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Four-nucleon potential due to exchange of pions
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A four-body force due to the exchange of pions has been derived by means of an effective La-
grangian which is approximately invariant under chiral and gauge transformations. It includes ef-
fects corresponding to pion-pion scattering, pion production, and pion-nucleon rescattering. The
strength parameters of this four-body potential are typically one order of magnitude smaller than
those of the two-pion-exchange three-body force.

I. INTRODUCTION

It is well known nowadays that the nucleon-nucleon in-
teraction does not suffice for a precise description of
many important effects in nuclear physics. For instance,
the study of the nuclei of H and He by means of dif-
ferent techniques has shown that realistic two-body forces
underbind these trinucleon systems by about 1.5 MeV. '

This situation has led researchers in the field to look else-
where for the explanation of this and other discrepancies.
In this context, three-body forces have deserved much at-
tention, particularly that which is due to pion exchange,
whose effects have been shown to be important.

The study of the four-body system is in a much less ad-
vanced stage. Nevertheless, the present possibility of
tackling the problem by means of various techniques and
different nucleon-nucleon potentials allows one to foresee
that the inclusion of many body forces will be performed
soon. This makes opportune a discussion of the role of
four-body forces.

The many-body forces of longer range are those due to
the exchange of pions. In the case of the alpha particle,
these forces are the result of proper interactions among ei-
ther three or four nucleons. By proper interactions one
means processes in which there are no nucleons propaga-
ting forward in time. The two-pion-exchange three-body
force corresponds to diagrams in which a virtual pion,
emitted by one of the nucleons, is scattered by another
and absorbed by a third one. In the most accurate
theoretical treatments of this force the intermediate pion-
nucleon scattering amplitude is described by means of
chiral symmetry, ' since the interactions of pions with
other hadrons are approximately invariant under transfor-
mations of the group SU(2) XSU(2). The symmetry is a
crucial ingredient in the calculation of the force because it
produces a pion-nucleon amplitude which is consistent
with on shell data and is suitable for off-shell extrapola-
tion.

The dynamical content of the pion-exchange four-body
force, on the other hand, is related to three different types
of intermediate processes, namely, pion-pion scattering,
pion production, and pion-nucleon rescattering, as depict-
ed in Fig. 1. The first of them corresponds to the interac-
tion of the virtual pions exchanged between different pairs
of nucleons. The amplitude for pion production contri-

butes in the case where a virtual pion, emitted by a nu-
cleon, interacts with another nucleon, producing two
pions, which are absorbed by the remaining nucleons. Fi-
nally, in the third type of process, a nucleon emits one
pion, which is scattered in succession by two other nu-
cleons and absorbed by a fourth one. The four-body po-
tential associated with Figs. 1(a) and (b) has already been
considered by McManus and Riska, who did not include
the contribution of the delta resonance to the intermediate
pion production amplitude. The double scattering dia-
gram, given by Fig. 1(c), has also been studied by Blatt
and McKellar, who employed a rather simplified descrip-
tion of the "elementary" pion nucleon scattering ampli-
tude. These results correspond to special cases of those
derived here.

In this work the four-body force due to exchange of
pions is obtained by means of an effective Lagrangian that
is approximately invariant under chiral and gauge
transforrnations. In Sec. II this Lagrangian is employed
in the calculation of the amplitudes for the intermediate
processes. One derives the four-body potential in Sec. III
by evaluating the contributions of proper interaction to
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FIG. 1. Contributions to the pion-exchange four-body force:
pion-pion scattering (a), pion production (b), and pion-nucleon
rescattering (c)
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the scattering of four nonrelativistic nucleons. Finally,
conclusions are presented in Sec. IV.

II. INTERMEDIATE AMPLITUDES

qk, a k', cg
II

IIII
II

The relationship between the four-body potential and
the scattering amplitude of free nucleons is totally analo-
gous to that of the three-body case. As discussed in the
Introduction, the potential is based on proper diagrams
describing the propagation of pions in tree approximation
and containing the amplitudes for pion-pion scattering,
pion production, and pion-nucleon rescattering. The
pions exchanged in the various processes are off shell, and
hence the evaluation of these subamplitudes must be per-
formed with the help of some theory.

The most successful theory describing pionic processes
is based on the assumption that their interactions are ap-
proximately invariant under transformations of the group
SU(2) XSU(2). There are two main approaches for apply-
ing this symmetry, known as chiral symmetry, to the in-
teractions of low-energy pions with other hadrons. One of
them uses the so-called current algebra, whereas the other
is based upon effective Lagrangians. They are physically
equivalent, but correspond to rather different calculation-
al techniques. The former approach has the disadvan-
tages of requiring much algebraic effort when the number
of pions is not small, and of hiding the dynamical impli-
cations of the soft pion limit.

These problems are not present in the alternative ap-
proach, which is based on effective or phenomenological
Lagrangians, built in such a way as to reproduce the re-
sults of current algebra when used in lowest order pertur-
bation theory. It is important to stress that the use of
these effective Lagrangians should not be understood as
an attempt to apply ordinary perturbation theory in calcu-
lations of strong processes. The main advantage of the
Lagrangian approach is that it allows for a clear under-
standing of the dynamical content of the intermediate am-
plitudes and hence is well suited for guiding one s intui-
tion.

The elastic mN scattering has been extensively studied
by means of chiral symmetry, and agreement with experi-
ment is good both below threshold and for pion energies
up to 350 MeV. ' In the Lagrangian approach the am-
plitude for the process m.N~mN is assumed to be given by
the diagrams of Fig. 2. The vertices for the interactions
nNN, AND, amp, and pNN are extracted from the non-
linear effective Lagrangian, whose terms are displayed in
Eqs. (1)—(12). The last diagram of Fig. 2 represents the
contribution of the pion-nucleon o term and is related to a
controversial aspect of the use of Lagrangians. In the
case of current algebra this contribution is due to the
equal-time commutator of the axial current and its diver-
gence. In the effective Lagrangian approach, on the other
hand, it cannot be ascribed to the exchange of realistic
particles, since no serious candidate for the sigma field
seems to exist. Hence the usual procedure consists of con-
sidering this contribution by means of a parametrized
form. 9

The experimental knowledge of the reaction n N —&mwN

is in a much less advanced state than that of elastic m.N

FIG. 2. Low-energy pion-nucleon amplitude. Pions, rhos,
and sigma are denoted by broken, wavy, and double lines,
respectively. Full and thick lines represent nucleons and deltas.
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scattering. Nevertheless, a recent detailed analysis of a
particular process" has shown that it is well represented
near threshold by an isobar model satisfying the current
algebra constraints. ' This model is essentially equivalent
to the diagrams given in Fig. 3. The meaning of the vari-
ous contributions is discussed in subsection B.

In this work one assumes that the amplitude for the
process ~m —+m.m is given by the diagrams .displayed in
Fig. 4. A comparison of the predictions of this model
with experiment is produced in Ref. 13, where further
references can be found. There it is shown that the
theoretical results for the isoscalar (ao) and isotensor (a2)
scattering lengths agree well with experiment as far as the
combination 2ao —5a2 is concerned. On the other hand,
the experimental values of ao are about twice that provid-
ed by the model. This situation could be improved by
considering the contribution of isoscalar resonances. ' '
However, this procedure is not adopted here, since the in-
troduction into the problem of rather uncertain coupling
constants and masses would be fully justified only if the
effects of the four-body potential prove to be important in
realistic calculations.

The intermediate amplitudes are calculated by means of
an effective Lagrangian which is approximately invariant
under chiral and gauge symmetries. It describes the in™
teractions among nucleons, deltas, pions, rhos, and the
axial-vector mesons A ]. The relevant terms to the present
discussion are the following:
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FIG. 3. Low-energy pion production amplitude. Pions, rhos,
and axial-vector mesons are represented by broken, wavy, and
triple lines, respectively. Full and thick lines denote nucleons
and deltas. The symbol { . ) indicates permutations of the
pions.
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The mN coupling in the nonlinear Lagrangian approach
is of the pseudovector type. In the above expressions the
symbols N, b&, P, p&, and A& denote, respectively, the
nucleon, delta, pion, rho, and A

~ fields, whose masses are

m, M~, p, mz, and m~. The matrices ~, M, and T com-
bine two nucleons, one nucleon and one delta, and two
deltas into isospin 1 states. The parameter g was intro-
duced by Olsson and Turner' and is determined by the
group transformation properties of the chiral symmetry
breaking term in the Lagrangian. The universal vector
coupling constant is yo, 5 is a parameter measurable in the
decay p~~m, and pz and p„are the proton and neutron
anomalous magnetic moments. The parameters Z, A, , and

g represent the possibility of spin —, components in the
off-pole delta wave function. The delta couplings are as-
sociated with the following form for its propagator:

G ( )
(&+ ~) i yppv2,~2 SPv 3 7pP~

Pp'Vv &PI Pv+
3M~

LA NN fn'3 (P vy y5N'Ap
m

L N~
—gah~M[g&" —(Z+ —,

' )y&y"]¹3Q+H. c. ,
I

L,„,=i»Z„M g~"——y~y" yey, N (a,p, a.p,)—
This expression corresponds to setting 3 = —1 into
Fronsdal's' 6 Lagrangian, which has also been used to
generate L &a by means of an axial gauge transformation.

In the derivation of the four-body potential the momen-
ta of the nucleons are consistently assumed to be of the
order of the pion mass. The momentum p of a nucleon is
written as

+H.c. , ~2
p=—(E,p)= m+, p

2m
(14)
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whereas the momentum k of a pion emitted by this nu-
cleon is given by

~2 ~&2
k—= (co,k)=, p —p'

2m
(15)

Therefore, the orders of magnitude of these kinematical
variables are the following: E-m,
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FIG. 4. Low-energy pion-pion scattering amplitude. Pions
and rhos are represented by broken and wavy lines, respectively.

A. Intermediate pion-pion scattering

The process n'(k)n(q)~m'(k')n". (q') is descri. bed by
the diagrams of Fig. 4, representing a contact term and
three exchanges of a rho meson. The corresponding am-
plitude, denoted by T", is obtained from the Lagrangian
elements already displayed and has the fo11owing form
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T'»'= {5«5bd[—(1—g) (k k—') (q q—') g—(k k'+q q'') —p (1——,g)]

+5~5b, [—(1—g}(k —q'). (q —k') g(—k q'+q k') p—(1——,
'
g)]

+5,b5,d[(l —g)(k+q) (k'+q')+g(k q+k' q') —p (1——', g)]I .

In this derivation one has used the relation yo/mz ——,' f„.—' The corresponding expression for nonrelativistic nucleons is

{5»»5bd[(1 —g) (k —k '} (q —q ')+g(k k '+q q ') —p'(1 ——', g)]

+5,~5b, [(1—g) ( k —q ') ( q —k ')+g( k q '+ q k ') —p (1——,
'
g)]

+5.b5.~[—(1—g) ( k+ q).(k '+ q ') —g( k.q+ k '
q ') —p'(1 ——,g)] I . (17)

S. Intermediate pion production

The dynamical content of the reaction

m (k)N (p)~n'(k')m"(q')N (p')

for free particles at low energies is shown in Fig. 3. The
first diagram represents the pion-pole amplitude and can-
not be included in the four-body potential, since this
would mean the double counting of the pion-pion process.
One also must not include the diagrams within round
brackets, because they contain nucleon propagators and
hence correspond to iterations of two and three body po-

I

I

tentials.
The square bracket contains a seagull term besides oth-

ers describing the propagation of vector mesons. When
the effective Langrangian adopted in this work is used,
the contribution of the diagrams including the mpNN ver-
tex is canceled to leading order in p /m& by that describ-
ing the propagation of the Ai. Moreover, processes con-
taining both p and A~ propagators produce only correc-
tions to the leading term. Thus, the most important con-
tribution from the diagrams within square brackets comes
from the seagull term. The corresponding amplitude,
represented by T' ' ', is

& uy ysu{5»»&d[ kq„'+(4 —1}(k„k—„')]+5»d~,—[ pk„'+(f 1—)(k„—q„')—]2m 2f~

+5,gr, fgk„—(g—1) (k„'+q„')]I .

The nonrelativistic limit of this expression is

r ' '= —i2m z {5«ed[—go" q '+(g —1)o"(k —k ')]+5,dr, [—go'k '+(g —1)o'(k —q ')]
2m 2f

+5,d~, [go"k —(g—1)o'(k '+ q ')]J . (19)

The diagrams within curly brackets represent two types of processes, namely those containing one and two delta proLi-
agators. They are referred to as single and double delta diagrams and correspond to the amplitudes T' ' ' and T' '

The single delta processes depicted in Fig. 5(a) yield the following amplitude:

(T ' }=yo[ie d(T& )g+(5«rd 5,dz, )(Til, )a] —
2 2 (q„' k~), — (20)

Q —m P

where ( T& )a are the same subamplitudes that contribute to the pion-rho-exchange three-body force. ' Their most im-
portant parts are those proportional to the poles of the delta, and are given by

+ . 'VM~
(T„)a—— i 2 uy5-.

9Mg z + 2 [ma+(Q —2m )p+3Mb(k —2Q k 2m 2m—M~)]-
s —Mg u —Mg 2

1 y"y" i i (P+k)" (P —k)"
2 a + my-

s —M~ u —M~ 2 s —Ma u —Ma
2+ 2
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+ 6M k"P"+3M'(m+M )y
s —Mg u —Mg s —M2~ u —M~2

(21)

(T„)a= i — 2 uy5.
18M'

V

z [ma+(Q 2—m )p+3Ma(k 2—Q k —2m2 —2mMa)]
s —Mg u —Mg 2

@ y y"
p( g gg) (P+k)" (P k)"—2+

s —Mg u —Mg 2 s —Mg u —M~
2 2 2

1
2s —Mg

+ pm+6M k~P-+3M ( +M )
~ ( —k) (P+k)

2u —Mg s —Mg u —Mg

X (g„gg —g„,gg)u, (22)

where

a—:(m +Ma)(Ma —m )+k (m+2M'), (23)

P=(2Ma+mMa m+k )—, (24)

P =(p+@') .

When the nucleons are assumed to be nonrelativistic and the diagrams corresponding to the permutations of the pions
are added, one obtains the following form for the single delta amplitude:

r' ' '=i 2m 2 12m«d k k '
&& q '+5,d r, ( k '

q 'o' k —2k q 'o" k '+ k. k 'o .q ')
9m&(Ma —m)

+5«rd ( k '.
q 'o' k + k q 'cr k ' —2k k 'o" q ')

+5,dr, ( —2k '
q 'o"k+ k. q 'o" k '+ k.k 'o" q ') (26)

In the derivation of this expression one has neglected the difference between the nucleon and delta masses.
The double delta amplitude, shown in Fig. 5(b), receives its dominant contribution from the double pole term, corre-

sponding to the following partial amplitude:

(b, gg) 2 5 . z
ga~nhh( 6 ~aed+ T5«rd 6 5cdra 6 5adrc)u ) 5 Q' —Ma

X . 2M ka. k' — (g kg.k'+g'. kQ' k')+, (Ma2+Q. Q')Q. kQ' k'
3M' 9M'

+ ——,Q k' — (2M' —Q.Q')Q' k' g+ —,Q' k+ (2M' —Q g')Q. k

@+Ma(4Ma+Q. g')g'g
2 u .

g —Ma
(27)

Taking the nonrelativistic limit of this expression and including the contributions of all the other permutations of the
pion quantum numbers, one gets
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2 C„t's '=i2m [
"—e k.k'&&q'+5 r ( —k' q'cr. k —2k. q'o" k'+ —'k k'o"q')

3(M )2 3 «d atf c 9 9

+5«rq( —, k 'q 'o"k+ —,k. q 'o" k ' —2k. k 'o" q ')

+5,~r, ( —2k' q'cr k+ —,'k q'o"k'+ ,'k —k'.cr q')] . (28)

It is worth pointing out that Eqs. (26) and (28) do not depend on the parameters A. and g associated with the off-shell
pNA and mhh couplings, respectively. This occurs because the single and double delta amplitudes are dominated by
their poles, since they yield denominators proportional to (M~ —m) -p.

l

C. Intermediate pion-nucleon scattering

The amplitude for the process

n (k)N(p)~n'(k')N(p'),

4ggm
bg ——

9(Mg —m)
(34)

(35)

for nucleons on shell, can be parametrized as

T~ ~=.— A++ ~'+~B+ 5
2

+ ~ + Jt'+g

When the nucleons are nonrelativistic, this expression
can be written as

Q+t"=2m f++i cr k'&(k 5„
2m

+ f +i cr k'Xk ie«, r,
2m

(30)

where

f+=a +—+vb +—
,
—

v—:(p +p'). (k +k') I(4m),

(31)

(32)

and a +—and b +—are the nonrelativistic limits of A +—and
B+The dy—n.amical content of the pion-nucleon scatter-
ing am.plitude is shown in Fig. 2. The diagram describing
the propagation of a nucleon represents an iteration of the
two-body potential and must not be considered. The rela-
tivistic expression for the contribution of the delta pole
and rho exchange to A—+ and 8—+ can be found in Ref. 5
and will not be reproduced here. Their nonrelativistic
limits produce the following nonvanishing terms:

2

(33)
9 Mt, —m

1
bp 2 (1+i p pn)2f

(36)

The delta contribution is dominated by its pole term and
hence does not depend on the parameter Z. The function

fp is proportional to the velocity and produces nonlocal
factors in the potential; therefore it is neglected in this
work.

The cr term contributes only to the function A+ of the
relativistic mN amplitude. In Ref. 5 this contribution has
been pararnetrized as

A+=a +P k k', (37)

A+= o
(1—p)

k+k
f~ p

k.k'
1 —2p + (k —p )+ (k' —IM2)

where a~ and P~ are constants extracted from experiment.
This form has been taken from Ref. 9 and is adequate for
on-shell pions. When the pions are not asymptotic, one
has to include off-shell effects, and the above form has to
be modified, as has been correctly pointed out in Ref. 2.
The parametrization used in Ref. 4, on the other hand,
does not suffer from these difficulties and is consistent
with the theoretical single and double soft-pion limits of
the mN amplitude. It is proportional to the "measurable"
parameter o., which is the ~N sigma term, and is
equivalent to the following form for A ~:

=a +P k.k'+ y [(k p) + (k' ~ —p2) ],— (38)

k'g r
x k,a

/
k', c~~

a &qd/
r

FIG. 5. Single (a) and double (b) delta diagrams.

where one has made the identifications a~=(olf ),
P = (2PliJ, )(oIf ), and y =—(1Ip )(olf ).

Comparing Eqs. (37) and (38) it is possible to see that
they differ by the terms proportional to y, which
describe off-shell effects. In the evaluation of the four-
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body amplitude, they cancel pion propagators, yielding
potentials in coordinate space containing parts that are
proportional to 5 functions. In the absence of form fac-
tors, the short range repulsion between nucleons allows
one to expect that these contact interactions would influ-
ence numerical results very little. However, realistic cal-
culations do require the use of form factors in order to
regularize the behavior of the potential for vanishing in-
ternucleon distances. In a recent study of the role of form
factors in the s-wave component of the two-pion-
exchange three-nucleon potential it was argued that the
regularization of the results of chiral symmetry must be
made by eliminating all possible 5 functions before the in-
clusion of forni factors. In doing the opposite one would
be using form factors to regularize 5 functions, producing
huge distortions in the form of the potential. '

VA'th the purpose of avoiding this sort of undesired
behavior in the case of the four nucleon potential, one
eliminates from the amplitude terms that correspond to 5
functions in coordinate space. In the present situation
this amounts to disregarding the factor proportional to y
in Eq. (38). The amplitude A modified in this way pro-
duces the following contribution to Eq. (30), the nonrela-
tivistic mN amplitude

f ~+ =a —P~k. k ' .

The caret indicates the modification mentioned above.

III. THE FOUR-BODY POTENTIAL

as
The four-body potential in momentum space is defined

} van]234 &
—+ -+

~ P 1P 2P 3P 4 ~

~
I P1P2P3P4

= —(2m. ) 5 (pf p;) — 4t4N,
(2m)

(40)

k =u2 —S2

~'=P3 —P3 q-P4 P4 9=k—k'=~'—

Energy-momentum conservation means that

k +q =k'+q' . (42)

The amplitude for the process 4N~4N due to the in-
termediate scattering of pions, as represented in Fig. 1(a),
is given by

where t4N is the amplitude for the elastic scattering of
four nonrelativistic nucleons, excluding the contribution
of intermediate nucleons propagating forward in time.

In the evaluation of the potential one uses the following
kinematical variables:

t4N ——(Zm)
2tpz

4
1 1 1 ~{&).k ~(2).k ~ ~(3),~ ~ ~(4).~

2f k 2++2 ki 2+ 2
q t2++2 2+ 22 q- q

X IF"'r' '7' 'r' '[ —(1—g)(k +k' +q' +q +4@ )+2(k.k'+q. q ')+p (2—g)]

+~"'r' )~( '~( '[ —(1—g)(k +k' +q' +q +4)(4 )+2(k.q'+q. k')+p (2—g)]

+ r-"'r("r "'~")[—(1—g) (k '+ k'+ q'+ q '+4((4') —2(k.q+ k '.
q )+p'(2 —g)] I .

1 (&).k (2).k (3),
f~ k +p k'+(M q +p

In this expression o" and z" indicate expectation values.
The contribution of the pion production process to t4N, indicated in Fig. 1(b), is composed of three terms, namely, the

seagull, single delta, and double delta. The first of them results in the following value for the amplitude:

t(bs) (2m)4 g
2m

r~()).~(2)~(3).~(4)rll ~i (4).~ ~(4).~» ~(l).~(3)~(2).~(4)~(1 ~)~(4) ~(4) gi]

+~'" r'".r"'r"'[(1—g)o. "'q+o "'k]I+(1==~)+(2: .)+(3=:".) .

The single delta diagram leads to
'3

t(b, b, ) (2m)4
2m

4 1
2 o ko. k'o. q'

9m (Ma —m) k 2++2 k i2+ 2 ~q &2++2

XI —127' F' Xw k k'&&q'+w ' r r 7 ( —k' q'cr k —k q'o'( k'+2k k'c7 .q'
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+««««( — 'q +2k. q
'-'" k ' —k k ' "'q ')

) ~ { )(2k' ' { ~ k k ~ ' { ) k' —k k' ". ')I+« .«««& q ~ . — .q — 0 q

+(l- -')+(2= =~)+(3= =.) . (45)

The double delta contribution is
3 2

t4N
(b,gg), ~,4 g 1 1 (1).~ ~(2).~ i ~(3).~ i0 ko' k g 'q

3(Ma m)—k2+p2 ki2+ 2 qi2+ 2

[ 5 ~(1) ~(2)- - ~(3)i i ..i~ i

(1).~(2)~(3).~(4)i 7 i i ~ i ~(4) 7 i {4) i (4)

~(1).~(3)~(2).~(4)i 7 i i ~i~(4) $ ~i (4) i 7 j i i (4)

~(1).~(4)~{2) ~(3)i~i i ~,~(4), 7 ~i ~, ~(4) i~, 7 ~ ~ (4)

+(I= =")+(2- -')+(3- - ) (46)

2

9(M—

In the evaluation of the four-nucleon amplitude corresponding to the pion rescattering diagram of Fi . I( ) o
neglects both nonlocal terms and those corresponding to 5 functions in coordinate space. As before, the I tt d f;'
tion is indicated by a caret; one obtains

r "=——,'(2m)'m o o q2m k 2+l42 Q 2+ 2
q 2+p2

P

2

X 7"'r' ' a + —p k.Q
9(M2, —m)

( I+P)7—P

+ r (3).r~(4) X r~(() ~ + ~
P

8gg

9(M)), —m )

r

~(&).~(4)~(2). (3) (&). (3)~(2).~(4)+ «««« —« '«« '«

2

9(M, —
22

(3) l I +)MP )Mn)kg cr qX
2f~ 2m 9(Mg —m )

(I+& &
—~-)"+

2f2 2m 9(M~ —m)

X o ' 'QX k o ' 'q X Q +(all nucleon permutations) . (47)

The factor —, which precedes the amplitude has been introduced because every independent diagram is double counted
when one performs all possible permutations of the nucleon indices.

The potential in configuration space is given by

dp~i ~ ~ (i~~~123i4 f ~ ~ ~ ~ Q (27ri fr/r2r3r4J
(2m) (27r)

~ ~ ~ ~t ~l+p4 3, , ip& r& —ip &-r
3 0 & pf—p; je . . . e t4N

(27r)'
(48)

The expressions for t4N already obtained allow one to write

( r '1 r 2r 3r 4 ~

W'
~
r) r2r3r4) —=5 (r 1

—r1) ~ 5 (r 4 —r4) W4B,

(27r) dk dk dq dq ~ ~, , ((k ~ r& —k ' r2 —q
'. r3+ q ~ r4)

(2m) (27r) (27r) (27r) (27r)
(50)
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The function W41) is the four-body potential. It is
made up of various terms, representing the partial contri-
butions from pion-pion scattering, seagull, single delta,
double delta, and pion-nucleon rescattering. It is given by

8'4g ——8'4g + 8'48 + 8'4g + 8'4g + 8'48 .(a) (b, S) (b, h) (b, 4A) (c) (51)

The explicit form of the potential contains the Yukawa
function U, defined as

p (2ir) k 2+» pr
This function is not regular at the origin. Its regulariza-
tion can be achieved by means of form factors and hard

cores. The former correspond to cutoffs in momentum
space, whereas the latter are cutoffs in configuration
space. These procedures are not mutually exclusive, since
they are motivated by different physical causes. In this
work the Yukawa function is assumed to be somehow reg-
ularized. However, one does not choose a specific method
of regularization because applications of the potential are
not being considered here.

The form of the functions 8'4B becomes simpler when
one uses the dimensionless variables x;:—p r; and
x,j.= x; —x~. These definitions result in the following ex-
pressions for the partial contributions to the four-body
potential.

A. Intermediate pion-pion scattering

(a)8'4g ———1

4m

3

7(y(1).V ~ (2). V ~ (3).V ~ (4). V )
2m 2f

~~ i ~(1).~(2)~(3).~(4) ~(1). (3)~(2). (4) ~() ).~(4)~(2).~(3)
)~ ( —( j. —g, ) ('T 'V V ''T ~'T ''T 'T "T ~ V ''T 'T 'T

X [U(x )4)U(x,4) U(x34)+(1= =-")+(2= =')+(3= =')]

+2[(r(1).r ( )~( ).r( )) (V .V + V .V +1 P)+( (1). (3) (2). (4))
2 5

X(V 1 73+ V2 V4+ 1 ——,g)+(r "'~' 'r ' '7' ')(V'1 V4+ V2 V'3+1 ——,g)]

x1 —x U x2 —x U x3 —x U x4 —x
4m (53)

where V'; acts on x;.

B. Intermediate pion production

g
2pp1

(b,S)S'48

The seagull term is
r 3

1

4m.

'4

1 2 3 4p I[(1—g)(o "'V cr ' 'V' (7' 'V' cr ' 'V )

(I). (2)~(3). (4) (1). (3) (2) (4) ~(1) ~(4)~(2) ~(3))]X(7 7 7 '1 +7 '7 7 1 +7

+(y(1).V ~ (2). V ~ (3).q )[(~ (1).r~(2)r~(3). r~(4))~~(4). V

(1). (3) (2). (4) (4)~'L& 7 T '7 0 Vp

+(~(1).~(4)~(2).~(3)) ~(4)
V 13

X U(x14)U(x24)U(x24)+(1: =4)+(2: =".)+ (3::4). (54)

It is worth noting that the terms proportional to (1—g) in Eqs. (53) and (54) have opposite signs and cancel when both
contributions are added together. This cancellation has already been obtained in Ref. 6 and is due to chiral symmetry, as
discussed in Sec. IV.

The single delta term is
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3 3

g YQYlhga
9( ~(() V~ ~(2) V~ ~(3) V~

)P CT
'

) 0 20'
2m 9m&(M~ —m )

X I12(r "'r "'Xr "') ( V).V2X V'3)

+(7'" 7' '7' '7 ' ')[V V o ' 'V, + V, .V o. ' ' V —2V, .V o ' 'V ]

+(7 "'7'' 'r' '7 ' ')[V V o'' 'V —2V V o ' 'V + V .V o'' 'V ]

+(7 "'7 ' 'r { '7. ' ')[ —2V2 V3o '4'V(+ V) V3cr
' 'V2+ V).V2a ' 'V3])

X U(x14)U(x24) U(x34)+(1= =".)+(2=:".)+ (3::".) .

The double delta term is

tb, hh)8'48
1

4n.

3 3 2
g ga 1i'64

9( ~(1) V ~(2) V~ ~(3) V~
)23(Mg —m)

X I
—", (r""'r"'X r""') ( V, V, X V, )

+(&(1).&(2)&(3).&(4))[ 7 V, V {4).V + 7
V .V (4) V 2V V {4)

+(&~(1).& (3)& (2).& (4))[ 7
V .V (4).V 2V V -+(4)

V
7

V V (4)
2 9

+(r"'r"'r'". "')[ 2V, V, "'"V, +—7V, .V
-") V -'V V "{4).V ]I9 & 3~ 2 9 1 2 33

X U(x)4)U(x24)U(x34)+(1: =".)+(2-. =".)+(3:=~) . (56)

C. Intermediate pion-nucleon scattering

r 3 t

]~4S= ——
2 4m

j2O 34)
9(~{"V ~"'V )

X ' & (~) & ~4)
Oo og+, 9 M P(V23 —V34+V12'V23)

2 '2
—P~ ( V12'V23V23 V34)9 Ma —m

2
-(2). (1) (4) . (2).+ [(7 rXr )(.V23 V34(T V12X V23)2f2 2m 9 Mg —m

+( & X )(V 'V (7' V XV )]
'2

2gg(1+gs. —ss.„)
(

(1).~(4) (2).~(3) ~(1).~(3) (2).~(4))
2m 9(M)), —m)

22
+ [(r r X r ) ( V12X V23)+(7 T X r ) ( V23X V34)]9M' —m

8 2

+ P. —
9(Mg —m )

X((T 'V'12X V23(T 'V23X V34) U(x12)U(x23)U(x34)+(all nucleon permutations) . (57)

The final form for the potential derived in this work is
that shown in Eq. (51), where the partial contributions are
those given by Eqs. (53)—(57). Here, as in the case of
three-body forces, each term of the potential is written as
the product of four kinds of terms, namely a strength pa-

rameter with dimension of energy, an isospin operator,
and a spin operator coupled to derivatives, acting on Yu-
kawa functions. There would be, of course, other ways of
writing the potential. For instance, the explicit evaluation
of the derivatives of the functions U would produce a re-
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3
1

C(a) =~(b,s) = 4~
gp
2m

4

p =0 0779 MeV
2f„

suit in terms of the functions Uo, Ut, and U2 used in
Ref. 5. The main advantage of the form adopted above is
that the expressions tend to be more compact than the al-
ternative ones.

Actual calculations require the knowledge of the vari-
ous parameters entering Eqs. (53)—(57). In their numeri-
cal evaluation one adopts the following values for the "ex-
perimental" masses and coupling constants: p =139.57
MeV, mp ——770 MeV, m =938.28 MeV, M~ ——1220 MeV
(Ref. 9), g =13.39, gq ——1.84 p ' (Ref. 9), f =93 MeV
(Ref. 20), p~ —p„=3.7, yo ——6.0, and y~ ——2.0 p '. The
value of o has been derived from the relation
yo=m~/ 2f, whereas y~ is linked to the yNb, form

factor C by y~ ——Cyo. The value of C can be extracted
from electroproduction, and here one adopts C=0.34

p '.2' The sigma parameters are a~=1.05 p
' (Ref. 20)

and P~= —0.80' (Ref. 9). The symmetry SU(4) yields
C ~~= —,'g/2m. The value of g is compatible with

zero." Finally, it is worth pointing out that the poten-
tial does not depend on Z, A, , and g, as the contributions
of the 6 are dominated by the pole terms.

These "experimental" parameters produce the following
values for the strength constants of the various partial
contributions,

C(e,ha —h,a) =
3 2

gp
2m 9(M~ —m)

(I+a,—s.)
X 2 + P2f 2m 9(Mg —m)

=0.1225 MeV,

1
C(c,ph —ph) =

4m.
gp 1 ( I +Pp Pn)—
2m

i 2f 2m

2
2gg+

9(Mg —m )
p

J

=0.0410 MeV .

The meaning of these results is discussed in the next
section. Before doing this, however, it is useful to com-
pare them with those of other works. The results of
McManus and Riska correspond to keeping only C(, )

and C(bs) and neglecting all the other strength parame-
ters. The results of Blatt and McKellar, on the other
hand, are formally obtained by making

(1/f )=)'~=C ~~=&o=P =o

1
C(b, h) =

4m

3
gP
2fPl

3 4
p =0.0111 MeV,

9m&(M~ —m )

in the preceding expressions.

IV. CONCLUSIONS

3
1

C(s,~~) =
4m

3 T 2 2

C(c,a—a) = p =0.0769 MeV,
2m p

C(e, a—ha) =
3 2

gP
4m. 2m p2

8gg
P p7

9(Mg —m)

=0.1677 MeV,

C(c,ha —ha) =
l2

8g
2 Pp—

9(Mg —m )

=0.3661 MeV,

1
C(,a—pa) =

4m

3 2 (I+a —v )

p2 2f 2m

+
9(Mg —m) p

=0.0561 MeV,

2 CgI' ' " 6 00230M V
3(Mg —m)

The derivation of the pion-exchange four-body poten-
tial presented in this work is based on the assumption that
the nucleon momenta are comparable to the pion mass.
The spin and isospin structures of the potential are some-
what complex and a precise assessment of the relative im-
portance of its various contributions can only be done in
specific applications. Nevertheless, several semiquantita-
tive conclusions can be drawn by inspecting the strength
parameters already displayed.

First, one notes that the seagull term (b,S) dominates
the contribution of the intermediate pion-production am-
plitude, relative to the single delta (b, b, ) and double delta
(b, b, b. ) terms. This result is the direct consequence of
chiral and gauge symmetries and hence is similar to the
case of the pion-rho-exchange three-body force, where it
has been argued that a seagull diagram could be ten times
more important than that of the delta. s

The contributions from the intermediate pion-pion
scattering (a) and seagull in pion production (b,S) have
the same strength and cancel partially when they are add-
ed together, as has been shown in the work of McManus
and Riska. This behavior can be ascribed to the sym-
metries and is analogous to that observed on the exchange
current contribution to the elastic pion-deuteron scatter-
ing. '4

The strength parameters associated with the intermedi-
ate pion-nucleon rescattering are larger than those arising
from pion-pion scattering and pion production. The larg-
est term is due to p waves in the isospin even amplitude
and comes from the diagrams describing the delta pole
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Cp ———

gP
2'

gp
27?l

2

p =0.92 MeV,

Sgg
p 4

9(Mg —m)

= —2.0I MeV,

4m

gp, l (I+a,—V.)

2m 2f 2m

4
22

9(Mg —m) p

= —0.67 MeV .

These values are typically one order of magnitude greater
than those of the four body force. The three-body param-
eters are, in turn, one .order of magnitude smaller than
that of the one pion exchange nucleon-nucleon potential,
which is given by

and sigma "exchange" in Fig. 2.
The actual relevance of four-nucleon potentials for

physical processes can only be assessed in realistic calcula-
tions. However, the present unavailability of this kind of
results suggests that the relative importance of four, three,
and two nucleon potentials could be roughly estimated by
comparing their strengths. This comparison can be per-
formed provided one bears in mind that it is supposed to
yield only very crude indications about the roles of the
various potentials, since their space, spin, and isospin
structures are not considered.

The three-body force derived in Ref. 5 is characterized
by the following parameters:

'2

1
CopEp

4m

2

p=11.02 MeV .2'
The comparison among these various strength parame-

ters shed some light on the hierarchy of many body forces
due to pion exchange. These forces correspond, in gen-
eral, to a succession of vertices, describing interactions,
and pion propagators. The latter are represented, in con-
figuration space, by a factor

U(x)
1
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for each pion, where U(x) is a Yukawa function. The
vertices, on the other hand, produce the remaining factors
of the strength parameters.

In general, the strength of a many body potential
should depend on the number of its vertices and propaga-
tors. However, inspection of the strength parameters of
two-, three-, and four-body potentials allows one to con-
clude that the contributions of the vertices are roughly in-
dependent of their number, provided that the pion mass is
adopted as a unit for the momenta. This means that the
propagation of pions is the dominant factor in determin-
ing the strength of the potential. This influence is felt
both through the radial variation of the Yukawa function
and the factors (I/4m. ). The various powers of the latter
determine the different orders of magnitude of the
strength parameters of two-, three-, and four-body poten-
tials.
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