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Recently we have seen a series of highly successful fits. to data for nucleon-nucleus scattering
which are based upon the use of the Dirac equation. In the phenomenological analysis the potential
in the Dirac equation is usually limited to two terms, a {Lorentz) scalar and vector potential. In a
recent work we have shown that there are eight scalar invariants that are needed to fully specify the
relativistic interaction of an off-shell nucleon with an on-shell, spin zero nucleus. It appears that the
phenotnenological potentials are effective potentials in the sense that their values need to be adjusted
to compensate for the use of a highly simplified phenomenological form. In this work we present

I'

calculations of the complete potential, including estimates of the eight terms noted above. Our pre-
liminary results indicate that the values of the phenomenological potentials can be reproduced in a
microscopic calculation and bear out our ideas concerning the significance of the phenomenological
potentials. It is found that if one wishes to obtain the correct value for the spin-orbit potential
strength, for example, in a microscopic calculation, one must consider the optical potential in its
most general form. At projectile energies greater than 300 or 400 MeV we expect that only two of
the eight terms noted above will be important and therefore the relativistic impulse approximation
will provide a satisfactory basis for calculating the optical potential.

I. INTRODUCTION

Recently it has become clear that it is appropriate to
use the Dirac equation for the study of nucleon-nucleus
scattering. The studies which have been made are of two
types: There is an extensive body of work in which one
fits the parameters of (Lorentz) scalar and vector optical
potentials so that the data on differential cross sections
and various spin-dependent observables are reproduced
in addition, we have parameter-free calculations based
upon a relativistic impulse approximation. These
parameter-free calculations appear to be most useful for
projectile energies greater than 300—400 MeV, since, at
the higher energies, medium corrections and effects due to
particle exchange are less important. At these higher en-
ergies the calculations based upon the relativistic impulse
approximation are able to reproduce the phenomenologi-
cal strengths of the scalar and vector potentials quite
well.

At lower energies the situation is more complex. One
can use results of our nuclear matter calculations (which
include medium modifications of the scattering ampli-
tude) to obtain estimates of the scalar and vector poten-
tials. For example, we can write for the self-energy of a
nucleon in nuclear matter

&(p) = U, (p)+y'U. (p) . (1.2)

[The Dirac equation is usually solved using local poten-

&(p)=&(p)+y B(p)+ C(p),
mN

which may be contrasted with the phenomenological form
used for the self-energy, in most calculations, '

tials. In that case, for a uniform system, the potentials
U, (p) and U„(p) would only depend on the energy of the
nucleon. ]

Values of A (p), B(p), and C(p) are presented in Ref. 6.
In the nonrelativistic domain, one can write

-+ 2
p inc

&inc =
2&1N

+ U.tt(p),p
2' ~

(1.3)

and identify e;„, with the energy of the projectile nucleon.
Then, p is the momentum of the nucleon in nuclear
matter or in the nucleus when the nucleus is approximated
by a uniform system. Values of U,tt(p) are given in Ref.
6, and Eq. (1.3) can be used to convert tables of A(p),
B(p), and C(p) to A(e;„,), B(e;„,), and C(e;„,). When
this comparison is made it is found the magnitudes of A
and B are about 30 percent less than the magnitudes of
U, and U„ in the energy domain 0 & e;„,~ 200 MeV.

Now we wish to stress that this discrepancy is not in
any way a fundamental problem but has its origin in the
fact that we are not comparing the correct expressions. In
order to carry out this comparison properly one needs to
fully develop the microscopic theory to obtain expressions
for the effective scalar and vector potentials such as U,
and U„. One test of the microscopic theory then lies in its
ability to reproduce these effective potentials.

In Sec. II we review our results for the parametrization
of the relativistic optical potential which describes the
scattering of a nucleon from a finite nucleus. In Sec. III
we indicate how the various terms in this potential may be
calculated, and in Sec. IV we compare our results with
those of Dirac phenomenology. " Section V contains
some concluding remarks and conclusions.
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II. PARAMETRIZATION OF THE RELATIVISTIC
OPTICAL POTENTIAL

In a previous work we gave the following general ex-
pression for the nucleon self-energy for a finite system:

etc. Here, w ( p,s)=v( —p, —s) of Bjorken and Drell.
In turn, we also introduced functions S

&
+, S2++,

Si+, S2+, etc., defined Via the relations,

( k ',s'
~

X++(W) k, s )

k k'(k'~X(W)ik)=~+)"B+y. "+" C
2mN

. o"(k'x k)
S ( +l I 2 S

+ y.(k' —k) — y'y (k' —k}
mN 2mN

y'y. (k '+k)+, X (k 'x k)
2mN mN

( k', s' X+ (W)
i
k,s)

s' o' —+, Si + o-.k k'
E'

' s+-
2

E

(2.4)

, y'X. (k'&&k) .
mN

(2.1) (2.5)

( k', s'
i
X++(W)

i
k,s)

= u(k ',s')( k '
~

X( W)
i

k )u(k, s),
(k,s is+-(W) ik,s)

(2.2)

=u(k ',s')(k '
i
X(W)

~

k)w(k, s), (2.3)
I

In nuclear matter, this expression reduces to that given
previously in Eq. (1.1}. We also found it useful to define
the following quantities:

etc. Here,

e(p)=EN(p)+mN ——(p +mN)' +mN .

Now, comparison of our model with the phenomeno-
logical models is best done by calculating S& +, S2++,
etc. , in the two formalisms. In order to reduce the length
of the equations we will note at the outset that the quanti-
ties D, F, and 6 appear relatively unimportant. Therefore
we will record the approximate expressions [with
N =(e/2mN)', N'=(e'l2 mN)' ],

Si++(k ', k)=NN' 'A 1—k k'
+B 1+ k k'

E'E

C+
2mN

&2 2k' k+ + k k'(E+e')
EE'

E+ +
2mN E'

=(A+B) .

k k '(@+e')
E'6'

H k' k —(k.k')
2 I

mN
(2.6)

(2.7)

In Eq. (2.7) we have now neglected terms of order
(k /4m N },although we include these terms in our calcu-
lations. Using similar approximations, we have

Sg++(k ', k)=( —A +B +2C 2E —4H), —
Si+ (k ', k)=( —A +C),
S2+ (k ', k)=(B E), —

(2.8)

(2.9)

(2.10)

etc.
In all of these expressions A, B, C, E, and H are func-

tions of k, k ', and W, the total energy in the center of
mass frame.

Let us now compare these results with the model for
the self-energy used in phenomenological studies, '

S2+ (k ', k)= U„, (2.15)

etc.
We compare Eqs. (2.7)—(2.10) with Eqs. (2.12)—(2.15)

and assume, as is borne out in our current calculations,
that C) 0, E &0, and H &0. (Also 12C-2

i
4H

i
in a very rough approximation. ) We see that

the simple model of Eq. (2.11) is really not flexible enough
to reproduce the full complexity of the microscopic
model, since at this point the microscopic model has five
significant parameters. However, one may infer the kind
of phenomenology that might lead to a reasonable result.
Let us assume that the microscopic theory is correct.
Then we could set U, =A —

~

5
i

and U, =B+
i
5 i,

where 25= (2C 2E —4H). Then we—would have
Us+ Uu =A +B and

X( r) = U, (r)+ y U„(r) .

In this case we would have

Si+ (k', k)=(U, +U„),
S2++(k ', k) =(—Ug+ U„),
S|+ (k ', k) = —U, ,

(2.11)

(2.12)

(2.13)

(2.14)

—U, + U„=—A +B+25=—A +B+(2C 2E 4H) . — —

Of course this would not give S&+ and S2+ correctly,
but the general trend would be satisfactory for these quan-
tities. Furthermore, at the low energies which we will
consider here, the terms of the optical potential involving
Si+ and S2+, while important, are not of major signifi-
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U, (r) = U,f,(r),
U„(r)= U„f,(r),

where

(2.16)

(2.17)

cance. (As one approaches e;„,-200 MeV, Si++ becomes
small and the relative importance of the relativistic
corrections involving Si+, Si +, Sz+, and S2 + become
progressively more important. )

We conclude from these observations that the magni-
tudes of U, and U, should not be compared directly with
the theoretical values of A and B. In Sec. III, we will re-
port on the results of calculations of the quantities D, E,
F, G, and H. We will find it useful to use the results for
A, 8, and C taken from our nuclear matter calculations,
since these calculations include the full effects of correla-
tions, Pauli blocking, etc. Before leaving this section
however, we can note that the empirical potentials are
usually written as a constant times a local form factor.
For example, we may set

g(r)= 1+exp( —R /c)

r —R1+exp

(2.27)

with similar relations relating ( k
f
8

f
k ) and ( k

f
C

f
k )

to 8 and C . It is useful therefore to write

&kfA fk)=A&kff f», (2.29)

with similar definitions of 8, C, etc. Using this notation,
we have

C

The ratio p( Ca)/p is included to take into account the
fact that the central density in Ca is not exactly that of
nuclear matter. [Note that g(0) =1.] We then set

(kfA fk)= A fgf .(kff fk)
P (kff fk)

(2.28}

f, (r)=
1+exp

r —R

(p0/pNM }
r (2.18} Si++(k, k)=(A+B)(k

f f f
k), (2.30)

S2++(.k, k)=( —A+8+2C —2E —4H)(k
f f f

k),

Si++(k', k)=U, (k'
f f, f

k)+ U, (k '
f f, f

k),
(2.19)

S2++(k', k)= —U, (k'
f f, f

k)+U„(k'
f f„ f

k),
(2.20)

etc.
We will consider forward scattering and note that

(k
f f, f

k)=(k
f f, f

k) .

Thus we have, in an accurate approximation,

S i++ ( k, k ) = ( U, + U„)( k
f f f

k )

and

(2.21)

(2.22)

S2++ ( k, k ) = ( —U, + U„)( k
f f f

k ) . (2.23)

It will therefore be useful to extract a factor of ( k
f f f

k )
from our calculations of D, E, F, etc. We set

(kfD fk)= (kff fk),
(kff fk)

(2.24)

D&k ff (2.25)

and introduce similar relations for E, F, G, and H. For
B, and C we can use our nuclear matter results

(A,B,C ) in the following way. We write

&k'fg fk) (2.26)

Here, (po/pNM) is a constant, close to unity, that is intro-
duced in the phenomenological analysis. Therefore, we
can write, for the phenomenological model,

(2.31)

and so forth.
This formulation allows for a fairly direct comparison

with the phenomenological forms given in Eqs. (2.19) and
(2.20).

III. CALCULATION OF THE RELATIVISTIC
OPTICAL POTENTIAL

As noted in Sec. II, we can use our nuclear matter re-
sults to provide values of A, 8, and C. However, to ob-
tain estimates of D, E, F, G, and H we must carry out a
calculation for a finite nucleus. (We will perform our cal-
culations for Ca. ) The approximation used is depicted
in Fig. 1. Here an (off-shell) nucleon of momentum k is
incident on a nuclear target of momentum —k. The nu-

cleon is then scattered so that its momentum is k '. The
first part of the figure indicates the calculation of the op-
tical potential in the iIDpulse approximation. Here, we
perform the full integration over the spectator nucleus of
momentum Q. (Wave functions which are solutions of an
appropriate Dirac equation are used to parametrize the
density matrix of the target. ) Now in these calculations
the nucleon-nucleon scattering amplitude is approximated
by the exchange of cr, m, p, and co mesons with coupling
constants taken from the potential HEA of Holinde,
Erkelenz, and Alzetta. It can easily be inferred that the
parameters C, D, E, F, G, and H are nonzero because of
the exchange term shown in Fig. 1.

As we remarked earlier, we use our nuclear matter re-
sults for A, 8, and C. These results include the effect of
correlations. We have not as yet included correlation ef-
fects in the calculation of D, E, F, G, and H. Probably
the greatest uncertainty is introduced at this stage through
the neglect of tensor correlations which could effect the
pion exchange terms significantly. We keep this feature
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FIG. 1. Direct and exchange terms in the calculation of the
relativistic nuclear optical potential in the Born approximation.
The wavy line represents the exchange of a o., m, p, and co

meson. In our calculations, a complete integral is performed

over the spectator momentum, Q. (This approximation is used
for the construction of the quantities D, E, I', G, and H. )

IV. NUMERICAL RESULTS

We consider p- C scattering at T&
——80 MeV, where

T~ is the proton laboratory energy. From a phenomeno-
logical study' we have the values U, = —422.04 MeV
and U„=325.5 MeV and

( k
~

U,
~

k ) = f U, (r)d r,
(2m. )

(4.1)

in mind and consider our results for D, E, F, G, and H to
be somewhat uncertain. These uncertainties will be
resolved in a future publication where we also provide
more details of our calculations. However, considering
the current interest in this problem, we feel that our
present results, which we believe to be quite instructive,
should be presented at this time. Indeed, it is quite possi-
ble that the inclusion of correlation effects will not change
our present results significantly.

p'= &N(p)+ &++(p', p)
EN(P )

2 &+ (p, p)& +(p, p)

n'+&N(p) — „& (p', p)
EN(p)

mN+
EN(P)

(4.5)

phenomenological values of S& +, S2++, S&+, etc. We
keep corrections of order k /e in this evaluation. The
values obtained are listed in Table I under the column la-
beled phenomenology.

We now turn to our theoretical calculations. From Ref.
6, we find 3 = —268 MeV, 8 =192 MeV, and C=43
MeV [see Eq. (2.29)]. These numbers include the full ef-
fects of correlations and Pauli blocking. From our calcu-
lations of the diagrams shown in Fig. 1, we find iD=0
MeV, E= —33 MeV, iF=0 MeV, G =0 MeV, and
H = —10.7 MeV. Thus we see that potentials involving
D, F, and G are unimportant, as noted previously. Using
these values and keeping terms of order of k /e, we cal-
culate the numbers given in the second column of Table I.

It is, important to note that 2 is —268 MeV and
U, = —422 MeV. Furthermore, B = 192 MeV and
U, =325.5 MeV. It is clear from the comments made
here that direct comparison of A with U, and 8 with U„
is inappropriate. One should compare the effectiue central
and spin-orbit potentials that appear in the Schrodinger
equation. For example, we see that the coefficient of the
leading contribution to the spin-orbit potential Sz++ is
nicely reproduced in our microscopic model (see Table I).
However, if we were to compare S2++ to —A+B=460
MeV one would find a large discrepancy. Again, we re-
mark that this would be an inappropriate comparison.

One might be tempted. to compare the values of S~++
given in Table I; however, again a more appropriate corn-
parison is at the level of the effectiue central field for use
in the Schrodinger equation. We can set

P =EN(P)+ U,zz(P)

and note that

= —408.47 MeV fm (4.2)

(k
~

U,
~

k)=U, (k f, ~

k) .

Similarly, we have

(4.3)

This leads to the value (k
~ f, ~

k) =1.03 fm when use is
made of the relation

Phenomenology
(MeV)

Theory
(MeV)

TABLE I. Values of S~++(k, k), S2++(k, k), etc., for pro-
tons scattering from Ca with Tp =80 MeV. The first column
gives the phenomenological values and the second column gives
the theoretical values (see the text).

( k
~

U„~ k ) =317.3 MeV fm (4.4)

and the value (k
~ f„~ k) =1.03 fm . Since

( k
~ f„~ k ) = ( k

~ f, ~

k ), we see that the approximation
made in going from Eqs. (2.19) and (2.20) to Eqs. (2.22)
and (2.23) is quite accurate.

Now we note that at 80 MeV, X =e/2mN ——1.04, and
if we set

~

k
~

=1.954 fm ', we also have k !e =0.04,
with a=9.89 fm ' and mN ——4.75 fm '. We now use
U, = —422.04 MeV and U„=325.5 MeV to evaluate the

S++
s++
s+-
S',-.
s+-
s;+

S2

—69
777
439
439
339

—339
774

—100

—43

—52
696
323
323
230

—230
468

—49

—40
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We can then obtain U,tt(p) as

U tt(p) =
2

mN ~) IN

, E (p)
&+ (p)& +(p)

2EN(P)+ [&++(p)—& (p)]
EN(p)

(4.6)

For scattering in the forward direction we have

X++(p)=Si++(p, p), (4.7)

&+ (p)= P Si+ (p, p),
e(p)

(4.8)

(p)= Si +(p, p),
e(p)

(4.9)

(p)=Si (p, p) .

Therefore, we can write

(4.10)

U,tt(p) = S+++
EN(p) EN(p)

Si+ Si +

2EN(p)+ (Si++ —Si )
EN p)

(4.11)

V. CONCLUSIONS AND SUMMARY

where 'we have not indicated the arguments of Si++,
Si, etc., for simplicity'. Using the values given in Table
I, we obtain U,tt (phenomenological) = —43 MeV and
U,tt (theory) = —40 MeV. Thus the theory agrees quite
well with the phenomenological value for the depth of the
central potential when the relativistic correction, the
second term in Eq. (4.11), is included.

We may also remark that upon comparison of the num-
bers given in Table I, we see a large difference of the two
values of Si . It is easy to see that in the phenomeno-
logical model one must obtain S~ -Sz++. Since the
analysis of the data is sensitive to S2++ and rather insensi-
tive to the value of S, , we see that S~ is largely fixed
when fitting the spin-orbit strength in the phenomenologi-
cal model. In the microscopic analysis, one finds
Si &S2++ as may be seen from Table I.

off-mass-shell nucleon from an (on-shell) spin zero nu-
cleus. Our calculations indicate that five of these quanti-
ties make signficant contributions to the optical potential.
We have also shown that with the limited parametrization
(scalar plus vector potentials) of the conventional
phenomenological model, one needs enhanced magnitudes
for the scalar and vector fields to obtain the empirical
values of the spin-orbit potential. This enhancement of
the magnitudes of the scalar and vector fields, with
respect to theoretical estimates of these quantities, is need-
ed to compensate for the contributions to the spin-orbit
potential from the quantities C, E, and H.

There are various improvements that can be made in
our analysis. We need to study the role of correlations in
modifying the values of D, E, I', 6, and H since these
quantities have been calculated here using the Born ap-
proximation. We have also seen that there is excellent
agreement for the effective central potential, U,tt, when a
comparison is made between the phenomenological and
theoretical values for this quantity. A similar comparison
should be made for the effective spin-orbit potential; how-
ever, this requires a more detailed calculation than that
presented here if we are to include the contributions of the
relativistic corrections to this potential. (Such contribu-
tions involve Si+ and Si +.) The general trend for the
spin-orbit interaction may be seen to be given correctly
since the theoretical values and phenomenological values
of Sz++ are in rather good agreement. A more detailed
comparison of the effective spin-orbit potential [including
the terms involving (Si S~ + ), (S2 S2 + ), etc.] will be
presented at a later time.

As a final point we note that in our model the quanti-
ties C, D, E, F, 6, and H arise when one calculates ex-
change diagrams. (These terms would be zero in a Har-
tree approximation. ") Now as one increases the energy of
the projectile, such exchange terms become progressively
less important. The success of the (parameter-free) rela-
tivistic impulse approximation for energies greater than
about 400 MeV (Refs. 2—5) is then, in part, due to the rel-
ative unimportance of exchange effects at the higher ener-
gy.

We conclude that any attempt to calculate the relativis-
tic optical potential at low energies requires the calcula-
tion of all the pieces of the potential and not only its sca-
lar and vector parts. As we have remarked several times,
the phenomenological potentials are best thought of as ef
fective potentials, and rather complex microscopic calcula-
tions are needed to reproduce the magnitudes of these ef-
fective potentials.

An important conclusion of this work is the general ob-
servation that the phenomenological optical potentials
which are used in the Dirac equation do not have a direct
theoretical significance. As we have seen, there are eight
scalar invariants needed to describe the scattering of an
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