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Decay of thermally emitted n-p states: A means to measure their lifetime
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The evaporation and subsequent decay of n-p states (especially H —the singlet deuteron} from
compound nuclei is examined theoretically. The energy difference between a proton and neutron ob-
served in coincidence provides information about the time interval between the thermal emission and
the breakup of the n-p state. It thus offers the opportunity for measuring a lifetime of the order of
10 ' seconds, without recourse to the relation At =Pi/I . Thermal emission of both singlet and
triplet deuterons is considered. The subsequent decay through the natural mode and polarization
mode is calculated. Results of Monte Carlo calculations are presented for both coincidence and sin-
gles spectra, and the feasibility of direct lifetime measurement is discussed.

I. INTRODUCTION

In an earlier paper' we considered the process involving
the evaporation and subsequent decay of H* (the singlet
deuteron), and outlined some of the effects that this pro-
cess has on the observable spectra of resulting protons and
neutrons. In this paper we extend the treatment of this
process. The improvements introduced are primarily con-
cerned with the study of the time at which the two-
nucleon decay occurs, and the proper treatment of the
Coulomb force before and after that decay. (In Ref. 1 it
was assumed that the decay occurred far from the com-
pound nucleus. ) The refinements include a theoretical
treatment of the time dependence for the natural decay of
the virtual n-p state, and the calculation of the increased
rate of decay arising from the Coulomb polarization of
the H* by the field of the compound nucleus. An exact
treatment of its classical Coulomb trajectory is employed
to describe the proton following the decay. While most of
the qualitative features discussed in Ref. 1 are preserved,
these refinements considerably affect the quantitative re-
sults.

This work has two goals. First, we present a calcula-
tion against which experimental measurements can be
compared to further establish the existence of the thermal
emission process for unstable particles. Comparison2 of
our previous work with recent data suggests the thermal
emission of He already may have been observed. Our
second goal is to consider an experiment which enables
the measurement of an extremely short time (without us-

ing the time-energy relation b, t =Pi/I )—the time interval
between the thermal emission and breakup of the singlet
deuteron, which is on the order of 10 ' sec. This, we
suggest, can be accoxnplished by the measurement of an
energy shift between the proton and neutron, seen in coin-
cidence at a small separation angle.

In Sec. II we explain why refinements are required for
the accurate calculation of small-angle n-p coincidence
cross sections, even though the less precise method
described in Ref. 1 offers a good approximation in the p-p
( He) case. The models used to calculate decay probabili-
ties and relative momenta spectra for the virtual state of

the deuteron are outlined. We discuss the advantages of
using the Monte Carlo simulation technique for such cal-
culations. We then present the results of such a Monte
Carlo simulation of the decay of evaporated H*, which
allows both natural decay and Coulomb polarization to
occur. From the results of this calculation we estimate
the validity of using the classical trajectory approximation
for the proton after the decay.

In Sec. III we examine the "background" contribution
to the coincidence cross section which arises from in-
dependently evaporated protons and neutrons. In particu-
lar, we explore which compound systems minimize this
contribution. We present the results of Monte Carlo cal-
culations for two different compound systems. We
present calculated neutron-proton coincidence cross sec-
tions, and also singles spectra for protons and neutrons in-
dividually. This calculation indicates that physically in-
teresting effects directly related to the decay time should
be measurable.

As in Refs. 1 and 2, we do not include contributions to
the spectra from fission, direct reactions, or any other
noncompound nuclear process.

II. THE EFFECT OF THE COULOMB FIELD
OF THE COMPOUND NUCLEUS

In Ref. 1 we discussed the contribution to the p-p and
n-p coincidence cross sections, arising from the decay of
He and H*, respectively. We illustrated that discussion

with a calculation assuming the asymptotic decay of the
unstable particle. This assumption is a valid approxima-
tion for the description of the decay of He, but not (as we
stated in Ref. 1) for a quantitative calculation of the n-p
coincidence spectrum. In the latter case the Coulomb
field of the compound nucleus. must be considered. This
field has two effects—first, it accelerates the proton away
from the neutron after the decay, and second, it intro-
duces an additional decay mode and thus facilitates the
dissociation of the virtual state.

Consider the diagrams given in Fig. 1 in the following
explanation of why asymptotic decay is a valid assump-
tion for He, but not H*. Figure 1(a) is the type of ve-
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hv(t)

vo v(t)

locity diagram used in Ref. 1. Here we show the velocity
vector for a proton, assuming the decay occurs where the
field of the compound nucleus is negligible, so that the
dinucleon has already obtained its asymptotic velocity vo.
Figure 1(b) more realistically represents a decay that
occurs where the field of the compound nucleus is impor-
tant. In this case the center of mass of the unstable state
has only obtained a speed U(t) (which is less than the
asymptotic speed Uo) before decay, and, after decay, the
Coulomb field imparts an additional velocity Av(t) to the
proton. Considering the geometry of the orbit, one deter-
rnines the direction of b,v(t) must lie between the direc-
tions of v(t) and v(t)+ —,v„. Thus for —,U„sin8«U(t), we
conclude b,v(t) and v(t) are nearly parallel. This condi-
tion is met by the detector geometry typically used for
small-angle coincidences. Furthermore, for the case of
He decay, where the charge-to-mass ratio of each secon-

dary particle is the same,

v(t) +b,v(t) =- vo .

For this reason the approximate kinematic diagram
shown in Fig. 1(a) provides a good approximation for
small-angle p-p coincidences arising from He decay. In
contrast, Eq. (1) is a poor approximation for H* decay
because the charge-to-mass ratios of the neutron and pro-
ton are so unequal. While it complicates the kinematics,
it is precisely this feature that allows one to extract infor-
mation about Av(t), and hence about the time of the de-
cay. Before the decay of the n-p state, the proton is ac-
celerated and pulls the neutron along. Therefore the coin-
cidence cross section arising from the decay of n-p states
which occur well separated from the compound nucleus
will be symmetric about the line E„=E„.Prompt decays,

(b)

FIG. 1. Velocity diagrams {in the compound nuclear frame)
for secondary protons from the decay of dinucleons. {a) The de-
cay of the dinucleon occurred where the Coulomb field of the
compound nucleus was negligible. {b) The decay of the dinu-
cleon occurred where the field was not negligible, so the proton
obtained an additional velocity Av{t) after the decay.

cot(6) = + —,rk =i,
ka

because

cot ( 5 ) + l

cot(5) i—
The resulting quadratic equation leads to poles at
k& =-2i/r and k2 =i/a The -pole .kl is unphysical, and
we have discarded it when calculating the decay curve.
(Despite the fact that the unphysical pole has a small ef-
fect on the phase shift for small, real momenta, it has a
larger residue, and would have dominated the calculation
of the decay rate, had it been kept. )

The results of Ref. 3 for the physical pole, located at
k2 =i/a, prov-ide the following probability for a free n-p
virtual state to survive until time t:

%(t)=
~

erfc((1+i)(gt)'~ )
~

where

(3b)

=1.87X10 c/fm .
4a p

on the other hand, lead to a coincidence cross section with
a maximum where E~ is greater than E„. In the latter
case, the contribution due to independently evaporated
protons and neutrons is a more troublesome background,
because its peak also is located such that Ez~E„. %"e
consider this background in Sec. III.

To calculate the n-p coincidence cross section we re-
quire the spectrum of relative energy which results from
the decay of an isolated virtual state (called here natural
decay). For this we use (as in Ref. 1) the form suggested
by the Watson-Migdal formalism, but here we include the
following modification: a cutoff factor of the form
exp( —E„~/T), where T is the maximum temperature of
the compound nucleus. This factor incorporates the
phase space constraints imposed by the compound nu-
cleus. (Note that this factor eliminates the need for a free
parameter to cut off the unphysical portion of the
Watson-Migdal expression at large values of E„~.)

Thus, for the natural decay mode we use the spectrum,

dX —E„,/T sin 6
(2)

dE„)

where 6 is the 'So n-p phase shift.
In addition to this spectrum for the natural decay, we

need to know the distribution for decay times of the iso-
lated virtual state. To obtain this, we follow Moshinsky,
and extract this information from the location of the poles
of S(k) in the complex k plane. For a true resonance, i.e.,
a resonance whose poles satisfy the condition

~

Re(k)
~

&& —Im(k) & 0, Moshinsky finds the well-known

decay rate

dX(r) I z' yg= ——e
dt

where I is the FWHM of the spectrum. His approach,
however, also applies to virtual state poles. The location
of the poles in this case can be obtained with the effective
range expansion by setting
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dX(t)
dt

The decay rate is simply found from Eq. (3b) by taking
the time derivative,

j/2

= —2 Re[e '~'(1+ i)erfc((1 i—) (gt)'/ )] .

recedes radially from the compound nucleus and satisfies
the relation R(t)=uot+Ro. In terms of these variables
the Coulomb potential can be written in a Legendre ex-
pansion,

(3c) V(t) = 1+ cosg„+
Ze r
R (t) 2R (t)

r ~2R(t)

For large gt, dX(t)/dt ——(2mgt )
'—much slower than

the exponential rate of Eq. (3a).
In order to check the sensitivity of our calculations to

the detailed properties of the decay rate, we calculated sin-
gles and coincidence spectra using both Eqs. (3a) and (3c).
[When we use Eq. (3a), we set I' equal to the FWHM of
the spectrum in Eq. (2).] We believe that Eq. (3c) is more
appropriate, and we have used this form for the sample.
calculations given in Sec. III. We find, however, that
essentially the same spectra result when Eq. (3a) replaces
(3c).

The Coulomb field of the compound nucleus introduces
two important effects. It induces transitions from the
deuteron ground state to the continuum, and it hastens the
decay of H by polarizing it. We next consider these two
effects. The Coulomb interaction between the compound
nucleus and the proton can be expressed in terms of the
distance between the proton and neutron, r, and the dis-
tance between the compound nucleus and the two-nucleon
center of mass, R. R increases as the two-nucleon state

2Ze 2R (t)l + cosl9„+r r
r &2R (t), (4)

where cosO, gives the angle between r and R, and Z is the
charge of the compound nucleus. We have used a value
of Z obtained from the charge of the compound nucleus
averaged over the deuteron evaporation process.

First let us consider the effect of this Coulomb field on
the deuteron ground state (referred to here as the triplet
deuteron). It is more straightforward to evaluate the ef-
fect in this case than in the case of the virtual state (re-
ferred to here as the singlet deuteron) because the deu-
teron ground state has a well-studied wave function. We
therefore present first a calculation of the Coulomb disso-
ciation for the triplet deuteron. This calculation will serve
both to estimate the spectra of nucleons from the breakup
of the triplet deuteron, and also to illustrate some points
repeated in a subsequent polarization calculation for H*.

From time-dependent perturbation theory we have the
differential transition probability,

d Wg;, (t)

d p f &N(t') {,g I

' v(t') '
I P, &«' (5)

In Eq. (5) p ( =pv„) is the asymptotic relative momentum
for the n-p system; the operator Ho is the n-p Hamiltoni-
an~

condition (gp I g, & =0. For the triplet deuteron wave
function we use the zero-range approximation '

~a= + ~np
2p

I P, & is the normalized deuteron ground state;
I fp & is the

n-p scattering state which satisfies

~o I fp& =
2 I 4p&

and has outgoing boundary conditions; and X(t') is the
survival probability which decreases from its initial value
X(0)= 1, reflecting the decay of the initial state.

To evaluate the matrix element in Eq. (5), we approxi-
mate

I gp & by the momentum eigenstate
I p &; note that in

the coordinate representation this eigenstate is a plane
wave,

To be consistent, we must remember the orthogonality

2m(1 —pro, )

where ro, is the n-p triplet effective range. When we sub-
stitute V(t) from Eq. (4) into Eq. (5) we find the contribu-
tion from the isotropic (1=0) term is small, and we
negie« it. For simplicity, we also use the functional form
of the Coulomb interaction valid for r &2R {t), over the
entire range of r in the integral. (This approximation
causes no problem here because it leads to an overestimate
of the differential transition probability. Even with this
overestimate, ho~ever, we find the contribution to the
cross sections from the deuteron ground state is negligi-
ble. ) If we keep only the term in V(t) proportional to
cos8„, and substitute into Eq. (5), we find
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d Wd;, (t)

d p

AZ e icos ep
UOR o~'(1 —1'ra~) V'+ «1')'1'

2

X
"m V'N(u)e' "du

(u+I) (6)

tion. The singlet deuteron, however, is allowed to decay
into an I =0 state via the natural decay process.

I.et the singlet deuteron wave function in the momen-
tum representation be given by the product of a magni-
tude and a phase,

where we have introduced the dimensionless variable
u =Upt /Rp. Also in Eq. (6),

Upt
~m=

p

& p I P. & =
I &p I @ )

I
exp(i4'V )) .

We assume that the momentum dependence of the magni-
tude is governed by the cutoff Watson-Migdal spectrum
of Eq. (2), and take

~ (p
~ P, )

~
proportional to

2
u=

2p

E.p
Upk

B is the binding energy, and 8 is defined in Fig 1.. [The
factor of cos 8 in Eq (6). is somewhat surprising, since it
means that the proton is just as likely to be ejected to-
wards the compound nucleus as away from it. This sym-
metric angular dependence is modified if higher order
terms are retained in Eqs. (4) and (5), i.e., it is a property
of weak fields only. ]

We next consider the Coulomb polarization of the sin-
glet deuteron. Unfortunately, we know of no standard, re-
liable way to evaluate the matrix element in this case.
There is extensive literature which describes calculations
using resonant, and even virtual states, but the calculation
here is especially sensitive because it involves a transition
from a virtual state to another unbound state. In particu-
lar, two questions arise. The first concerns the choice of a
form for the virtual state wave function. The second in-
volves the physical significance of the i =0 terms in Eq.
(4). With regard to the form of the wave function, we use
the following approximation, which exploits our
knowledge of the momentum content of the singlet deu-
teron in the asymptotic region. We represent this state by
a packet of outgoing spherical waves, and then evaluate
the matrix element of Eq. (5) in the momentum represen-
tation. Clearly the wave function is more complicated at
locations inside the n-p well. Concerning the second ques-
tion, we cannot invoke orthogonality to drop the l =0
terms in Eq. (4). However, we do drop these terms since
our only interest is in transitions to states which are phys-
ically different than the initial state. Therefore we take
the /=I contribution to be the leading term of V(t),
which is the only term we use in our polarization calcula-

The phase, p(p), (through its derivative, dp/dp), does af-
fect the matrix element of Eq. (5). Brenig and Haags
show that this derivative has the same time delay property
as the derivative of the n-p phase shift. Therefore we set
P(p) =5(p), where 5 is the measured n-p 'So phase shift.

To evaluate the matrix element in Eq. (5), we insert to
the right of V(t') the following representation of the iden-
tity operator,

f f ir)d'r(rip')d'p'(p'i .

The coordinate integration of this identity operator allows
us to use the two different functional forms for V(t)
given by Eq. (4); the momentum integration allows us to
use the assumed form for (p

~ g, ). To evaluate the opera-
tor exp(iHot'/R), we use the approximation

Despite the approximations that we have already
described, the evaluation of Eq. (5) still involves a com-
plicated multiple integral. To calculate this quantity we
follow the procedure outlined next. First we perform the
integration over If'', and then the integration over dQ, .
When the substitution A'=Upt +Rp is made, the result
takes the following form:

d Wd;, (t,uo)

d p

4Ze cos8 &~'~, i(p —p' )(R' —Ro)f„dR 'v'X(R ')exp
7TUp'f1 0 2pUpfl

(7a)

where the function F(R',p,p') in the integrand is given by

(7b)
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F(R',p,p') can be evaluated in terms of the standard sine-
and cosine-integral special functions, which then allows
the integration over dR' to be performed analytically
[when N(R') is constant]. Finally, the remaining single
integration over dp' must be evaluated numerically.

The most significant result of this evaluation of Eq. (5)
is that the spectrum for polarized disintegration represent-
ed by Eq. (7a) is suppressed at low relative energy com-
pared to the natural decay spectrum of Eq. (2). This
suppression is due to the angular momentum barrier for
the I. =1 state of n-p relative motion. The mathematical
manifestation of this barrier is the suppression, for small
arguments, of the spherical Bessel function j i (pr /fi)
[which appears in Eq. (7b)]. This effect has the practical
implication that the small-angle n-p coincidence cross sec-
tion is reduced by Coulomb dissociation. This, in turn,
makes the experimental measurement of lifetime more
difficult. An illustration of this difficulty will be present-
ed in Sec. III.

In order to obtain the probability for a dissociative de-
cay during a time interval ht, we evaluate the probability
difference

8'd;, (t + b.t, uo) = Wd;, (t, uo) . .

This is obtained by integrating the differential transition
probabihty in Eq. (7a) over d p at two values of the time.
The integration over dQ& immediately gives 4'/3, but
the integration over dp must be done numerically. We
note that the evaluation of Wd;, (t,uo) requires two numer-
ical integrations, which must be repeated for each new
value of the parameters t and uo. Because of the large
amount of computation involved, it would seem difficult
to drop the simplifying assumptions that we have
described earlier in this section.

The Coulomb dissociation effect we have just discussed
for n-p states does not have an important effect in the p-p
calculation reported in Ref. 2. This is because the
Coulomb interaction for H given by Eq. (4) contains di-
pole terms, while the- corresponding Coulomb energy for
He does not. Furthermore, first order perturbation

theory predicts the polarization probability is proportional
to Z . In Ref. 2, we have applied our He forinalism only
to light systems, where the Coulomb effects due to the
compound nucleus are smallest.

Let us next consider the calculation of the n-p coin-
cidence cross section. In Ref. 1

d40-

dE~d Q jdE2d Q2

was calculated from probability distributions for the dinu-
cleon relative and c.m. energies. These energies, in addi-
tion to the Jacobian determinant, were obtained from a
given pair of laboratory velocities. Because the calcula-
tions considered here also include the Coulomb orbit for
the proton after dissociation, the situation is more compli-
cated. This Coulomb orbit leads to double-valued
transformation equations, i.e., there can be two sets of rel-
ative and c.m. energies for a given pair of laboratory ve-
locities. This feature leads to singularities in the Jacobian,
which complicate the numerical integration over the de-
cay time.

l.0

0.1

0

Coulomb dissociation

1000

t (fm/c)

I

2000

FIG. 2. The survival probability 1V (t) of singlet deuterons as
a function of time measured from the instant of thermal emis-
sion. The compound systems are formed by fusing 17
MeV/nucleon '"N with Al or Fe. The dashed line represents
the decay of the virtual state with only the natural decay chan-
nel open [see Eq. (3b)]. The solid lines show the combined effect
of natural decay and Coulomb dissociation.

The coincidence cross section, however, can be calculat-
ed with a Monte Carlo simulation, and we have chosen to
use that approach here. The simulation includes the fol-
lowing ingredients. Singlet deuterons are isotropically
"emitted" from the compound nucleus, with multiplicities
and distributions of speeds in agreement with the predic-
tions of the statistical model of Ref. 9. As a H" recedes
from the compound nucleus, time is stepped in discrete
intervals, or bins. During each time bin, the H can de-
cay either by the Coulomb polarization mode or the
natural mode. We calculate the probabilities for these two
processes independently —with no interference effects. (A
similar method is used for the deuteron ground state, but
of course the natural decay mode is missing. ) After the
decay, the Coulomb trajectory of the proton is calculated
with the aid of the conserved eccentricity vector. The
asymptotic proton and neutron velocities may then be
transformed into the laboratory frame.

There are three major advantages to using the Monte
Carlo technique. First, the kinematic transformations are
single valued and there is no need for a Jacobian. Second,
since the process of incrementing the time continues only
until the decay occurs, the factor N(t') in the integrand of
Eq. (5) is always unity. Finally, any detector geometry
may be modeled by the calculation.

Figure 2 shows an example of the result of the Monte
Carlo calculation giving the survival probability for H"

as a function of time. The graph provides several curves. .

One shows the decay curve for a singlet deuteron not sub-

ject to Coulomb dissociation. The other two curves show
survival probabilities in Coulomb fields of differing
strengths, where the natural and polarization decay modes
compete. The Coulomb dissociation probability is
large —this process accounts for 37%%uo of the decays for
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the reaction with the Al target and 52% for the reaction
with Fe.

From the information in Fig. 2 we can also estimate the
validity of our assumption of a classical trajectory for the
proton. This approximation is best when the magnitude
of the gradient of the proton's reduced wavelength,

~

VX i,
is small. For later decay times, when local electric field
varies more slowly with position [because R(t) is large],
and more of the energy of the proton is kinetic, the classi-
cal approximation is good. A calculation' of

i
Vk ~, us-

ing the decay times indicated in Fig. 2, finds that the con-
dition

i
Vk

i
(0.1 is satisfied for about the last 80% of

the decays. We thus conclude that the classical trajectory
is an acceptable approximation for the two reactions con-
sidered here.

III. THE RESULTS OF SAMPLE CALCULATIONS

In Sec. II we described the qualitative effect of the fi-
nite lifetime of the singlet deuteron on the n-p coincidence
cross section. In particular, we predicted a shift in the
peak away from the line E~ =E„,a shift which increases
with decreasing lifetime. In order to extract information
about the time distribution of the decays by observation of
this shift, it is desirable to minimize the coincidence cross
section due to independently evaporated protons and neu-
trons. This can be accomplished by choosing a compound
system which maximizes the figure of merit defined by

p( H*)=
p n

(8)

TABLE I. The figure of merit p( H*) [see Eq. (8)], for com-
pound nuclear reactions induced with a ' N beam.

/nucleon 10 17 25

12C

Al
56pe
107A

'"Au

0.0611
0.0376
0.0200
0.0118
0.0121

0.0510
0.0365
0.0214
0.0118
0.0104

0.0459
0.0335
0.0189
0.0117
0.0094

where the N's are the average multiplicities predicted by
the statistical model of Ref. 9. (Another solution is to re-
quire the angle between the proton and neutron to be ex-
tremely small, but this would decrease the counting rate. )

In general it is hard to make p( H*) large because neu-
trons are usually thermally emitted with a high multiplici-
ty. Using the statistical model of Ref. 9, we find that
p( H*) is largest for very light compound systems. This is'
bemuse the Coulomb barrier for heavy targets greatly
favors emission of neutrons over charged particles. Some
quantitative results are summarized in Table I. In Sec. II
we also noted that heavy targets are also undesirable be-
cause the contribution of the Coulomb dissociation (which
reduces the coincidence cross section) increases with in-
creasing values of Z. If the charge of the compound nu-

1
=Op

4~

(9)

where o.
p is the fusion cross section.

The proton and neutron singles spectra in the corn-
pound frame are necessary ingredients for the calculation
of the coincidence cross section. We calculated these sin-
gles spectra in Ref. 1 by including the secondary contribu-
tion from several unstable states, including H*. We use
the same method here, except that the secondary contribu-
tion from the breakup of n-p states has been modified to
reflect their special role. The singles spectra presented
here differ from those of Ref. 1 in two respects: First,
they include the secondary contribution from the
Coulomb-dissociated deuteron ground state, and second,
the secondary contribution from both n-p states has been
added in by means of a Monte Carlo calculation which in-
cludes the features discussed in Sec. II. Figure 3(a) shows
this singles spectrum for protons in the compound nuclear

cleus is too small, however, it is also difficult to extract
the interesting information about the lifetime. This is be-
cause the distance from the line E~=E„ to the expected
peak of the coincidence plot is proportional to Z. If Z is
too small the contribution from H* will be nearly sym-
metric about this diagonal, regardless of when the decays
occur. Also, the value of the coincidence cross section
tends to fall with decreasing target mass, mostly because
of the decreasing probability for compound nucleus for-
mation. In order to examine the effects arising from the
charge of the target, we have chosen to calculate the coin-
cidence cross section for both a small-mass and an
intermediate-mass compound system, formed by fusing 17
MeV/nucleon ' N with Al and Fe.

In the first step of the mlculation we determined the
evaporation stage with the aid of the statistical model of
Ref. 9. This requires a value for the Fermi energy of the
compound systems as an important input parameter. We
used values of 33 and 35 MeV for the mass 41 and 70
compound systems, respectively. These values are con-
sistent with electron scattering data. " The statistical
model then predicts, for the aluminum target, average
multiplicities of N2H+ 0 18 Np 2 0 and N 2 4 a
maximum temperature of T=8.1 MeV, and Z=17 for
the compound nuclear charge averaged over the evapora-
tion process. For the iron target it predicts N2 ~

——0. 16,
N„=2.1, N„=3.7, T=6.5 MeV, and Z=30.

We use the same method as described in Ref. 1 to cal-
culate the background coincidence cross section due to in-
dependently evaporated protons and neutrons. We assume
that these particles were isotropically emitted in the corn-
pound nuclear frame. We further assume that the back-
ground proton and neutron were thermally emitted at
widely separated times, so that their final-state interac-
tions may be neglected. Then the background coincidence
cross section in the laboratory frame can be expressed as
the product of the two singles spectra in the compound
nuclear frame (denoted here by the subscript "s"),

2
~background

dE d Q dE p d Qp NpN„

EpE„dN„dNp
Ep E dE dEp
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FIG. 3. Calculated singles spectra in the compound nuclear
frame for (a) protons, and (b) neutrons. The compound system
is formed by fusing 17 MeV/nucleon ' N with ' Fe. The contri-
butions from the decay of singlet and triplet deuterons are
shown. The curves marked "no deuterons" include contribu-
tions from other naturally unstable states.

FIG. 4. Calculated singles spectra in the compound nuclear
frame for (a) protons, and (b) neutrons, as in Fig. 3. The com-
pound system is formed by fusing 17 MeV/nucleon ' N with

Al.

frame for the reaction with Fe, with the contributions
from singlet and triplet deuterons separated. The area
under the curve for the former is 7.0 times greater than
for the latter, even though X2, /X2H is only 0.21.

Figure 3(b) shows the singles spectrum for neutrons
from the same reaction. The neutrons which come from
the decay of H have an energy distribution almost iden-
tical to those neutrons which are evaporated in one step.
This is essentially an accident, since the latter neutrons
obtain a full measure of thermal energy, while the former
share both thermal and Coulomb energy with the proton.

Figures 4(a) and (b) show the proton and neutron sin-
gles spectra, respectively, in the compound nuclear frame
for the reaction with aluminum. Here the area under the
H" curve is 13.3 times greater than for the H curve, and

N, H~ /N, H
——0.23. The decreased importance of H arises

from the smaller value of Z, and hence the smaller
Coulomb dissociation probability.

The shift between the curves in Figs. 3(a) and (b)
representing the H' contribution does contain informa-
tion about when the H* decay occurred. This informa-
tion is completely obscured, however, when the other con-
tributions to the singles spectrum are included. Of course
the coincidence technique is valuable precisely because it
magnifies the H contribution.

To complete the calculation of the n-p coincidence
cross section, we have performed a Monte Carlo calcula-
tion for the n-p coincidences arising from the decay of the

system. For this cross section we used a simple
square "detector" with EQ=2.74)& 10 sr. In order to
register a coincidence, a proton and neutron from the
same compound nucleus must both enter this square re-
gion. (This implies an average separation angle of
P=-1.6.) Using this geometry, we found that the contri-
bution from the Coulomb dissociation of H to the coin-
cidence cross section was even smaller than for the sin-
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FICx. 5. Contour plots for the calculated coincidence cross section d o./dE„dfl„dE„dQ~ as a function of the proton and neutron
laboratory energy. The compound system is formed by fusing 17 MeV/nucleon ' N with Al. The polar angle is 30' and the detector
geometry is described in the text. Each contour represents a 20%%uo decrease in cross section. (a) The contribution from the background
[see Eq. (9)]. (b) The contribution from the decay of H . (c) The sum of both contributions.

gles. [This is because the line shape of Eq. (6) suppresses
low relative momenta. j Numerically, the contribution of
H, relative to that of H*, was about an additional factor

of 10 smaller than that shown in Figs. 3 and 4. Therefore
we conclude that the contribution from the deuteron's
ground state to the coincidence spectrum is negligible for
the light and intermediate systems considered here.

The "detector" was placed at a laboratory polar angle
O„=t9„=30. We chose this value because in an experi-
ment, it would be desirable to choose the polar angle large
enough to make the probability of coincidences from

direct reactions small. If this angle is too large, however,
the experiment would be more difficult, not only because
the counting rate is diminished, but also because the labo-
ratory energies become small.

Figure 5 shows the results of the calculation for the
coincidence cross section, with the aluminum target. Fig-
ure 5(a) shows the contour map for the coincidence "back-
ground" cross section given by Eq. (9). Figure 5(b) shows
the contribution to the cross section from H* decays.
This calculated cross section was subject to statistical er-
ror because of the Monte Carlo technique. The plot is the
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FIG. 6. Contour plots for the calculated coincidence cross section with the same beam, polar angle, detector geometry, and contour
normalization as in Fig. 5. The target is ~6Fe. (a) The contribution from the background [see Eq. (9)]. (b) The sum of the contribu-
tions from the decay of H, and the background. (c) The sum of the contributions from the background and the decay of H* with
the Coulomb dissociation channel omitted.

result of a simulation of 3X10 compound nuclei, yield-
ing 9478 coincidence counts. These counts were then
binned into 1 MeV squares. The contours have been
smoothed, and the statistical error may be estimated by
noting that there were 53 counts in the bin at the peak.
Figure 5(c) shows the sum of the contributions given in
Figs. 5(a) and (b). If one uses a geometrical value of the
fusion cross section, o.o ——mroA„, g„, with ro ——1.2 fm, then
the peak values in Figs. 5(a), (b), and (c) are 0.17, 0.16, and
0.29 mb/(MeV sr), respectively.

Figure 6 shows the results of the calculation for the

coincidence cross section, with the iron target. Figure 6(a)
again shows the contour map for the coincidence "back-
ground" cross section given by Eq. (9). A comparison of
Figs. 5(a) and 6(a) shows that the contours for aluminum
are slightly closer to the line E~=E„,because of the re-
duced compound nuclear charge, Z. The contours in Fig.
S(a) also extend to higher values of the energies because of
the higher speed of the compound nucleus relative to the
laboratory. Figure 6(b) shows the sum of the background
of Fig. 6(a) and the contribution from H". Unfortunate-
ly, this plot is nearly identical to that in Fig. 6(a). As we
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mentioned in Sec. II, the major reason for this is the
Coulomb dissociation process, which reduces the decay
contribution to the small-angle coincidence cross section.
To demonstrate this, Fig. 6(c) shows the sum of the back-
ground and the H contribution, where we have eliminat-
ed the Coulomb dissociation decay channel. The signal
from H* is now quite clear, and it is possible to extract
information about the short time interval from this plot.
Finally we note that the peak values in Figs. 6(a), (b), and
(c) are 0.44, 0.56, and 0.58 mb/(MeV sr), respectively.

As we mentioned in Sec. II, there are uncertainties with
our theoretical Coulomb dissociation calculation due to
the unbounded nature of 0". If our calculation of this
effect is a significant overestimate, then medium mass tar-
gets, such as iron, could be favorable. If we take the re-
sults of the Coulomb dissociation calculation as realistic,
however, then the plots in Fig. 5 show that a Al target
offers a better opportunity to extract information about
the time interval between the emission and decay of the
2

Finally we consider what can be learned about the vir-
tual state lifetime by a direct study of the n-p coincidence
cross section. If there were no background and one had
contours as shown in Fig. 5(b), one could extract a mea-
sure of the difference between proton and neutron ener-
gies, b.E, by examining the shift of the contour pattern
from the symmetry line. The line which runs along the
axis of the central contour region of Fig. 5(b) provides a
range of 1—1.5 MeV for AE. From the estimate

2Ze
votd +Ho

it follows that td ——2X10 fm/c, when Uo is taken' as
0.095c (the most likely value according to the statistical

model). This value is in qualitative agreement with the
underlying analysis shown in Fig. 2. The background,
however, must be taken into consideration. To indicate
the importance of this, we determine the "apparent" EE
from the contours shown in Fig. 5(c) (which includes the
background). This procedure gives b,E =—3 MeV, and
hence a value of t~ approximately one-third of the true
value. This illustration demonstrates that it is essential to
remove the background contribution if a quantitative
measure of the lifetime is to be extracted from a coin-
cidence measurement. The background can be reduced
experimentally by reducing the size of the detector.

IV. CONCLUSION

We have highlighted the differences between calculat-
ing p-p and n-p coincidence cross sections arising from
the thermal emission of He and H*, respectively. We
have shown that H* calculation requires treatment of the
polarization due to the Coulomb field of the compound
nucleus. The calculations which we have presented
predict that the n-p coincidence cross section is sensitive
to the lifetime of the H" virtual state. Thus a measure-
ment of this quantity can provide a direct measurement of
this time, which is on the order of 10 ' sec. We explored
which compound systems allow us to extract this infor-
mation most easily, by considering both a small-mass and
an intermediate-mass compound nuclear system. We
presented sample Monte Carlo calculations for both the
coincidence and singles cross sections.
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