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Alpha stripping and pickup ta even Ge nuclei
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{Received 8 November 1984)

Coexistence wave functions for even Ge nuclei, previously derived from fits to two-neutron
transfer data, are used to calculate cross section ratios for " Zn( Li,d) Ge and "+ Se(d, Li)"Ge.

I. INTRODUCTION

The coefficients aq and 13q were deduced in Ref. 10 from
the expressions

Ag
x~(R;r) =

13~

R +Kg (1+Zg )(R + 1)

r+K~ ( T—~ +P~ Z~ )(R + 1)

r IC~ ( T~ +——P~ Z~ )(R + 1)
(2)

1+ICg (1+Zg )(R + 1)

where KA, TA, PA, ZA are all obtainable from experi-
mental quantities, as described in Ref. 10, and R is re-
stricted to being between R =0.75 and R =1.33. We use
a semicolon in the expression xz(R;r) to indicate that the
parameters R and r are not independent —they are related
by the expression r =R +K~(R + 1) .

Figure 1 gives a plot of a~ deduced in Ref. 10. These
squares of wave-function amplitudes are given in terms of
one parameter, R, and fits to two-neutron transfer data
are identical for all R values in the range indicated in Fig.
1. As a further test of the wave functions, the proton oc-

Two-neutron transfer cross section ratios' for an ex-
cited 0+ level and the ground state of the even-even Ge
nuclei have been used' to determine wave-function ampli-
tudes in a standard two-state model:

+s, (Ge) =a~ yg (Ge)+P„y, (Ge),

Vo+(Ge) =P~yz(Ge) —any,"(Ge) .

cupation numbers" in germanium were fitted' for any
value of R between R =0.88 and 1.26. We therefore be-
lieve that these wave functions give an accurate quantita-
tive account of the first 0+ state and ground state in even
isotopes of germanium. In this paper we use these wave
functions to calculate the "+ Se(d, Li)"Ge and

Zn( Li, d) "Ge 02+/g. s. cross-section ratios.

II. MODEL AND ANALYSIS

Cross sections for the reactions + Se(d, Li)"Ge were
measured by Van den Berg et al. ' We define the ratios

o.("+ Se(d, Li)"Ge(02+))/oDwBA(02+)

o( + Se(d, Li)"Ge(g.s. ))/oDwB~(g. s. )

The distorted-wave Born approximation (DWBA) cross
sections, oDwB~, are identical except for Q-value and
binding-energy effects. The experimental cross sections
are divided by o.Dw&A simply to remove these kinematic
effects from the data.

These ratios for + Se—+ Ge are plotted in Fig. 2, and
given in Table I, in which we note a rapid dependence on
A. Clearly our ratio is just the ratio of alpha-particle
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FIG. 2. Experimental 02+/g. s. cross-section ratios in { Li,d)
and (d, Li) leading to "Ge.
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TABLE I. Values of alpha-transfer cross section ratios be-
tween the excited state listed and the ground state of even Ge
isotopes.

f (u,R;r)= —g
A =70 ~A

2
1 —xz(R;r)u
x~(R;r)+u

—dLi(A) .

68
70
72
74
76
78

dLi(a)+a '

0.265+0.03
0.318+0.03
(0.0095%0,0095 )'
(0.0189+0.0189)
(0.015+0.015)

Lid(a )+a'„

0.047+0.008
0.046+0.012
0.085+0.021
0.707+0.07

E„(0+)
(MeV)

3.47
1.216
0.6915
1.486
1.911
1.547

(6a)

where we have divided by the number of data points fitted
minus the number of degrees of freedom, and b, z are
measures of uncertainties in the "+ Se(d, Li)"Ge 02 /g. s.
cross-section ratios. For any "reasonable" fit we seek

f ( u, R;r) to be less than or of order unity. For
Zn( Li,d)"Ge, Fig. 3 shows that with

'Reference 13.
Reference 14.

'Results in parentheses are given only as limits in Ref. 13.
(g,",. (»)+~

~ q,"(Ge) )

(q, .. (Zn)+o.
~ q "(«))

spectroscopic factors from the physical Se ground states
to the physical 0+ excited and ground states in Ge.

Similar results exist' for " Zn( Li, d)"Ge and are also
plotted in Fig. 2. Again, the 3 dependence is rapid. In a
manner similar to that for pickup, we have defined a ratio

o( Zn( Li, d) "Ge(02+))/o.DwB&(02 )
Lid(A) = (3)

o( Zn( Li, d)"Ge(g. s. ))/oDwBA(g. s. )

and independent of A, we have

Lid(A) =
2

1 —x~(R;r)U
x~(R;r)+U

which then leads to a X /N given by

2
1 —xz(R;r)U

f'(u, R;r)= —g, z
.

il 6s Q~ xg(R «r)+U
—Lid(A)

'2

To calculate these ratios with our Ge wave functions,
we require the alpha-particle overlaps (actually only their
ratio) between the Se physical ground states and our Ge
basis states, as depicted in Fig. 3. From the figure, it is
obvious that

1 —xg (R;r)ug
dLi(A) =

xz(R;r)+u~

where x~(R;r) are given in Eq. (2) and

(yg. ,+. '(Se)
~ q,"(Ge)+~)

( 3+4(S )
~

A(G ) )

If we assume uz are functions of A, then Eq. (4) can be
inverted, and the experimental ratios determine uq as
functions of R. But first we investigate the possibility
that u~ is independent of A, in which case

2
1 —x„(R;r)u

dLi(A) = (&)x„R;r +u

We therefore have two parameters, R and u, for which we
try to fit four experimental results, [dLi(A ),A
=70,72,74,76]. To find the best fit we attempt to mini-
mize X /N denoted by f ( u, R; r) which is given by

g.s.
A++ s

FICs. 3. Definition of the overlaps connecting the physical Zn
and Se ground states with the Ge basis states.

TABLE II. Results of the "+ Se(d, Li)"Ge calculations. An
(I) indicates the number was included in the minimization of
g /X, an (0) indicates the number was not included.

70 72

I
I
I
I
0
I
I
0
I
0
0

I
I
I
0
I
0
I
0
I
0

I
I
0
I
I
0
I
I
0
0
I

I
0
I
I
I
0
0
0
I
I

19.7
20.3
29.6
18.0
0.84

15.1
6.8
1.0

35.2
0.69
0.25

(6b)

where Az is the uncertainty in Lid(A). Hence, both reac-
tions yield the same form for X /X and so, mathematical-
ly, both can be investigated simultaneously.

The method used in minimizing f(u, R;r) is to calcu-
late f for a range of values of R [by using xz(R;r) and
search on f for the location of its minimum and thereby
construct the function u;„=u;„(R)]. As we begin with
no restriction on u, it might appear that this search would
need to cover the entire range ( —oo, oo ) to make sure that
the absolute minimum value of f is found. This, of
course, is not desirable, but in fact it turns out not to be
necessary. From Eq. (2) and the Kz equation, it is clear
that
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xq(R;r) =

and using this in Eq. (6) gives the relation

f (u,R;r)=f ——,—;r—1

u'R'

So to search over f (u,R;r) when u & —1, we need only

search on f (u, 1/R; r—) for 0& u & 1, and to search over

f (u,R;r) when u ) 1, we need only search on
f(u, 1/R; —r) for —1 & u & 0. Therefore to find the ab-
solute minimum value off(u, R;r) over the entire interval
( —00, oo ) we need only search over f ( u, R;r) for
—1 & u & 1 and f ( u, 1/R; r—) for —1 & u & 1.

When this search is done for various values of R, a re-
markable observation emerges. The absolute minimum
value of f(u, R;r) appears to be independent of R. The
proof of the result is as follows: From Eq. (6a) we calcu-
late Bf/Bu and Bf/BR and obtain

df —4~
BQ n

2
1 —xg(R;r)u
x~(R;r)+u

[1+x„'(R;r)] [1—x, (R;r)u]—dLi(A)-
[xg (R;r)+u]

and

(u +1)g ~

n

2
1 —x~(R;r)u
x~(R;r)+ u

[1—xz (R;r)u]—dLi(A)
hz[xz(R;r)+u]

Bx~ (R;r)
BR

(8)

But using Eq. (2) and other results in Ref. 10 one can easi-
ly show that

This equation clearly demonstrates that at a minimum
point off with respect to u, at which

Bxz 1+x&(R;r)
BR 2r(R +1) (9) (u;„,R;r) =0

BQ

2r(R+1) +(1+u ) =0.8 2 df (10)

Putting Eq. (9) into Eq. (8) and then comparing it to Eq.
(7) yields the result

by definition, we must also have

a
()R

(um;„,R;r) =0;

and therefore

fmin =f( muin& R&r)
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FIG. 6. Experimental and calculated 02+/g. s. ratios for
Zn( Li, d) Ge.

is independent of R. '

If we couple the preceding result with the previous ob-
servation about f [—(1/u), 1/R; r] then —the search for
u;„ is quite straightforward. Of course, even though the
value of f;„is independent of R, the value of u at f;„
does depend on R. When this search is done using all
four data points for pickup (note that Ge is excluded, as
its wave function is not clearly determined in Ref. 10) we
find f;„=19.7—a result which clearly demonstrates that
fitting all four points is not possible for any values of R
and u. (The wave functions for ' ' Ge were calculat-
ed using the techniques of Ref. 10 and the 0+ excited
states at E7o ——1.216, E72 ——0.6915, E74 ——1.486, and
E76 ——1.911 MeV. ) We next attempt to determine how
many of these four points can be fitted. For each possible
combination of two, three, and four data points, we have
calculated f;„, and these are summarized in Table II.
This table reveals an interesting result. No 3-independent
value of u fits the data if Se is included. However, if we
exclude it, the remaining three points can be fitted quite
well, giving a minimum X /N of 0.84. This would imply
that the overlap of the Se physical ground state with our

Ge basis states is different from that for the other even
Se nuclei. But, for ' ' Se, the wave functions derived'
for germanium g.s. and 0+ fit the ' ' Se(d, Li) 02+/g. s.
cross-section ratios, quite well, assuming o; overlap ratios
independent of A. The value of u;„(using the ' 6Ge
data) is plotted as a function of R in Fig. 4, and the calcu-

lated values of dLi(A) are compared with the experimen-
tal results in Fig. 5.

The agreement is excellent for "' Ge, it fits the
trend for Ge, but the calculated ratio for Ge is too
large by more than a factor of 2.

We repeat the analysis of the previous section but for
Zn( Li, d)"Ge. Here the excited state used in Ge is

at 3.47 MeV, as it is the state for which Zn( Li,d) data ex-
ist. We must leave open the possibility that the calcula-
tion involving Ge is in question. We present it here un-
til data for the Zn( Li, d) Ge reaction to the 1.754-MeV
state become available. For ' ' Ge, we used the same
wave functions as in the Se(d, Li) analysis. As in the"+ Se(d, Li)"Ge case, all four data points cannot be fit-
ted. For various combinations of three points, the best fit
occurs if Zn is removed from the analysis. The U;„(R)
that minimized X /N here is plotted in Fig. 4, and the cal-
culated values of Lid(A) along with experimental results
are shown in Fig. 6.

Agreement is best for ' ' Ge, but the calculated
value for Ge is almost twice as large as experiment. The
fact that the reaction Zn( Li, d) Ge cannot be fitted
along with any other data point suggests that the a over-
lap amplitudes connecting Zn and our Ge basis states
are different from those for the other even Zn nuclei.

III. CONCLUSIONS

Using Ge two-state wave functions derived from (t,p)
and (p,t) data on germanium nuclei and making simple as-
sumptions about the physical Se and Zn ground states, we
can satisfactorily fit the 02+/g. s. cross-section data for the
reactions + Se(d, Li) Ge (2=72, 74, 76) and the trend
in Zn( Li, d)"Ge (A =68,70, 72). Any attempts to in-
clude Se(d, Li) Ge or Zn( Li, d) Ge in these fits
prove unsatisfactory —implying that the ground states of

Se and Zn (both having N =40) are more complicated.
We emphasize that these fits are completely independent
of R, and so any wave function in Fig. 1 for germanium
will do. The next step in the analysis would be to use (p, t)
and (t,p) data on the selenium and zinc isotopes to derive
two-state wave functions for them and see if they can be
made consistent with the Zn( Li,d) and Se(d,6Li) data, in-
cluding the reactions Se(d, Li) and Zn( Li,d). The data
necessary for such a calculation do not exist at present.

Finally, we note that even though our calculated values
for pickup are small for all three of ' ' Ge, they reach
a minimum at Ge. (The amplitude passes through zero
near there. ) So we believe that a careful a pickup mea-
surement should reveal a larger cross-section ratio in Ge
and Ge than in Ge.

We acknowledge financial support from the National
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