2ao

~

0)— +2+5a IQ
~
0) (812)

and

ao[a(2) Xa(2)]' ' (813)

On the other hand, the state ao
~
0) belongs to the (2,0)

irrep of SU(3), thus using Eq. (6.22) we obtain

eC2aIt
~

0)=e—,

provide equations which are already identities. Now Eq.
(84) provides

Comparing (812) and (813) we get
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