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The coupled channel method has been extended so as to include the possibilities of spherical-
transitional-deformed target nuclei, different shapes for target and final nuclei, and different shapes
for different reaction-channels. Deformation-dependent nuclear structure wave functions, solutions
of a Bohr Hamiltonian deduced from a microscopic Hamiltonian, are employed to weigh the scatter-
ing potentials for different shapes and channels. The deformation and E-dependent form factors
are integrated over deformation variables and summed over K in a general theory applicable to a
wide variety of targets and projectiles. Illustrative examples, including comparisons with experi-
mental cross sections, are presented for He scattering from Mg and 'Si, and for total neutron
cross sections of ' '" ' "Sm.

I. INTRODUCTION

In recent years, much effort has been devoted to com-
bining the nuclear structure methods for the bound states
with the nuclear reaction methods for the scattering form
factors. ' It is generally well recognized that although the
optical potential provides a reasonable alternative to the
cumbersome and time-consuming calculation of the over-
laps of the microscopically calculated single-particle wave
functions, it by itself is not adequate for a satisfactory
description of the rich variety of data available for baryon
(n, p, He, . . .) scattering. In his pioneering paper, Tamu-
ra proposed and applied the coupled channel method
(CCM) which combines the optical model for nuclear re-
actions with the Bohr-Mottelson model for nuclear struc-
ture. This approach was further extended'by Rebel et al.~

who replaced the Bohr-Mottelson model by the Frankfurt
model. This was a great improvement over the earlier
CCM since the target nucleus could be close to one of the
limits (vibrational or rotational) of the Bohr-Mottelson
model or it could be anywhere in between (transitional or
soft against shape fluctuations, or a nucleus with the
coexistence of very different shapes at different excita-
tions). However, the parameters of the collective Hamil-
tonian had to be determined for each nucleus by fitting
the low-energy collective states which may not represent
all the necessary details of the underlying microscopic
structure.

In the present approach, we attempt to go one step
closer to the first principles by employing the dynamics of
the Bohr Hamiltonian deduced from a microscopic
nucleon-nucleon Hamiltonian. Since the microscopic in-
formation does not enter directly in our calculation of the
baryon scattering form factors, our method would appear

on the surface to be the same as that employed by Rebel
et al. The numerical results might very well turn out to
be quite similar in some cases. But there are several im-
portant differences from a conceptual as well as a practi-
cal point of view: (1) One of these is that while Rebel
et al. employ an expansion around the spherical shape, we
avoid such an expansion completely. In fact, the latest
version of our nuclear structure program has been extend-
ed to deformations approaching infinity and leading to fis-
sion. (2) Secondly, while the Frankfurt model employed
by Rebel et al. requires a large number of fitting parame-
ters per nucleus, all parameters of our structure calcula-
tion have previously prescribed strengths and Z-3 depen-
dences.

The two main approximations of our calculation of
baryon scattering rate are the following: (1) The adiabatic
approximation is utilized to write the total nuclear wave
function as a product of an intrinsic wave function and a
collective wave function. (2) The expectation value of the
scattering operator with respect to the intrinsic wave
function (corresponding to a certain shape) is approximat-
ed by the optical potential. These approximations are dis-
cussed in more detail in Sec. II, where the salient points of
the CCM are also reviewed.

The main points of two versions of our nuclear struc-
ture program are discussed in Sec. III. One of these is
based on the Hartree-Fock-Bogoliubov (HFB) treatment
of a density-dependent nucleon-nucleon interaction in a
large configuration space. ' The other version is based
on the dynamic deformation model (DDM) where the
Nilsson-Strutinsky method is combined with the Bogo-
liubov treatment of the residual (pairing) nucleon-nucleon
interaction. In both cases the collective wave functions,
employed in the calculation of the form factors, are com-
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puted by employing the Kumar-Baranger method of solv-
ing the Bohr Hamiltonian. "'

The choice of the method of calculation of the collec-
tive wave functions dictates the manner in which the opti-
cal potential depending on the nuclear surface is treated.
In Sec. IV, we discuss our method of including the nu-
clear shape (P, y) dependence of the optical potential, the
corresponding determination of the multipole components
via a two-dimensional integration over the angles (O, g),
and the extension of the CCM for baryon scattering form
factors.

A few numerical examples indicating the versatility of
our approach, as well as agreement with the experimental
cross sections, are discussed in Sec. V. Our conclusions
are presented in Sec. VI.

Some of the numerical results discussed in the follow-
ing have previously been presented at a number of confer-
ences. '

II. BASIC IDEAS AND APPROXIMATIONS
OF THE EXTENDED COUPLED CHANNEL METHOD

H% =E,%, (2)

where E& is the projectile energy in the center-of-mass
system. The total wave function 4 is written in the
angular-momentum-coupled representation as (in order to
simplify the notation, we have dropped the subscript n, , as
compared to Tamura, as much as possible)

A. Brief review of. the coupled channel formalism

In order to clarify the notations used in the following,
we start by reminding the reader of the salient points of
the coupled channel formalism.

The projectile-target Hamiltonian is written as

H=T+H, +V(r, 8,y),
where T is the projectile kinetic energy, H, is the Hamil-
tonian for the internal motion of the target, V is the
projectile-target interaction, and (r, 8,y) are the projectile
coordinates relative to the center of mass of the target.
The corresponding Schrodinger equation is written as

I
V-.~i I (

I
lj''&

I
n'I'&)JM)R'I'j'(r» (5)

where p„=k„r, k„ is the wave number, and E„
(=E& —W„) is the energy of the ejectile which leaves the
target in its nth state.

Equation (5) of the coupled channel method represents
a set of coupled equations and is quite general. It holds
irrespective of the nature of the projectile or of the target
nucleus. Assumptions about the nuclear structure affect
only the matrix elements which appear on the right-hand
side of the equation, and the evaluation of those matrix
elements is the most crucial part of the whole calculation.

This evaluation requires two main approximations.
One of them refers to the target nucleus wave functions,
the solutions of Eq. (4). The other one refers to the cou-
pling potential, V„„p~. These approximations are dis-
cussed in the following.

B. Main approximations of the method

1. The adiabatic approximation

The target wave function of Eq. (4) can be written as,

~
nIM, ) = +4&M k ~nIK), (6)

where K is the projection of I on the intrinsic (body-fixed)
z axis and @ is the symmetrized rotational function" de-
pending on the three Euler angles between the laboratory
and the intrinsic axes. Equation (6) represents the
transformation from one set of axes to another and is ex-
act as long as the summation over K is performed over all
the (2I+ 1) values.

The adiabatic approximation is now invoked to write

caused by the deformation of the target. The angular
parts of the diagonal part of the Schrodinger equation (2),
are integrated out in the usual way, and then one gets the
basic equation of the coupled channel formalism,

I(d /dp„) —[l(i+1)/p„]—(V;, /E„)+l IR „, (r)

=(l/E„) g ((~lj)e ~nI))~M
n'1'j'

'QRz. i~(r)f Iij& lnI & jJM
Jnlj

(3)
~

nIK) = g A„ix(P;,y;)X(P;,y;,xJ),

H, ~nIM, ) =W„~nIM, ), (4)

where 8'„ is the target energy. Note that the index n is a
collective index for all relevant target quantum numbers
(I, parity, . . . ) except for the magnetic one

Following Tamura, we divide the interaction V into a
diagonal part Vdl g which represents the interaction of
the projectile with the target in its spherical shape, and a
nondiagonal part V, „pJ which represents the interaction

where J is the total angular momentum of the projectile-
target system, M is the projection of J on the laboratory z
axis,

~

nI) represents the nth target state with angular
momentum I, and

~
lj) is the (l,s)j-coupled generalized

spherical harmonic for the projectile. The target wave
function ~nIM, ) represents a solution of the target
Schrodinger equation,

where i is an index for different values of the shape vari-
ables (P;,y;), A„lz represents a purely collective wave
function depending on the shape variables only, and X
represents the intrinsic-microscopic wave function de-
pending on the nucleon variables x' (j = 1,3A) as well as
on the shape variables. Note that the shape variables
(P;,y;) may be related to the expectation values of the
quadrupole operators (Q2O), (Q-+Q2 2), or
equivalently to (x ), (y ), (z ). The adiabatic approxi-
mation is involved in the assumption that the microscopic
wave function does not depend explicitly on I or on K.

The approximation discussed previously is reminiscent
of the adiabatic approximation inherent in the rotational
model of Bohr and Mottelson. However, our adiabatic
approximation is much less restrictive because of the fol-
lowing. (1) The assumption of axial symmetry is dropped
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and the E mixing is fully taken into account. This part of
our approach is similar to that attained in the Davydov-
Filippov model. ' (2) The assumption of a fixed nuclear
shape (employed in both the Bohr-Mottelson and in the
Davydov-Filippov models) is dropped. The shape fluctua-
tions and the corresponding rotation-vibration couplings
are fully taken into account.

Another aspect of the adiabatic approximation concerns
the treatment of the "extra" degrees of freedom. The
product wave function of Eqs. (6) and (7) has five extra
degrees of freedom (p, y, three Euler angles). If we were
to employ such a wave function to calculate only the po-
tential energy V(P, y) as is done in many calculations
based on the modified oscillator method (see, for example,
Ref. 17) or on the Hartree-Fock method (see, for example,
Ref. 18), then our calculation would definitely suffer from
this problem. However, we correct for this problem by
calculating not only V(p, y) but also six inertial functions
(to be discussed in the following). The latter represent
off-diagonal or nonlocal' terms in the language of the
generator-coordinate method, while they represent time-
dependent corrections due to shape fluctuations in the
language of the cranking method.

In our adiabatic approximation, the amplitudes of col-
lective vibrations can be as large as necessary, but their
time dependences (collective frequencies) are assumed to
be small. This is just the opposite of the random phase
approximation where the amplitudes are assumed to be
small but the frequencies can be large.

2. The optical potential approximation

The main ingredients needed for a fully microscopic
calculation of the form factors are a complex effective
target-projectile interaction together with the ground-state
and transition nucleon density distributions. As the target
nuclei considered here could be anywhere between the two
limits (vibrational, rotational) of the Bohr-Mottelson
model, a microscopic description of elastic and inelastic
scattering cross sections using the adiabatic rotational
model, valid only for the ground state bands of well-
deformed nuclei (see, for examples of such calculations,
Refs. 23 and 24) cannot be applied here. We have not un-
dertaken a new microscopic calculation of scattering cross
sections for the following reasons: (i) Problems occur for
the validity (or choice) of a folding procedure in the case
of alpha-nucleus interaction. (ii) Calculations of nucleon
density distributions for all the allowed transitions be-
tween the various collective bands are rather impractical.
We mention that a fully microscopic calculation of proton
scattering from the ground state rotational bands of s-d
shell nuclei was presented by the Oxford group.
Furthermore, a more general and fully microscopic treat-
ment of the projectile-target interaction has been formu-
lated. It has been applied in a truncated configuration
space of two oscillator shells to the problem of two-
nucleon-transfer cross sections. That microscopic calcu-
lation of the overlaps of various single-particle wave func-
tions for different shapes was already quite large. It
would be much too large for the largest computers that
are currently available due to the greatly expanded config-
uration space of present calculations.

III. THE BOHR HAMII. TONIAN
AND ITS DEDUCTION

FROM MICROSCOPIC THEORIES

A. The Bohr Hamiltonian

The original Bohr Hamiltonian for the quadrupole
motion was given for the case of small amplitude, har-
monic vibrations around the spherical shape. A more
general form, valid for spherical-transitional-deformed
nuclei, is"

Ht = V(p 'Y)+( 2 ) &00(p y)po+2&02(p 'Y)pop2

+~»(p, y)pl+ glk2~~. (p,y),
k

where (p, y) are the quadrupole shape variables, 6

po ——p cosy, p2 ——p slny,

k (= 1,2,3 or =x,y,z) represents the three intrinsic (body-
fixed) axes, V is the potential energy of nuclear deforma-
tion, B~„(m or n=0, 2) are the vibrational mass parame-
ters, and Wk are the rotational moments of inertia.

The Bohr Hamiltonian of Eq. (8) is determined com-
pletely by seven functions of p and y, namely the poten-
tial function V and the six inertial functions: 800, 802,
+22 J 1 J 2 and W3. These functions must obey certain
stringent symmetry conditions in order to satisfy invari-
ance under rotations, and invariance under different ways
of labeling or orienting the intrinsic axes with respect to
the laboratory axes. '" Although a microscopic calcula-
tion of the seven functions in a large configuration space
requires a considerable amount of computational effort,
such a calculation has two incomparable advantages over
nonmicroscopic calculations: (1) All the symmetry condi-
tions mentioned already are satisfied automatically. (2)
Expansions around either the spherical shape or around a
deformed shape are avoided completely.

The Bohr Hamiltonian of Eq. (8) is solved numerically
on the basis of Eqs. (6) and (7). Deviations from axial
symmetry and from the ground state shapes are fully tak-
en into account. The so-called shape coexistence @nd band
mixing arise naturally in this model of collective quadru-
pole motion. ""

Two different microscopic methods of calculating the
seven functions have been developed because of the fol-
lowing reasons: The more fundamental (HFB) method re-
quires more computation time by a factor of S—20.
Hence, it is not practical to use this method for a global
study of light-medium-heavy nuclei such as that presented
for the structure properties. ' Moreover, the microscop-
ic method based on the dynamic deformation model
(DDM) includes pair fluctuations, which are not included
in the HFB method. Attempts are in progress to replace
the model by a theory, which will probably be closer to
the HFB theory. The main ideas behind the two methods
are summarized in the following.
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B. The Hartree-Pock-Bogoliubov calculation
of the seven functions of deformation

Introducing the density matrix and the pairing tensor,

&sp= +Up s

~8p X 8"p ~ (12)

As mentioned in the Introduction, the first method we
have used for the description of the structure of the nu-
cleus is the Hartree-Fock-Bogohubov method. In this
method the nuclear wave-function is given by a HFB (in-
dependent quasiparticle) form. The finite-range effective
interaction (D 1) of Decharge and Gogny is used in order
to describe the interaction between nucleons in the mean
field approximation. Two important features of our cal-
culation must be pointed out here. First, the description
of the pairing part of the nuclear interaction is obtained in
a fully self-consistent manner. This is achieved through
the use of the HFB theory together with an interaction,
like D 1, which has the desirable pairing properties.
Second, all the nucleons are treated on an equal footing:
no assumption whatsoever is made about the existence of
an inert core.

In the HFB theory we have used, we start with the
most general Bogoliubov transformation in the nucleon
creation and annihilation operators a~,a~,

gg= g(u~++U~ ); (10)

dynamical calculation, zero-point energy corrections must
be included. They can be deduced in the framework of
the generator coordinate theory and have been presented
in detail in Ref. 30. The same method (which is consider-
ably improved compared to our previous calculation' for

Sm) has been employed in the HFB calculations
presented in the following.

The collective potentials thus obtained for Mg, Si,
Sm, and ' Sm are displayed in Figs. 1—4. All these

nuclei possess an equilibrium shape which is axially de-
formed (prolate for Mg and Sm, oblate for Si). However,
all the nuclei present a softness in the y direction which
makes mandatory the use of a dynamical description of
the nucleus.

The other ingredients of the present dynamical theory
are the inertial parameters associated with the quadrupole
vibrations and the rotations. In the adiabatic approxima-
tion, the inertial parameters are given by the "cranking"
theory. The vibrational mass parameters Boo, B02, and
B22 are obtained by using HFB wave functions and taking
into account the coupling between Q2c and Q22 vibra-
tions.

The moments of inertia are given by the familiar crank-
ing expression

J „=2m'g
[ &aP( J„[y,& ('y«. +ep),

ap

VHFB( p g )

(where 5 denotes the time reversed of the state 5), we can
write the total nuclear energy as

&0(H ~0&=g&a~r [y&)o.,
ay

+(-,') g &aPI I'I ~&&~Ps& r
apy5

+(-.') y & y~I ~P»;, .,
apy5

(13)

where H is the nuclear Hamiltonian and
~

0& is the HFB
wave function. The application of the variational princi-
ple on the energy &0

~

H
~
0& with the constraint A,N, for-

the mean particle number to be conserved, leads to the
HFB equations. Their matrix form is

r

&ay Qy Q~
ea

U& U

where e~&
——tag ~~ay + I ay~ I and 6 being the

Hartree-Fock field and the pairing field, respectively.
In the constrained-triaxial-HFB calculations that we

have performed, the constraints on the two quadrupole
moments, Q2p Qp2 are included in e. In that way, the
shape of the nucleus can be chosen freely in the P, y plane.
The expansion associated with the index a in Eq. (10) is
over a Cartesian oscillator basis which incorporates the
triaxial symmetry. (For all technical details, see Ref. 29.)
The energy of the nucleus can be computed via Eq. (13) as
a function of the deformation variables p and y. Howev-
er, in order to use this energy as a collective potential in a

FIG. l. HFB potential V(P, y) of ~"Mg. The shape asym-
metry variable y varies from 0' on the right to 60 on the left of
the curved axes perpendicular to the P axis.
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150'
VHFB( '3

s g )

FIG. 2. HFB potential V(P y) of 'Si. See Fig. 1
' f

the explanation of the y axis.
FIG. 3. HFB potential V(P y) of "S S F' .m. ee ig. 1 caption

for the explanation of the y axis.

where
~ P~ ) is the intrinsic state.

In the case of the ' Sm nucleus, the inertial param te ers

o2, an 822 are displayed in Figs. 5—7 as functions
of P and y. We remark that the inertial parameters
present substantial variations and are far from being con-
stant.

It is worthwhile to state that the calculation of the col-
lective functions is fully microscopic and does not contain
any adjustable parameters. Once the nuclear interaction is
c osen (in this case the Gogny D 1 interaction), the HFB
calculation furnishes the collective potential and masses in
a systematic way and, hence, the collective spectrum.

C. The dynamic deformation model calculation
of the seven functions of deformation

The second microscopic method employed for the cal-
culation of the seven functions of the Bohr Hamiltonian
also requires the solution and use of Eqs. (10)—(15) given
previously. However, the computation is simplified great-
ly because the lengthy iterative-HFB calculation for each
nucleus is replaced by a single calculation (for the de-
ormed single-particle states) for all nuclei, followed by a

comparatively small calculation for each nucleus.
The main simplifying assumptions are the following: ~= ~0M+&U+ ~~+ ~pmj (16)

he low-energy spectra of odd nuclei near doubly-~1& T
magic nuclei provide the needed spherical single-particle
energies. (2) Thee corresponding wave functions are sim-

p y harmonic oscillator wave functions includin1 the
spin-orbit coupling. (3) Effects of deformation can be
taken into account by allowing the osci11ator frequencies
to be different in different directions. (4) The residual
nucleon-nuc eon interaction can be approximat d b th

ardeen-Cooper-Schrieffer (BCS) pairing force.
e y e

%'ith these assumptions, the generalized Bogoliubov
transformation of Eq. (10) splits into two parts —-one from
spherical to deformed single-particle states, the other one
rom single-particle to quasiparticle states. It is still

necessary to diagonalize the deformation effects in the full
configuration space (divided roughly by a factor of 4 be-
cause of conservation of parity and of time-reversal in-
variance), but the doubling of the space required by the
full HFB Eq. (14) is avoided.

Qne additional assumption is made in the calculation of
t e nuclear energy of Eq. (13). The excha
neglected. Instead, a modified Strutinsky shell-correction
method ' is employed and the potential energy function is
written as
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Transforming Eq. (19) into the space-fixed system and
after some algebra we obtain

V;(r, &,p)=Vo g [2(1+5go)]
A, even

m=0
(20)

In the last expression we have followed the defimtion of
Tamura. The transition operator Q~ is an operator
which operates only on the coordinates of the target nu-

clei and is given by

A

Q~m =D,m+a, (21)

whereas Y~ is a transition operator which operates only
on the coordinates of the projectile.

Using Eqs. (6) and (7) for the target nucleus wave func-
tions and Eq. (20) for the target-projectile interaction, the
calculation of the nuclear form factor is straightforward.
For a given value of J and m. (the angular momentum and
parity of the whole system), we denote by ( njlI) the quan-
tum numbers of a channel corresponding to the nth state
of the target nucleus, and by s the spin of the projectile.
The coupling matrix element between two channels is then
given by

I+I'
Vnljr, n'l'j'I'(I ) VO g A (jiI, lj''I';ADJS) Wnr, n'r'(")

I, even

(22)

x g v7«)«'MKIIQI. Il@MK &.
m=0

(23)

The reduced matrix element appearing in Eq. (23) can be
easily calculated using the properties of Wigner rotation
matrices (see, for example, Appendix A of Ref. 33).

B. Comparisons with the form factor calculations
in other collective models

In most of the conventional applications of the collec-
tive model, the deformation and asymmetry variables
have only one fixed value each. We can also restrict the
summation on the shape parameter index i in Eq. (23) to
only one value and choose the corresponding (p, y) values
so as to obtain the conventional form factors: p&0, y =0
for a prolate rotator; p&0, y =60 for an oblate rotator;
p~0, 0'& y ~ 30 for a triaxial rotator; p&0, y =30' for a
quadrupole harmonic vibration. In our actual calcula-
tions the summation over all relevant values of the shape
variables allows, for the various channels, the possibility
of shape coexistence.

In recent years, Arima and Iachello have developed
the interacting boson approximation (IBA) model. This

where the factor A (jII,/j''I';AJs) is completely geometri-
cal [see Eq. (28) of Ref. 2]. The form factor W„"I„I(r)
contains all the dynamical and structural information of
the problem and is given by

Wnrn'I'(r) g AnIK(l)An'I'K'(l)
K,K', i

model is an attempt to provide a microscopic description
of low-lying collective states in medium- and heavy-mass
nuclei. The possibility to describe nuclear form factors,
or nucleon density distributions using this model was in-
vestigated most extensively at a phenomenological level.
We mention, however, that schematic calculations have
been performed with single-particle wave function in a
harmonic oscillator potential. In the case of nucleon
scattering cross section calculations, this possibility was
investigated at various times (see Deason et al. ). In
their coupled channel calculations of 35 Mev proton
scattering cross sections from ' ' ' Pt, these authors
assumed a phenomenological radial dependence of the
form factors and took the relative transition strengths (or
reduced matrix elements) from the IBA model. For form
factors and nucleon density distribution calculations, the
IBA model suffers from the fact that the boson density
distribution cannot be easily calculated and is generally
deduced from electron scattering data. One of the most
interesting features of our calculations is that the radial
dependence of the form factors is closely related [see Eq.
(23)] to the nuclear structure wave functions. Thus, the
form factors can differ, even for the same multipole, from
state to state. This behavior can be illustrated by the re-
sults presented in Figs. 8(a) and (b). There we have shown
for Mg, the computed values of the form factor
W„r „r.(r) Moreo. ver, in going from one nucleus to
another, the form factors can differ in shape. We have
exhibited in Fig. 8(c) the radial dependence of the quadru-
pole reorientation matrix element calculated for the first
2+ state of ' ' Sm. Finally, the curves reported in Fig.
8(d) correspond to the radial dependence of the monopole
transition form factor between the 0z, (ground state) and
the Oil (beta bandhead) of Mg and Si. The radial
dependences of these monopole transition form factors are
similar to those of the second derivative of a Woods-
Saxon potential. Moreover, the radial dependences of the
diagonal monopole form factors computed for the two 0+
states are similar to the diagonal part of the Woods-Saxon
potential. In the case of the monopole 0+-0+ transitions,
Eqs. (22) and (23) reduce to

0
V„ljo „ljo(r) = Vo W„o „o(r),
Wno, n o(&)= g Anoo(&)An oo(l ) Vlo(&) .

(24)

(25)

The various radial dependences of the monopole transi-
tion form factors of Eq. (25), come from the weighting of
the shape dependent V;o(r) by the nuclear structure am-
plitude factors Anoo(i) and A„oo(i).

C. Coulomb and spin-orbit potentials

In our coupled channel calculations of 120 MeV He-
scattering cross sections from Mg and Si, the Coulomb
excitation of the collective bands was neglected since it
had little effect on the shapes of the angular distribu-
tions although it did affect their magnitudes slightly.
Thus, the Coulomb potential adopted was that of a homo-
geneous charged sphere. In the case where Coulomb exci-
tation processes must be taken into account, the deformed
Coulomb potential can be treated in the body-centered
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05

(a)

Ogs 2) 1.37MeV

, 1.28A, . 0&s 22 4.23MeV Vso(r) = Vso[fi/(m c)] (1/r)[dV(r)/dr]1 a (26)

where V(r) is a spherical Woods-Saxon potential. The de-
formed spin-orbit interaction was neglected for the fol-
lowing reasons: (i) Our coupled channel program cannot
handle the possibility of a deformed spin-orbit interaction
given as a full Thomas term'

system in the same manner as the nuclear potential
V(r, 8', y').

In our coupled channel calculations of neutron scatter-
ing cross sections from Sm isotopes, we have included a
phenomenological spin-orbit potential

i [—A'/(2m c)] o"[VV(r)XV] . (27)

'A44(r)

0.5

x5 0 (b)
j

(ii) The potential V(r) of Eq. (27) is a deformed potential
with fixed deformation values (P,y), whereas in our actu-
al calculations, values of the deformation of the nuclear
potential are not fixed. We are now investigating the pos-
sibility of generalizing the deformed spin-orbit interaction
for variable shapes.

0.5

—-Og.s.-42

x 2.0

{c)

D. Numerical methods employed
for form factor calculations

The crucial point in the numerical procedure used for
the form factor calculations is the computation of VT(r)
of Eq. (19). This computation must be made for each
value of r, the 92 values of (P,y), and for different chan-
nels (in the simplest case, the coupling of the 0+,2+,4+
states requires at least 14 real and imaginary transition
potentials). Thus, the direct method of a two-dimensional
integration over the angles (8,qr) would consume large
amounts of computer time. Raynal has developed a
very efficient method for such computations. This
method, called "linear approximation, " consists of first
computing the inverse of M, a real square matrix of order
X with elements Mjk [where the index k denotes a set of
values (A, ,m)] of the form

Mjk =[1/[2(1+40)]J'"[~~~(8g v J)+&~, m(8J v'J)-]

(28)

'INp{ r)

0,5
(d)

and then computing the VT(r) as

X
Vpg(r) = g (MJk) 'V~(r, 8~,pj ), (29)

0

-0,5 P
Si Ogg 028 . + +

FIG. 8. Radial dependence of form factors 8' (r). (a) "Mg:
(b) Mg g —4 (c) 1 8 Srn j —P (d) Mg

A, =0.

where we recognize the matrix elements of the inverted
matrix.

We have implemented this method in our computer
code. The accuracy of this linear expansion approxima-
tion was investigated using two different tests: (i) The di-
mension of the square matrix M was varied (%=36,45) to
evaluate truncation effects of the linear expansion. (ii)
Direct comparisons with the two-dimensional integration
procedure were made. This approximation was found to
give accurate results for all the channel potentials needed
for our coupled channel calculations (up to
=m max =8).

The numerical calculations of the form factors were
tested using only one set of values of the deformation
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variables (P,y) via comparisons with various results ob-
tained using the code Eels of Raynal. 39

V. COUPLED CHANNELS CALCULATIONS

These form factor calculations were incorporated into
our coupled channels computer code. This code is essen-
tially the same as was previously used for semimicroscop-
ic calculations of nucleon elastic and inelastic scattering
cross sections for spherical or for heavy well-deformed
nuclei. Because of computer storage requirements, the
number of levels which could be coupled in was limited to
six and the number of different radial form factors [see
Eq. (23)] for each individual nuclear potential was re-
stricted to 60. The nuclear potentials were expanded in
multipoles [see Eq. (19)] up to A, ,„=8,and complex cou-
pling terms were employed throughout this work.

The optical model parameters of the Woods-Saxon po-
tential, and of its first derivative, were obtained from pre-
viously published CCM or DWBA analysis of inelastic
baryon scattering. These parameters are listed in Table I.
Because of the inclusion of inelastic channels in our CCM
analysis, the imaginary part of the He- Si potential had
to be reduced from 24.6 to 20.7 MeV. This reduction is
similar to the one obtained by Uan der Borg et al. in
their CCM analysis of inelastic He scattering from Mg.

A. Analysis of 120 MeV He-scattering data for "Mg

The experimental data were obtained by Van der Borg
et al. ' ' There, in the framework of the triaxial rotor
model, a conventional coupled channel analysis was also
presented. For the calculations of the nuclear form fac-
tors, these authors have employed a first-order Taylor ex-
pansion of V (r, 8',y') in terms of P siny [ Y2q(8', q&')

+ Yq z(8', q&')]. As our expansion procedure is different
[see Eq. (19)], a direct comparison of our calculations
with theirs cannot be presented.

We have performed two sets of coupled channel calcu-

lations, assuming two different coupling schemes. In the
first set of calculations, the 0+,2+,4+ states of the ground
state band and the 2&, 3&,4& states of the excited y band
were coupled. In the second set of calculations, the 0~+, 2~+

of the excited P band were coupled instead of the 3+ and
+ y

4z states. Note that in the first case we had to calculate
53 real and imaginary form factors, while this number
was reduced to 43 in the second case. Because of the con-
siderable computer time required for the form factor and
the coupled channel calculations, we have not undertaken
any optical model potential (OMP) parameter search.

The results corresponding to the first set of calculations
are presented together with the experimental data in Fig.
9. The fu11 curves correspond to calculated cross sections
obtained without any adjustments of the OMP parameters
or of the nuclear form factors. While the agreement ob-
tained for the 0+,2+ states of the ground state bands and
for the 2z state of the y band are rather good, the calcu-
lated angular distributions for the 3&+,4&+ states of the y
band are quite off. For the 4+ state of the ground band,
the agreement is not very good either. We have tested
that coupling the 6+ state of the ground state band and
excluding the 3z and 4z states does not affect the results
significantly. As mentioned in Ref. 37, the form factor
for the 4+ state of the ground state band is very sensitive
to variations of the imaginary potential depth. We have
observed that an increase of that depth does decrease the
magnitude of the calculated 4+ cross section, but it also
alters the fit obtained for the elastic scattering cross sec-
tion. We think that the discrepancy between the calculat-
ed results and the experimental data could come in part
from the current choice of the OMP parameters and in
part from the nuclear structure wave function calcula-
tions.

In earlier studies (see, for example, Ref. 37), it was al-
ready found that the 4+& state was too weakly excited and
required a very strong coupling to the ground state. In or-
der to test this possibility, we multiplied the 0+g, ~4+&
transition form factor by a renormalization factor, and

TABLE I. Optical model parameters. The parameters (except for minor adjustments in the strengths
of the imaginary potentials) have been taken from Ref. 37 for Mg, Ref. 41 for 'Si, and Ref. 42 for Sm
nuclei.

Mg
E =120 MeV

28Si

E =120 MeV
Sm

E„=0.75 —15 MeV

Vg (MeV)
a~ (fm)
r~ (fm)
8'v (Mev}

av (fm)
rv {fm
wD (Mev)

aD (fm)
rD (fm)
V,. (Mev)
a„(fm)
r, (fm)
r, (fm)

100
0.78
1.28

19

0.71
1.60

1.3

109.7
0.81
1.25

20.7

0.51
1.63

1.3

46.3 —0.22E
0.65
1.25
0.0

—1.28 + 0.16E
0.65
1.25

2.3+1 1E'
5.32+0.056E 'i

0.58
1.25
7.5

0.65
1.25

(E(8 MeV)
(E& 8 MeV)

(E~8 Mev)
(E~8 MeV)
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FIG. 9, Angular distributions for He scattering from (a} the ground-state band, and (b) froin the y-band states of Mg. The solid
curves are results of the present coupled channel calculations. See the text for discussion of the dashed curves. The experimental data
are from Ref. 41.

varied this factor until a satisfactory agreement was
reached. The results obtained, using a value of 5 for that
factor, are shown, as dashed curves in Fig. 9. We observe
that for the 3&, the calculated curve changes in shape as
well as in magnitude. However, that calculated curve
does not reproduce the second experimental oscillatory
pattern. The radial dependence of the renormalized form
facor was shown in Fig. 8(b). We note that it differs from
the one adopted, for the same transition, by Van der Borg
et al. (first derivative of a Woods-Saxon form). We
think that the discrepancies observed for the 4&+ and 3z
states come from the nuclear structure calculations. In
those calculations, these states are respectively located at
9.98 and 8.22 MeV excitation energies, whereas the corre-
sponding experimental values are 6.01 and 5.24 MeV.

The results obtained for the second set of calculations
are presented in Fig. 10. While the agreement obtained
for the 0~ state of the P band is quite good, the calcula-

tions for the 2p state are off by more than an order of
magnitude. In the nuclear structure calculations, the Op+

and 2@+ states are respectively located at 5.95 and 8.91
MeV excitation energies, whereas the corresponding ex-
perimental values are 6.43 and 7.45 MeV. The fact that
the predicted excitations for Op+ and 2~+ are respectively
stronger and much weaker than the experimental data,
can be correlated with the differences between the experi-
mental and the calculated excitation energies for these
states. The baryon excitation of the Mg P band was the
subject of a recent analysis presented by Harakeh and De
Leo." These authors concluded that the 0~ excitation can
be satisfactorily explained only if a monopole breathing
mode form factor is included in addition to the monopole
P-vibration form factor. As our calculation reproduces,
for that state, satisfactorily the experimental diffraction
pattern, we think that the inclusion of a breathing mode
form factor is not necessary. Finally, we recall that the
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FIG. 10. Angular distributions for He scattering from (a)
the 0+@ and (b} the 2+p states of ~ Mg. The solid curves are results
of the present coupled channel calculations. The experimental
data are from Ref. 41.
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radial dependence of the present form factor is presented
in Fig. 9.

B. Analysis of the 120 MeV scattering data for Si
2Q

ec.m.

39 49

The experimental data were obtained by Van der Borg
er al. ' in a similar way as for Mg. These authors have
presented a coupled channel calculation in the framework
of the vibrational model for the ground state and the first
excited 2+, 4+, and 0+ states, whereas DWBA calcula-
tions were undertaken for the remaining excited states.
We mention that an equally good fit to the ground state
band (0+,2+,4+) states can be obtained in the vibration-
al or the rotational scheme.

The present nuclear structure wave function calcula-
tions indicate that substantial band mixing (especially be-
tween the If=0,2,4 components) occurs for all the excited
levels. On the basis of the largest K components, 'we have
made the following classification:

L

E 9.1

t3
D

I

iQ

3 6. 28 MeV

I I

20
ec.m(deg)

I

30 4Q

(C)-
Si (a,a') E +=120 MeV

g.s. band: 0+ 2+(1.78 MeV), 4+(4.62 MeV);

y band: 3+(6.28 MeV), 2+(8.26 MeV);

P band 0+(4.98 MeV), 2+(7.38 MeV) .

FIG. 11. Angular distributions for "He scattering from (a}
the ground-state band, (b) the 2+~ state, and (c) the 3+~ state of

Si. The solid curves are results of the present coupled channel
calculations. The experimental data are from Ref. 41.



774 KUMAR, LAGRANGE, GIROD, AND GRAMMATICOS 31

The reason for our choice of the 2+ state of the y band
will be explained in the following.

In the first set of calculations, we have included the
members of the g.s. and the y band. The calculated angu-
lar distributions for these states, together with the experi-
mental data, are shown in Fig. 11. The agreement is good
for the 0+ and the 2+ states of the g.s. band. Note that
the 4+ predicted cross sections miss the data in magni-
tude, but are generally in phase with them. The possibili-
ty of describing the 2+ state at 8.26 MeV as the 2z state
of the y band comes from the magnitude and the shape
between 30' and 40' of the calculated cross sections. This
appears clearly when looking at the experimental angular
distributions for various 2+ states of Si, as reported in
Fig. 13 of Ref. 41. The prediction for the 3& angular dis-
tribution is only fair; the calculation misses the experi-
mental pattern of the second maximum. Since the 3&
state is only excited by two-step processes in the present
calculation, the coupling 4g, —+3& is very important. As
the 4z, wave function has E=O, 2, and 4 components,
the strength of this direct coupling is greatly enhanced.
However, this is not the case for the 4g, of Mg which
has only a pure K=O component.

In a second set of calculations, we have included the
members of the g.s. and the P bands. As can be seen in
Fig. 12, the prediction of the 0~ angular distribution is
only fair; the calculation does not reproduce the pattern
and slope of the experimental data beyond about 17'. In
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FIG. 12. Angular distributions for He scattering from (a)
the Op+ and (b) the 2p+ states of Si. The solid curves are the re-
sults of the present coupled channel calculations. The dashed
curve has been drawn to guide the eye through the experimental
data taken from Ref. 41.
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FIG. 13. Fractional differences of total neutron cross sec-
tions of (a) ' Sm, (b) ' Sm, and (c) ' Sm relative to ' Sm. The
solid (dashed) curves are results of the ECCM combined with
the DDM (HFB). Both types of calculations included the cou-
pling of the ground state (0+) and the first excited state (2+).
The experimental data are from Ref. 46.
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the same figure,
'

we have presented for the 2+ state the
calculated and the experimental angular distributions. In
order to facilitate shape comparisons between them, we
have drawn a dashed line though the experimental data.
We can see that the predicted angular distribution repro-
duces the experimental pattern fairly well. On the other
hand, the predicted excitation strength is too high by a
factor of 3. This could come from the fact that in the ac-
tual nuclear structure calculation, this state is located at
6.43 MeV excitation energy, whereas the corresponding
experimental energy is 7.38 MeV.

C. Analysis of 0.75—15 MeV
neutron total cross sections for Sm isotopes

The nuclear deformation may be deduced from an
analysis of baryon elastic and inelastic scattering cross
sections, from the analysis of total neutron cross sections,
and also from total neutron cross section differences for
pairs of isotopes. The effect of nuclear deformation on
neutron total cross sections was first, measured at 0.35
MeV for an oriented target, ' Ho. Later, total neutron
cross section differences for unoriented targets were mea-
sured in the energy range 0.75—15 MeV for even Sm iso-
topes. The interpretations of these last experimental
findings were made via coupled channel calculations in
the frame of the rotational or the vibrational model. We
present here, so as to test our model, a brief analysis using
deformation dependent wave functions. The nuclear wave
functions employed for that purpose were calculated in
the DDM for ' ' ' ' "Sm and from the HFB method
for ' Sm The OMP parameters displayed in Table I are
for ' Sm. For the other isotopes, the OMP parameters
can be obtained using the usual isospin dependence for the
potential strengths: V~ ——18 MeV and 8'D~ ——9 MeV.
The calculated neutron total cross sections for ' Sm are
in fair agreement with experiment. The calculated neu-
tron total cross section differences between ' Sm, ' Sm,

Sm, and ' Sm are presented in Fig. 13 together with
the experimental values of Ref. 46. There it was surmised
that the change in the relative difference between the 7.
MeV maximum and the 2 MeV minimum is a measure of
the difference in deformation between these isotopes. As
the calculated curves reproduce, in a satisfactory way, the
relative differences, we can conclude that the collective
properties of these isotopes are consistent with our model.

Finally, the angular distributions, computed using the
present optical model parameters and wave functions, are
in good agreement (see, for example, Figs. 10 and 11 of

Ref. 13) with recent neutron elastic and inelastic scatter-
ing data for these Sm isotopes.

VI. CONCLUSIONS

We have presented an extended coupled channel
method for baryon scattering cross-section calculations of
great versatility. This method can be employed for nuclei
which can be anywhere in between the two limits of the
Bohr-Mottelson model. Moreover, it can also be em-

ployed for a nucleus with the coexistence of different
shapes at different excitations.

For practical reasons, the optical potential was not.

treated in a microscopic way, and thus some phenomeno-
1ogical parameters are still needed. These parameters can
be easily determined from a fit to the elastic scattering
data only. However, the present model differs from the
phenomenological collective models in the radial depen-
dence of the various form factors. These form factors are
closely related to the nuclear structure wave functions and
can differ, even for the same multipole, from state to
state.

As illustrative examples of the extension of the coupled
channel method, we have presented form factors, angular
distributions, and cross sections for baryon scattering
from several nuclei: Mg, Si, and ' ' ' "Sm. We
have shown that the same model can be used, without any
additiona1 parameters, for scattering from the ground-
state band, the gamma band, as well as the beta band. Al-
though some problems remain because of less accuracy in
the nuclear structure wave functions of higher states, it is
generally not necessary to use any renormalization factors.

It would be interesting to test more accurately the radi-
al dependence of the form factors by compa, risons of cal-
culated results with the experimental data for more ener-
getic projectiles (for instance, 500 MeV protons). Howev-
er, our main conclusion is that the few illustrative exam-
ples already indicate that the method presented here pro-
vides a powerful tool for analyzing baryon scattering from
various even-even nuclei.
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