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A fully microscopic calculation for pion inelastic excitation of.giant resonances in which random phase

approximation transition densities are used is presented for the first time. The mixing of isoscalar and iso-
vector modes is incorporated in the random phase approximation calculations and its effect on cr(m ) vs

o-(sr+) is discussed. Comparison with existing data is made and reasonable agreement is achieved.

Nuclear giant resonances are considered as fundamental
modes of nuclear motion and are usually classified as either
isoscalar or isovector modes of vibration (labeled r =0 or
r=1, respectively). In terms of the constituent nucleons,
r =0 and r =1 modes consist of particle-hole (p-h) pairs
whose isospins indicate a charge-symmetric state and a
charge-antisymmetric state. For a p-h pair in N ) Z nuclei,
however, charge symmetry is not an exact symmetry, and
the classification of giant resonances. as either a v =0 or a
v =1 mode is not precise. In such nuclei, mixing between
these modes is expected from symmetry-breaking p-h exci-
tations involving the excess neutrons only or involving the
protons whose neutron analogs are excluded by the excess
neutrons due to the Pauli principle. This mixing of modes
should not be confused with isospin mixing between the to-
ta/ isospins obtained by coupling the p-h isospins to the
ground-state isospin T = (X —Z)/2.

In addition to symmetry-breaking p-h configurations, a
small amount of mode mixing is expected from charge-
symmetry-breaking parts of the Hamiltonian itself, such as
the Coulomb interaction. (This is the only source of mode
mixing for an N = Z nucleus and in this case is also isospin
mixing. ) Still, the classification of modes into r =0 and
r =1 is meaningful for the case of collective states in medi-
um and heavy nuclei since, as implied by the properties of
the nucleon-nucleon interaction, ' the mixing should be
quite small.

To understand processes that may be sensitive to small
amounts of mixing, it is necessary to include this effect
when calculating these processes. For example, a meaning-
ful comparison among various electromagnetic and hadronic
probes that inelastically excite the same giant resonance re-
lies upon the detailed isospin composition of the giant reso™
nance. One process in particular is pion inelastic scattering.
The comparison of m+ to n- inelastic scattering around the
(3,3) resonance to the same nuclear state has proven to be
very useful in determining isospin mixing and the proton-

neutron content of states in light nuclei. Recently, m+ and
inelastic scattering for " Sn and Pb was performed '

and in the case of the giant isoscalar quadrupole the ratio of
cross sections R = o-(m )/o-(n+) in the region of the first
maxima was observed to be 8 = 1.9 for " Sn and 8 = 2.8
or 20&Pb.

We present results of a fully self-consistent, unrestricted
p-h continuum random phase approximation (RPA) calcula-
tion' of isoscalar-isovector mode mixing. We use the
results to calculate sr+ and m inelastic scattering to giant
electric quadrupole resonances and compare these cross sec-
tions to those recently measured. 4 5

Giant resonances are related to strength distributions cor-
responding to one-body operators of either isoscalar or iso-
vector type,

Q = X f(r„,o„)or Q"'= g f(r„o.„)r„(k)
k=1

Here f (rk, ok) denotes a function of space and spin, and

r„(p,= 0, + 1) are the nucleon isospin operators. In this
work we consider only the p, =0 component. If, for a given
nuclear state li), the transition strengths

S;(r)= l&i IQ"lo) I', f'or v=0, 1

are such that S, (0) ))SI(1) [SI(1)» S;(0)], then this
state is predominantly a ~ = 0(r = 1) mode. The nuclear
response can also be discussed in terms of the neutron and
proton transition strengths. In this case the two relevant
operators are

Q "'P'= g f(rk, ok) 2 [I +rp(k)]
k= I

Our calculations of the J = 2+ resonance in a series of nu-
clei are performed using the Green's function methods with
a Skyrme III interaction, taking into account all relevant
isoscalar and isovector one-body operators simultaneously.
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TABLE I. Total strengths and average energies of the giant electric quadrupole resonances. The energies
in parentheses are experimental values.

Nucleus (MeV)

s(o)
(fm4)

s {1)
(fm4)

s(n)
(fm4)

s(p)

(fm4) s(n)
s(p)

4'Ca

4SCa

'0Zr

120Sn

20spb

17.2 (17.1)

4.7 (3.83)
17.5

5.9
14.8 (14.1)

6.1
13.6 (13.3)
25.9

6.4 (4.1)
12.0 (10.9)

390.8

97.3
5.14.8

319.2
1635.4

184.2
2414.6

146.&

2822.6
6434.7

40.3

22.7
28.5

36.0
6.0

3,4
115.3

1705.5

l, 16.9
388.0

97.8

53.5
179.8

142.4
448.2

34.4
85-7.9
513.5

1022.0
2299.6

118.0

6.5
91.8

35.2
372.5

59.4
407.1

412.7

447.7
1111.5

0.83

1.96

1.2

2.10
1.24

2.07

1.0

1.96

1.56

1.96

2.36

Therefore, our calculations yield, among other quantities,
the amount of mode mixing. The distribution of strength
for the operators in Eq. (1) is computed, taking
f (r) = r Y2„(Q,). The mixing of the r = 0 and r = 1

modes has a very small effect on the energy positions. We
also calculate separately the neutron and proton strengths
S(n) and S(p), using the operators Qt"'~ in Eq. (3).

We find the isoscalar strength S (0) to be concentrated in
two peaks in all calculated nuclei except Ca, in agreement
with other calculations. The lower 2+ state is located
below the particle-emission threshold, and the higher state
(the giant isoscalar quadrupole) is narrow and carries about
70% of the isoscalar energy-weighted sum rule (92% in
"Ca). In Table I we present the S(0), S(l), S(n), and
S(p) for the 2+, "r=0" states. The results concerning the
low-frequency 2+ states in Zr and "Sn should not be tak-
en too seriously, since these states are known to be sensi-
tive to the degree of shell fillings. ' For ' Sn, as a represen-
tative case, the results for the region of the isovector quad-
rupole are also presented. Here the strength is very frag-
mented.

We note, in general, that mode mixing in the region of
the giant isoscalar quadrupole is small and the ratio of
S(l)/S(0) in this region is only a few percent. The largest
mixing occurs in ' Sn where this ratio is about 0.05, and
the purest 7 =0 state in Zr where the ratio is less than
0.01. In Ca the v =0, v =1 mixing is equivalent, of
course, to the isospin mixing in the giant resonance and is
due to the Coulomb force. The mixing in the region of the
isovector quadrupole is also small. For example, in ' Sn
the ratio of S(0)/S(1) is 0.09. In spite of the usually very
small r =0, r = 1 mixing, the S(n) and S(p) strengths some-
times differ substantially in the region of the giant reso-
nance (see Table I). The ratios S(n)/S(p) for the giant
isoscalar quadrupole fluctuate around the value (N/Z)2.
The closeness of S(n)/S(p) to (X/Z)' for the giant reso-
nances signifies the degree of collectivity (coherence) of the
excitation.

Within the present framework we can determine the
transition densities separately for protons and neutrons. As
an example, we show in Fig. 1 the radial parts Ft"~(r) and
F ~ (r ) of the transition densities

for the peak energy of the giant isoscalar quadrupole in
Sn. The curves are normalized, respectively, to the total

S(n) and S(p) strengths integrated over the area of the
peaks.

The transition densities obtained from the above structure
calculations can be used directly in distorted-wave impulse
approximation (DWIA) calculations of pion inelastic scatter-
ing. Within this reaction framework, the amplitude for a
m--induced transition is given in terms of m- distorted
waves and a nuclear matrix element of the pion-nucleon
transition operator. For the calculations presented here we
adopt the DWIA formulation of Ref. 8.

In Table It we list our calculated m and m+ differential
cross sections and the ratios R =a(m )/ (om+) for the
quadrupole excitations given in Table I. Some experimental
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FIG. 1. Radial parts of the microscopic transiti' n densities for
, the isoscalar giant quadrupole in Sn.
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TABLE II. Differential cross sections and ratios at angles for which o-(m ) maxima occur. The values of o- and cr+ are in units of
mb/sr.

E T~
Nucleus (Me V) (MeV)

Model 1 Model 2 Experiment

40Ca 17 2
4'Ca
48Ca 17 5
9oZr 5.9
9ozr 14 8

' OSn 6.1
"OSn 13.6
'"Sn 25.9'
208Pb 6.4
208pb 12.0

130
180
180
165
165
130
130
130
165
165

4.90

3.19

5.07

1.78

3.73

4.32

1.30

1.13

1.23

1.16

2.31

3.63

6.09

1.78

3.19

3.91

2.29

1.30

1.38

1.59

1.69

2,44 2.05 1.19 1.12 + 0.23
1.40 0.59 2.38 3.51 + 0.46
4.64 3.60 1.29
1.31 0.60 2.17
4.07 3.33 1.22
0.17 0.19 0.90
2.68 1.67 1.61 2.06 + 0.33
1.18 0 88 1.34
2.01 1.22 1.65
3.80 2.24 1.70 3.30 + 0.65

1.07 + 0.28 1.05 + 0.35
1.52 + 0.37 2.31 + 0.4"

1.09 + 0.16 '.9 + 0.4'

1.18 + 0.25 2.80 + 0.8

'Reference 9.
~Reference 10.
'These results were obtained for the 8Sn target (Ref. 3).

The average energy of the ~ = 1, 2+ distribution of strength.
'Reference 4.

cross sections are also included in Table II. The incident
kinetic energies (T ) were chosen to match the available
experiments, and the values of the calculated cross sections
were taken at the angles at which the cr(7r )'s reach their
first maxima. The columns labeled models 1—3 correspond
to the following choices of ground state and transition den-
sities.

For the ground states in models 1 and 2 we used the pro-
ton distribution (p~) determined from electron scattering"
and we assumed the neutron distributions had the same
shape as p~', that is, p„=A'p~/Z. In model 3 we used the
Hartree-Fock densities calculated with the Skyrme III in-
teraction. For the transition densities, in models 1 and 2 we
used the same Tassie' shape for the neutrons and protons,
Ft""~(r)=Pt"'~rpg„but with different normalizations. In
model I we set Pt"~ = Pt"~ =

2 Pets (where Pots is the classi-

cal isoscalar sum-rule result' ); and in model 2 we set
P " = %Pots /2 and P " = ZPcts/A. The transition densities
used in model 3 were the microscopic RPA transition densi-
ties normalized to the strengths in Table I.

Many interesting points can be seen from Table II.
Under model 1 we see that even for a pure isoscalar
response the ratio R&1. This primarily results from the
difference between the m and m+ distortions caused by the
Coulomb field of the nucleus. Models 2 and 3 incorporate
the effects of mode mixing in the nuclear response, and
when compared with rqpdel 1 show the extent to which this
affects the cross sections. Although model 3 includes all of
the microscopic ingredients as compared with model 2, there
is very little difference between these two models for the ra-
tio R. This is due to the fact that the microscopic response
is indeed a collective response. Note the %=Z case of

Ca, where models 1 and 2 give identical results for R, but
in model 3 R is reduced to 1.2. This reflects the fact that
pt"~ & pt"~ in the surface. For the other (W )Z) cases the
8 's of model 3 (and 2) are larger than those of model I be-
cause p~~ & p

" in the surface.
Although the ratios R do not differ significantly between

models 2 and 3, the o-'s do show a sensitivity to the detailed

shapes of the microscopic p's. For the giant resonances the
o-'s given in model 3 are smaller than those of model 2 and
are in better agreement with the existing data. In Ca the
only data are for the low-lying 2+ state and, as compared
with our calculations, the large values may indicate that it
has more strength than given by our RPA results. For ' Sn
we have also calculated o-'s associated with the isovcctor gi-
ant quadrupole by integrating (at fixed 8) the double dif-
ferential cross sections over the region where most of this
strength is located (24 to 30 MeV).

Our ratios in Table II tend to be somewhat smaller than
the experimental results, particularly for Pb. A source of
discrepancy is that our rr(sr+)'s are too large. It is possible
that the Skyrme III force may overestimate the coherence in
the proton p-h contributions in this case. Also, corrections
to the reaction mechanism arising from medium modifica-
tions of the pion-nucleon interaction may influence the ra-
tios of the m to m

+ cross sections. For energies around
the (3,3) resonance, such corrections can be treated in the
framework of the 6-hole theory. ' Recently Karapiperis and
Moniz' discussed such corrections to rr +/7r inelastic
scattering. Using their parameters for the renormalized m-N
amplitudes, we find that the ratio R for the giant quadru-
pole in model 3 now becomes 1.72 in ' Sn and 1.81 in

Pb. Thus medium corrections suggested in Ref. 14 in-
crease the ratio R by about 6%, making the agreement with
experiment better. %e feel that the comparison of m to
sr+ inelastic scattering to giant resonances can help con-
strain the theoretical models of collective motion and exper-
iments to other giant resonances, such as the isoscalar
monopole, would be of considerable interest.
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ment of Energy.
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