Alpha stripping and pickup to even Ge nuclei

M. Carchidi and H. T. Fortune

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 8 November 1984)

Coexistence wave functions for even Ge nuclei, previously derived from fits to two-neutron transfer data, are used to calculate cross section ratios for $^{A-4}Zn(^{6}Li,d)^{A}Ge$ and $^{A+4}Se(d,^{6}Li)^{A}Ge$.

I. INTRODUCTION

Two-neutron transfer cross section ratios¹⁻⁹ for an excited 0^+ level and the ground state of the even-even Ge nuclei have been used¹⁰ to determine wave-function amplitudes in a standard two-state model:

$$\Psi_{g.s.}^{A}(Ge) = \alpha_{A} \varphi_{g}^{A}(Ge) + \beta_{A} \varphi_{e}^{A}(Ge) ,$$

$$\Psi_{02}^{A}(Ge) = \beta_{A} \varphi_{g}^{A}(Ge) - \alpha_{A} \varphi_{e}^{A}(Ge) .$$
(1)

The coefficients α_A and β_A were deduced in Ref. 10 from the expressions

$$x_{A}(R;r) = \frac{\alpha_{A}}{\beta_{A}} = \frac{R + K_{A}(1 + Z_{A})(R + 1)}{-r + K_{A}(T_{A} + P_{A}Z_{A})(R + 1)}$$
$$= \frac{-r - K_{A}(T_{A} + P_{A}Z_{A})(R + 1)}{1 + K_{A}(1 + Z_{A})(R + 1)}, \quad (2)$$

where K_A , T_A , P_A , Z_A are all obtainable from experimental quantities, as described in Ref. 10, and R is restricted to being between R = 0.75 and R = 1.33. We use a semicolon in the expression $x_A(R;r)$ to indicate that the parameters R and r are not independent—they are related by the expression $r^2 = R + K_A (R + 1)^2$. Figure 1 gives a plot of α_A^2 deduced in Ref. 10. These

squares of wave-function amplitudes are given in terms of one parameter, R, and fits to two-neutron transfer data are identical for all R values in the range indicated in Fig. 1. As a further test of the wave functions, the proton oc-

FIG. 1. α_A^2 vs R from Ref. 10.

cupation numbers¹¹ in germanium were fitted¹² for any value of R between R = 0.88 and 1.26. We therefore believe that these wave functions give an accurate quantitative account of the first 0^+ state and ground state in even isotopes of germanium. In this paper we use these wave functions to calculate the A^{+4} Se(d, ⁶Li)^AGe and $^{A-4}$ Zn(⁶Li,d)^AGe 0⁺₂/g.s. cross-section ratios.

II. MODEL AND ANALYSIS

Cross sections for the reactions ${}^{A+4}Se(d, {}^{6}Li){}^{A}Ge$ were measured by Van den Berg *et al.*¹³ We define the ratios

dLi(A) =
$$\frac{\sigma(^{A+4}\operatorname{Se}(d, {}^{6}\operatorname{Li})^{A}\operatorname{Ge}(0^{+}_{2}))/\sigma_{\mathrm{DWBA}}(0^{+}_{2})}{\sigma(^{A+4}\operatorname{Se}(d, {}^{6}\operatorname{Li})^{A}\operatorname{Ge}(g.s.))/\sigma_{\mathrm{DWBA}}(g.s.)} .$$

The distorted-wave Born approximation (DWBA) cross sections, σ_{DWBA} , are identical except for Q-value and binding-energy effects. The experimental cross sections are divided by σ_{DWBA} simply to remove these kinematic effects from the data.

These ratios for ${}^{A+4}$ Se $\rightarrow {}^{A}$ Ge are plotted in Fig. 2, and given in Table I, in which we note a rapid dependence on A. Clearly our ratio is just the ratio of alpha-particle

FIG. 2. Experimental 0^+_2 /g.s. cross-section ratios in (⁶Li,d) and $(d, {}^{6}Li)$ leading to ${}^{4}Ge$.

31

853

©1985 The American Physical Society

TABLE I. Values of alpha-transfer cross section ratios between the excited state listed and the ground state of even Ge isotopes.

A	$dLi(A)\pm\Delta_A^a$	$\operatorname{Lid}(A) \pm {\Delta'_A}^b$	$\frac{E_x (0^+)}{(\text{MeV})}$
68		0.047 ± 0.008	3.47
70	0.265 ± 0.03	0.046 ± 0.012	1.216
72	0.318 ± 0.03	0.085 ± 0.021	0.6915
74	$(0.0095 \pm 0.0095)^{\circ}$	0.707 ± 0.07	1.486
76	(0.0189 ± 0.0189)		1.911
78	(0.015±0.015)		1.547

^aReference 13.

^bReference 14.

^cResults in parentheses are given only as limits in Ref. 13.

spectroscopic factors from the physical Se ground states to the physical 0^+ excited and ground states in Ge.

Similar results exist¹⁴ for $^{A-4}Zn(^{6}Li,d)^{A}Ge$ and are also plotted in Fig. 2. Again, the A dependence is rapid. In a manner similar to that for pickup, we have defined a ratio

$$Lid(A) = \frac{\sigma(^{A-4}Zn(^{6}Li,d)^{A}Ge(0_{2}^{+}))/\sigma_{DWBA}(0_{2}^{+})}{\sigma(^{A-4}Zn(^{6}Li,d)^{A}Ge(g.s.))/\sigma_{DWBA}(g.s.)} .$$
 (3)

To calculate these ratios with our Ge wave functions, we require the alpha-particle overlaps (actually only their ratio) between the Se physical ground states and our Ge basis states, as depicted in Fig. 3. From the figure, it is obvious that

$$dLi(A) = \left[\frac{1 - x_A(R;r)u_A}{x_A(R;r) + u_A}\right]^2, \qquad (4)$$

where $x_A(R;r)$ are given in Eq. (2) and

$$u_{A} = \frac{\langle \varphi_{g.s.}^{A,+4}(\mathrm{Se}) | \varphi_{e}^{A}(\mathrm{Ge}) + \alpha \rangle}{\langle \varphi_{g.s.}^{A,+4}(\mathrm{Se}) | \varphi_{g}^{A}(\mathrm{Ge}) + \alpha \rangle} .$$

If we assume u_A are functions of A, then Eq. (4) can be inverted, and the experimental ratios determine u_A as functions of R. But first we investigate the possibility that u_A is independent of A, in which case

$$dLi(A) = \left[\frac{1 - x_A(R;r)u}{x_A(R;r) + u}\right]^2.$$
(5)

We therefore have two parameters, R and u, for which we try to fit four experimental results, [dLi(A), A = 70, 72, 74, 76]. To find the best fit we attempt to minimize χ^2/N denoted by f(u, R; r) which is given by

FIG. 3. Definition of the overlaps connecting the physical Zn and Se ground states with the Ge basis states.

$$f(u,R;r) = \frac{1}{n} \sum_{A=70}^{76} \frac{1}{\Delta_A^2} \left\{ \left[\frac{1 - x_A(R;r)u}{x_A(R;r) + u} \right]^2 - d\mathrm{Li}(A) \right\}^2,$$
(6a)

where we have divided by the number of data points fitted minus the number of degrees of freedom, and Δ_A are measures of uncertainties in the ${}^{A+4}Se(d, {}^{6}Li){}^{A}Ge 0{}^{+}_{2}/g.s.$ cross-section ratios. For any "reasonable" fit we seek f(u, R; r) to be less than or of order unity. For ${}^{A-4}Zn({}^{6}Li, d){}^{A}Ge$, Fig. 3 shows that with

$$v_{A} = \frac{\langle \varphi_{g.s.}^{A-4}(Zn) + \alpha | \varphi_{e}^{A}(Ge) \rangle}{\langle \varphi_{g.s.}^{A-4}(Zn) + \alpha | \varphi_{e}^{A}(Ge) \rangle}$$

and independent of A, we have

$$\operatorname{Lid}(A) = \left[\frac{1 - x_A(R;r)v}{x_A(R;r) + v}\right]^2,$$

which then leads to a χ^2/N given by

$$f'(v,R;r) = \frac{1}{n} \sum_{n=68}^{74} \frac{1}{{\Delta'_A}^2} \left\{ \left[\frac{1 - x_A(R;r)v}{x_A(R;r) + v} \right]^2 - \text{Lid}(A) \right\}^2,$$
(6b)

where Δ'_A is the uncertainty in Lid(A). Hence, both reactions yield the same form for χ^2/N and so, mathematically, both can be investigated simultaneously.

The method used in minimizing f(u,R;r) is to calculate f for a range of values of R [by using $x_A(R;r)$ and search on f for the location of its minimum and thereby construct the function $u_{\min} = u_{\min}(R)$]. As we begin with no restriction on u, it might appear that this search would need to cover the entire range $(-\infty, \infty)$ to make sure that the absolute minimum value of f is found. This, of course, is not desirable, but in fact it turns out not to be necessary. From Eq. (2) and the K_A equation, it is clear that

TABLE II. Results of the ${}^{A+4}$ Se(d, 6 Li) A Ge calculations. An (1) indicates the number was included in the minimization of χ^2/N , an (0) indicates the number was not included.

	dLi (A)			
70	72	74	76	χ^2/N
I	Ι	I	I	19.7
Ι	Ι	Ι	0	20.3
Ι	Ι	0	I^{-}	29.6
I	0	I	Ι	18.0
0	I	Ι	Ι	0.84
I	I	0	0	15.1
Ι	0	Ι	0	6.8
0	Ι	Ι	0	1.0
I	0	0	Ι	35.2
0	I	0	I	0.69
0	0	Ι	I	0.25

$$x_A(R;r) = \frac{-1}{x_A\left(\frac{1}{R};-r\right)},$$

and using this in Eq. (6) gives the relation

$$f(u,R;r)=f\left[-\frac{1}{u},\frac{1}{R};-r\right].$$

So to search over f(u, R; r) when $u \leq -1$, we need only

search on f(u, 1/R; -r) for $0 \le u \le 1$, and to search over f(u, R; r) when $u \ge 1$, we need only search on f(u, 1/R; -r) for $-1 \le u \le 0$. Therefore to find the absolute minimum value of f(u, R; r) over the entire interval $(-\infty, \infty)$ we need only search over f(u, R; r) for $-1 \le u \le 1$ and f(u, 1/R; -r) for $-1 \le u \le 1$.

When this search is done for various values of R, a remarkable observation emerges. The absolute minimum value of f(u, R; r) appears to be independent of R. The proof of the result is as follows: From Eq. (6a) we calculate $\partial f/\partial u$ and $\partial f/\partial R$ and obtain

$$\frac{\partial f}{\partial u} = \frac{-4}{n} \sum_{A} \left\{ \left[\frac{1 - x_A(R;r)u}{x_A(R;r) + u} \right]^2 - dLi(A) \right\} \frac{\left[1 + x_A^2(R;r) \right]}{\left[x_A(R;r) + u \right]^3} \frac{\left[1 - x_A(R;r)u \right]}{\Delta_A^2}$$
(7)

and

6.0

5.0

4.C

3.0

2,0

1.0

0--0.2 0.8

$$\frac{\partial f}{\partial R} = \frac{-4}{n} (u^2 + 1) \sum_{A} \left\{ \left[\frac{1 - x_A(R;r)u}{x_A(R;r) + u} \right]^2 - dLi(A) \right\} \frac{[1 - x_A(R;r)u]}{\Delta_A^2 [x_A(R;r) + u]^3} \left[\frac{\partial x_A(R;r)}{\partial R} \right].$$
(8)

But using Eq. (2) and other results in Ref. 10 one can easily show that

$$-\frac{\partial x_A}{\partial R} = \frac{1 + x_A^2(R;r)}{2r(R+1)} .$$
(9)

Putting Eq. (9) into Eq. (8) and then comparing it to Eq. (7) yields the result

$$2r(R+1)\frac{\partial f}{\partial R} + (1+u^2)\frac{\partial f}{\partial u} = 0.$$
 (10)

umin

Vmin

1.3

1.2

This equation clearly demonstrates that at a minimum point of f with respect to u, at which

$$\frac{\partial f}{\partial u}(u_{\min},R;r)=0$$

by definition, we must also have

$$\frac{\partial f}{\partial R}(u_{\min},R;r)=0;$$

and therefore

$$f_{\min} = f(u_{\min}, R; r)$$

FIG. 4. Best fit $u_{\min}(A = 72, 74, 76)$ and $v_{\min}(A = 68, 70, 72)$ vs R.

R

1.1

1.0

0.9

FIG. 5. Experimental and calculated 0^+_2 /g.s. ratios for ${}^{A+4}Se(d, {}^{6}Li){}^{A}Ge$.

FIG. 6. Experimental and calculated 0_2^+ /g.s. ratios for ${}^{A-4}$ Zn(6 Li,d) A Ge.

is independent of R.¹⁵

If we couple the preceding result with the previous observation about f[-(1/u), 1/R; -r] then the search for u_{\min} is quite straightforward. Of course, even though the value of f_{\min} is independent of R, the value of u at f_{\min} does depend on R. When this search is done using all four data points for pickup (note that ⁷⁸Ge is excluded, as its wave function is not clearly determined in Ref. 10) we find $f_{\min} = 19.7$ —a result which clearly demonstrates that fitting all four points is not possible for any values of R and u. (The wave functions for ^{70,72,74,76}Ge were calculated using the techniques of Ref. 10 and the 0^+ excited states at $E_{70} = 1.216$, $E_{72} = 0.6915$, $E_{74} = 1.486$, and $E_{76} = 1.911$ MeV.) We next attempt to determine how many of these four points can be fitted. For each possible combination of two, three, and four data points, we have calculated f_{\min} , and these are summarized in Table II. This table reveals an interesting result. No A-independent value of u fits the data if ⁷⁴Se is included. However, if we exclude it, the remaining three points can be fitted quite well, giving a minimum χ^2/N of 0.84. This would imply that the overlap of the ⁷⁴Se physical ground state with our ⁷⁰Ge basis states is different from that for the other even Se nuclei. But, for ^{76,78,80}Se, the wave functions derived¹⁰ for germanium g.s. and 0^+ fit the 76,78,80 Se(d, 6 Li) $0_2^+/g.s.$ cross-section ratios, quite well, assuming α overlap ratios independent of A. The value of u_{\min} (using the ^{72,74,76}Ge data) is plotted as a function of R in Fig. 4, and the calculated values of dLi(A) are compared with the experimental results in Fig. 5.

The agreement is excellent for 72,74,76 Ge, it fits the trend for 78 Ge, but the calculated ratio for 70 Ge is too large by more than a factor of 2.

We repeat the analysis of the previous section but for $^{A-4}$ Zn(6 Li,d) A Ge. Here the excited state used in 68 Ge is at 3.47 MeV, as it is the state for which Zn(6 Li,d) data exist. We must leave open the possibility that the calculation involving 68 Ge is in question. We present it here until data for the 64 Zn(6 Li,d) 68 Ge reaction to the 1.754-MeV state become available. For 70,72,74 Ge, we used the same wave functions as in the Se(d, 6 Li) analysis. As in the $^{A+4}$ Se(d, 6 Li) 4 Ge case, all four data points cannot be fitted. For various combinations of three points, the best fit occurs if 70 Zn is removed from the analysis. The $v_{\min}(R)$ that minimized χ^2/N here is plotted in Fig. 4, and the calculated values of Lid(A) along with experimental results are shown in Fig. 6.

Agreement is best for 68,70,72 Ge, but the calculated value for 74 Ge is almost twice as large as experiment. The fact that the reaction 70 Zn(6 Li,d)) 74 Ge cannot be fitted along with any other data point suggests that the α overlap amplitudes connecting 70 Zn and our 74 Ge basis states are different from those for the other even Zn nuclei.

III. CONCLUSIONS

Using Ge two-state wave functions derived from (t,p) and (p,t) data on germanium nuclei and making simple assumptions about the physical Se and Zn ground states, we can satisfactorily fit the 0^+_2 /g.s. cross-section data for the reactions $^{A+4}$ Se(d, 6 Li) A Ge (A = 72, 74, 76) and the trend in ${}^{A-4}$ Zn(⁶Li,d)^AGe (A = 68,70,72). Any attempts to include ⁷⁴Se(d, ⁶Li)⁷⁰Ge or ⁷⁰Zn(⁶Li,d)⁷⁴Ge in these fits prove unsatisfactory—implying that the ground states of ⁷⁴Se and ⁷⁰Zn (both having N = 40) are more complicated. We emphasize that these fits are completely independent of R, and so any wave function in Fig. 1 for germanium will do. The next step in the analysis would be to use (p,t) and (t,p) data on the selenium and zinc isotopes to derive two-state wave functions for them and see if they can be made consistent with the Zn(⁶Li,d) and Se(d,⁶Li) data, including the reactions ⁷⁴Se(d,⁶Li) and ⁷⁰Zn(⁶Li,d). The data necessary for such a calculation do not exist at present.

Finally, we note that even though our calculated values for pickup are small for all three of ^{74,76,78}Ge, they reach a minimum at ⁷⁴Ge. (The amplitude passes through zero near there.) So we believe that a careful α pickup measurement should reveal a larger cross-section ratio in ⁷⁶Ge and ⁷⁸Ge than in ⁷⁴Ge.

We acknowledge financial support from the National Science Foundation.

- ¹F. Guilbault et al., Phys. Rev. C 16, 1840 (1977).
- ²G. C. Ball et al., Nucl. Phys. A231, 334 (1974).
- ³A. C. Rester, J. B. Ball, and R. L. Auble, Nucl. Phys. A346, 371 (1980).
- ⁴C. Lebrun *et al.*, Phys. Rev. C 19, 1224 (1979).
- ⁵S. Mordechai, H. T. Fortune, R. Middleton, and G. Stephans, Phys. Rev. C 19, 1733 (1979).
- ⁶S. LaFrance, S. Mordechai, H. T. Fortune, and R. Middleton, Nucl. Phys. A307, 52 (1978).
- ⁷S. Mordechai, H. T. Fortune, R. Middleton, and G. Stephans, Phys. Rev. C 18, 2498 (1979).

- ⁸J. F. Mateja et al., Phys. Rev. C 17, 2047 (1978).
- ⁹F. Guilbault et al., Phys. Rev. C 15, 894 (1977).
- ¹⁰M. Carchidi, H. T. Fortune, G. S. F. Stephans, and L. C. Bland, Phys. Rev. C **30**, 1293 (1984).
- ¹¹G. Rotbard et al., Phys. Rev. C 18, 86 (1978).
- ¹²H. T. Fortune, M. Carchidi, and S. Mordechai, Phys. Lett. **145B**, 4 (1984).
- ¹³A. M. Van den Berg et al., Nucl. Phys. A379, 239 (1982).
- ¹⁴D. Ardouin, D. L. Hanson, and Nelson Stein, Phys. Rev. C 22, 2253 (1980).
- ¹⁵Note that in the allowed range of R, r is never zero.