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Phase ambiguities in the O(6) limit of the interacting boson model
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We present a generalization of the O(6) limit of the interacting boson model by considering an F. 2 tran-
sition operator which is different from the quadrupole operator used in the Hamiltonian. We analyze, both
quantum mechanically and in the classical limit, under which conditions this more general O(6) limit is in-

variant under time reversal.

It is well kriown that there exists a sign ambiguity in the
definition of the generators in both the SU(3) and O(6)
limits of the interacting boson model (IBM). In the SU(3)
limit the quadrupole operator is defined as (s d
+ d s )"'+x(d d ) t", where x equals either W7/2 or
—J7/2, both choices leading to a SU(3) Lie algebra. As
long as one consistently uses the same quadrupole operator
in the Hamiltonian and in the E2 transition operator, the
properties of all physical observables wi11 be independent of
this sign choice. In the case of the SU(3) limit, Dieperink
and Bijker have shown that the existence of this sign ambi-
guity can be elegantly exploited to unveil a new kind of
SU(3) symmetry [which they denote as SU(3)'] in the
neutron-proton interacting boson model (IBM-2), arising
when the neutrons have one sign in the quadrupole opera-
tor and the protons the other. '

Given the important consequence of the sign choice in
the SU(3) limit, it is natural to investigate the analogous
problem in the O(6) limit. The problem can be shown to be
different in two basic aspects. (i) In the O(6) limit there
exists a phase ambiguity rather than a sign ambiguity. (ii)
Attempting to generalize the O(6) limit of the IBM-2, by
taking different phases for neutrons and protons, leads to a
Hamiltonian which is, in general, complex and hence not in-
variant under time reversal.

In this paper, we analyze the problem of the phase ambi-
guity in the O(6) limit. Because of (ii) we shall make no
distinction between neutrons and protons, i.e., we confine
our analysis to the IBM-1. First, we present the problem in
its full generality and, subsequently, we discuss under which
conditions this generalized O(6) limit is invariant under
time reversal. Much insight can be gained by studying the
classical limit of this more general O(6) symmetry; in partic-
ular, we show that a generalized O(6) Hamiltonian neces-
sarily leads to a phase in the boson condensate.

The generators of the O(6) subgroup of U(6) can be writ-
I

(lb)

I[N]~.~,L,/!d), = Xg„;,, (@)~[N]n, rv, L,m), (4)
Ifg

where we use the notation of Ref. 2, then one finds for the
transformation brackets (for o- = N )

ten as

(s'd + gd's )„"', p, = —2, . . . , 2, (la)

(d d)„"', p, = —1, 0, 1

(dd)3, p, = —3, . . . , 3 (lc)
One usually puts g = + 1 (Ref. 2) or g = —I (Ref. 3).
However, it can be shown that the generators (1) close
under commutation for arbitrary g. If one requires that the
Hamiltonian, which is written in terms of quadratic Casimir
operators of the subgroups of the chain, is Hermitian, one
obtains the condition ~(~ =1 and thus one may put g=e'~
with 0 ~ @~ 2m. One can also show that by taking the
Hermitian form of the generators [i.e. , e '~i (s d )„
+e'~i2(d s)~~ ~], the commutation rules of this generalized
O(6) group reduce to the usual ones with @=0. The
Casimir operator of O(6) corresponding to this choice of
phase 1s then

C20(6) = N (N + 4) —P@ Pg (2)
where

P~ =(s s —e'~d d ) (3)
The Casimir operators of O(5) and O(3) are not affected by
the choice of phase. Note that the operator (2), though
Hermitian, is in general complex.

It is now straightforward to repeat for this generalized
Hamiltonian, the analysis of Arima and Iachello' or,
equivalently, the one of Castanos, Chacon, Frank, and
Moshinsky. 3 One finds that (i) the energy spectrum is in-
dependent of @ and (ii) the wave functions do depend on $.
If one expands the wave function in a vibrational basis, i.e.,

I(n~ — )P/2
4..,.(@)=~ (N —r )!(N + r + 3)!(nq —7 + 1)!!

(N —nq)!2 (N + I )!(nq —r + 1)!(nq+ r +3)!!N+1 (5)

For arbitrary values of o-, the coefficients (, , ,(@) can be derived straightforwardly from the expressions given by Castanos
et al.
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The next step is to generalize the E2 transition operator, which can be defined as

T(E2;e) = e "'(s'd )"'+e" '(d's )"'
The reduced matrix element of this operator between the states (4) is given by

y& [N)Nr + IvsL'I IT(E2;&) I I [&)WrviiL &,t

(6)

N+~+4 (++ +3)(2 +5) i
& + I + I

2 %+I
+e'" "2 '"(&—r —I)&r+Ir+»~L'Ildllr+2rv~L&] . (7)

This sho~s that, if one used the same quadrupole operator
throughout (it =8), neither the energies nor the 8(E2)
values depend on the choice of phase, as is the case in the
SU(3) limit.

It should be emphasized that, for the model to be invari-
ant under time reversal, additional restrictions have to be
imposed on the values of @ and 0. A first restriction fol-
lows from the fact that a time-reversal invariant Hamiltoni-
an should be real; this implies @=0 or iti=n in Eq. (2).
Yet, this condition does not mean that the model becomes
less general, since the energy spectrum does not depend on
@ and, furthermore, Eq. (7) shows that the B(E2) values
only depend on the phase difference @—8. Secondly, time-
reversal invariance also restricts the form of the electromag-
netic transition operators, and this leads, in the case of E2
transitions, to the condition

given by

B(E2;r+ ILi 7Lf) v+2 8(E2;7 +1L; re)+
i N+1

(12)

In Fig. 1, we show the 8 (E2) values in the two cases, nor-
malizing all 8 (E2) 's to 8 (E2;2~+ Gt+ ).

We now turn our attention to the analysis of the classical
limit of the generalized Hamiltonian of Eq. (2), for which
we will folio~ the methods and conventions of Refs. 5 and
6. Assuming a boson condensate with axial symmetry, i.e.,

ie &
= (A!)-'i'(I,')~IO&

with

&+flIT(E2)II+;&"=&+flIT(E2) II+;& . I p = gpss + gpgdp (14)

The problem with this condition is that it is valid only when
the basis states V; and 0'y have the appropriate transforma-
tion properties under the time-reversal operation, and that
the effect of such an operation on the s and d bosons is not
known. Therefore, we replace Eq. (8) by a condition (also
following from time-reversal invariance) which is measur-
able and hence independent of the basis chosen. Denoting
the E2 matrix element as

minimization of the expectation value of the generalized
pairing Hamiltonian

g xiii'goi = EO'goi
J

(16)

0 =APp ~ Pp

leads to the following Hartree equations for the variational
parameters qo; (with i,j = s, or d )

~..= &~. ll7 (E2) ll~. &,

invariance under time reversal requires

~12~23 ' ' ~n —1,n~n1 ™1n~n,n —1
' ' ' ~32~21 (10)

E
(Mev)

1.5 —8'

0,(6) 0 (6)

i.e., the product of a ring of matrix elements is independent
of its direction (clockwise or counterclockwise). With the
help of Eq. (7), one finds in the generalized O(6) limit

20
11

105
242

22

6'

525

~12iM23 ' ' ~a —1n~n 1
= ( j,ldln~n, n —I

' ~32~21)

Both the Eqs. (10) and (11) are certainly satisfied if the ma-
trix elements M „are real. However, because of the selec-
tion rule b, r = + 1, which is valid for E2 transitions in the
O(6) limit, nonzero rings only exist for an even number of
matrix elements and, consequently, Eqs. (10) and (11) can
also be satisfied simultaneously if the matrix elements M „
are purely imaginary. The conclusion of this analysis is that
only two, nonequivalent forms of the O(6) limit are invari-
ant under time reversal. (i) $ = 0 and 8 = 0 (equivalent
with it =m. and 8=n) This is the. "normal" O(6) limit, 2'
which we denote as 0+ (6). (ii) it = 0 and 8 = m (equivalent
with @= vr and 8=0). This case will be denoted as 0 (6).

The relation between the 8(E2) values in both limits is

0.5 - 4
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MW 10~
63

f
200 4o~+ 100

20 21
63
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FIG. 1. The 8(E2) values, normalized to B(E2;21+ 01+), in
the 0+ (6) and 0 (6) limits of the IBM for N ~. To find the
expressions for finite W, one should multiply these values by
(N —7g)(N+7g+4)/N(N+4), where v& is the ~ quantum
number of the final state.
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with

h„= 2A (N —1)go, rtp,

h,d = hd", = —2A (N —1)e'~riosnod

hdtv = 2A (N 1 ) rl od rpid

Eo= 2& (N —1)[ (go 7io ) —e' (50d7io*)

—e' (go*god )'+ (go~god )'] .

(17a)

(17b)

(17c)

(17d)

hence not forbidden by time-reversal considerations, the bo-
son condensate (20) contains an imaginary phase. It pro-
vides an explicit illustration of the fact, which was already
noted before, 7 that the variables in the boson condensate
are complex in general. Finally, for the expectation value of
the quadrupole operator (6) in the boson condensate, one
finds

(q'nr I T(E2;e) lq'~) =
2 cos[ 2 (P —8) ](1+p')

Neglecting an overall phase in the boson condensate and
taking into account the normalization of qo, and god, we
make the substitution

( 1 + P2) —1/2eia

no~ (I=+ P') -"'P,
(18a)

which transforms Eq. (16) into

(1+p2)(1 —e' ~+2 p2) = [1—2p cos(@+2o.) +p" ] . (19)

Solving for the rea1 and imaginary parts of this equation
gives as a solution for the boson condensate

I o'= (1+P') ''(e '~"-s'+Pdp ), (20)

with P = 0, + 1. Calculation of the expectation value of the
Hamiltonian (15) in the boson condensate (13) yields

(4~)H)4~) =AN(N —1) 1+ (21)

which shows that, for A ) 0, the solutions p= +1 corre-
spond to a minimum (either prolate or oblate) whereas
P=0 corresponds to a maximum. It is important to note
that also for @=m, when the Hamiltonian (15) is real and

for 0+ (6)2pN
I+p

0 for 0 (6)

(22a)

(22b)

The fact that, in the classical limit, the expectation value of
the quadrupole operator vanishes in the 0 (6) limit, agrees
with the result of Eq. (12). It also illustrates that in the
0 (6) limit the eigenstates are not coherent with respect to
electric quadrupole transitions.

In conclusion, we presented a generalization of the O(6)
limit of the IBM and we analyzed under which conditions
this generalization is invariant under time reversal. The
analysis was performed both quantum mechanically and in
the classical limit. The main conclusion is that only two for-
mulations of the O(6) limit are possible, which differ in
their electric quadrupole properties.
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