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Intermediate energy (300—1000 MeV) proton-nucleus elastic observables, obtained using the rela-
tivistic and nonrelativistic impulse approximations, are compared to each other and with p+ Ca,
'Ca, and Pb data. Systematic, energy dependent differences between the model predictions and

the data are observed and discussed. The underlying target densities are then adjusted in each model
to obtain best fits to the differential cross section and analyzing power data at each energy. The
variations in the resulting effective target density parameters show the deficiencies, with respect to
the energy dependence, of the relativistic and nonrelativistic impulse approximations. Improvements
which may eliminate some of the energy dependence are discussed.

I. INTRODUCTION

Traditionally, nonrelativistic (NR) microscopic models
have been used to describe intermediate energy proton-
nucleus (pA) elastic scattering phenomena through use of
Schrodinger equation formalisms which include relativis-
tic kinematics. Examples are the multiple scattering
series of Watson' and Kerman, McManus, and Thaler
KMT, the multiple diffraction theory of Glauber, and
the Bethe-Goldstone self-energy approach. Such ap-
proaches have met with considerable success in reproduc-
ing pA data at low and high energies. For instance, NR
models with Pauli blocking and binding energy effects in-
cluded in intermediate projectile —target-nucleon scatter-
ing states (i.e., medium effects) lead to good descriptions
of pA data at energies less than 300 MeV (Refs. 5 and 6).
On the other hand, nonrelativistic impulse approximation
(NRIA) models which do not account for nuclear medium
effects are reasonably successful at higher energies
(E&800 MeV) when second-order terms (i.e., those ac-
counting for target nucleon correlations) and electromag-
netic spin-orbit corrections are included. ' Thus, until a
few years ago, it seemed that accurate, parameter-free
descriptions of pA elastic and nonelastic scattering ob-
servables would eventually be achieved through use of
traditional NR approaches.

This view has now changed owing to the inability of
nonrelativistic calculations to account for recent pA elas-
tic scattering data at 500 MeV, particularly the pA spin
observables. ' ' Here the general characteristics of the
NRIA predictions include differential cross section mini-
ma which are too deep relative to the data (see Fig. 1 of
Ref. 8), forward angle analyzing power predictions which
are much too smooth compared to the rich structure of
the data (see Fig. 2 of Ref. 8), and theoretical spin-
rotation functions which display too little structure and
incorrect magnitudes in comparison with the data (see
Fig. 2 of Ref. 10 and Fig. 12 of Ref. 6). Further theoreti-
cal improvements in the NR multiple scattering models
proved fruitless, however. Alternate density models, dif-
ferent nucleon-nucleon (NN) phase shift solutions,

second-order optical potential terms, Fermi motion
averaging, Breit frame kinematics and relativistic spin
precession in the NN spin dependent effective interac-
tions, " electromagnetic spin-orbit corrections, ' and sim-
ple (zero range) Pauli blocking estimates were unable to
even qualitatively account for the discrepancies between
NR scattering models and the 500 MeV data.

It is perhaps possible that the deficiencies observed at
500 MeV might be overcome by including Pauli blocking
and other medium effects which have been shown to be
important at lower energies. It seems unlikely, howev-
er, that such will be the case based on phenomenological
investigations of the NR pA effective interaction' at 500
MeV and preliminary' NR Pauli blocking calculations
above pion production threshold which suggest that medi-
um modifications in the NR scattering model are small at
500 MeV.

Motivated by the failure of the NR approaches and the
very successful descriptions of intermediate energy pA
elastic scattering spin observables obtained by recent
Dirac optical model phenomenology, ' a relativistic im-
pulse approximation (RIA) folding model for the pg
Dirac equation optical potential was constructed' and
subsequently shown to provide a good description of the
500 MeV data. ' ' Other work demonstrated that the
RIA description of pA spin observables is quite successful
throughout the intermediate energy range. ' However, it
was also shown that incorrect RIA predictions for the
elastic differential cross sections are obtained, particularly
for energies less than 400 MeV. '

The significant difference between the relativistic and
nonrelativistic models originates in the former with the
considerable strengths of certain of the components of the
NN effective interaction. In Lorentz invariant form these
strengths are comparable in magnitude to the nucleon
mass, " and the strong potentials can permit scattering of
the projectile into virtual negative energy states (a charac-
teristic feature of relativistic theories) to make sizable
contributions to the elastic scattering process. The strong
components of the Lorentz invariant NN effective in-
teraction trace to the importance of scalar and vector

31 538 1985 The American Physical Society



31 RELATIVISTIC AND NONRELATIVISTIC IMPULSE. . . 539

meson exchange. The importance of the virtual negative
energy states depends on the differences between the vec-
tor and scalar potentials which are related, in NR
language, to the spin-orbit coupling strength. ' ' ' Since
the Schrodinger equivalent of the Dirac optical potential'
contains significant density squared (p ) terms which
represent the contributions of intermediate negative ener-

gy states of the projectile, the success of the nonrelativis-
tic impulse approximation (NRIA) model at the higher
energies is presumably due to the relative weakness of the
spin-orbit coupling and to the dominance of the spin-
independent absorptive part of the optical potential. The
pA distorted wave function is depleted in the high density
regions of the nucleus, and the relativistic dynamics (i.e.,
the p terms in the Schrodinger equivalent potential) are
suppressed. ' ' At energies near 500 MeV the spin
dependence is greatest relative to the spin independent ab-
sorption, ' and the success of relativistic descriptions of
the data leaves little doubt as to the need for the inclusion
of relativistic dynamics in medium energy p A scattering.

Future theoretical work associated with the relativistic
description of pA scattering will most likely focus on
meson exchange models for the NN off-shell t matrix and
virtual negative energy scattering processes, ' " Pauli
blocking in intermediate states, and estimates of correla-
tion effects. Field theoretical considerations for pA pro-
cesses have also begun. Thus it is appropriate at this
time to clearly delineate the specific ingredients of the
RIA-Dirac equation model and to discuss the successes
and failures of the model with respect to the energy
dependence of the predicted pA elastic scattering observ-
ables.

In Sec. II the details of the RIA optical potential model
and Dirac equation approach for pA elastic scattering will
be explained. In Sec. III a brief summary of the nonrela-
tivistic impulse approximation optical potential model
will be given. The systematics of the energy dependences
of the RIA and NRIA models will be presented in two
ways in Sec. IV. First, the theoretical p + Ca and
p+ Pb elastic observables from 300 to 1000 MeV will
be directly compared to available data and to each other.
Second, the systematics will be concisely summarized by
displaying the energy dependence of the target densities
which in the RIA and NRIA models brings about

~

X
~

optimized representations of the data. We also fit 500
and 800 MeV p+ Ca data and discuss the systematics
of the Ca — Ca deduced neutron density differences.
Such densities provide a straightforward means of
phenomenologically accounting for physical processes not
included in the simple RIA and NRIA models. A sum-
mary and some conclusions are given in Sec. V.

II. THE RELATIVISTIC
IMPULSE-APPROXIMATION —DIRAC-EQUATION

MODEL

The relativistic description of the proton-nucleus sys-
tem should, strictly speaking, be considered within the
framework of a relativistic quantum field theory (RQFT)
of interacting nucleons and mesons, or perhaps ultimately
in terms of quarks and gluons via quantum chromo-

dynamics. Initial development of the former approach is
underway, ' ' whereas the latter, more theoretically ap-
pealing approach, is computationally intractable at
present.

Here we defer consideration of a RQFT approach in
favor of a more conventional one which draws upon NR
multiple scattering formalisms and heuristic arguments
for guidance in forming a relativistic pA optical potential
in terms of NN scattering phenomenology and ground
state nuclear structure properties. The development of the
general form of the relativistic optical potential will be
presented first, followed by a discussion of kinematics, the
relativistic invariant NN effective interactions, target den-
sities, the explicit evaluation of the optical potential, and
the Dirac equation as applied to pA elastic scattering.

A. Theoretical basis and model prescriptions

In order to maintain contact with previous nonrelativis-
tic scattering theories, ' while at the same time incor-
porating some degree of Lorentz invariance, we initially
follow an approach analogous to that in Ref. 27. The tar-
get is treated nonrelativistically, and the projectile proton
is described via the one-body, Dirac Hamiltonian; thus we
have the following semirelativistic equation of motion for
the pA system:

r

a p+P m+ g U~; +Hz %=E% .

In this equation a, P are the usual Dirac matrices, m is
the proton mass, vz,. denote the projectile-target nucleon
interactions, Hz is the nonrelativistic, many-body target
nucleus Hamiltonian, and we assume that the projectile
and target nucleons are distinct so that 0' may be factored
into a product of a four-component wave function for the
projectile times a nonrelativistic many-body Schrodinger
wave function for the target nucleus. The target kinetic
energy operator is neglected, thus deferring recoil and tar-
get current corrections for later work. Defining the pA
propagator as

6 =(p —m yH„+i@)—
where p=y&p" and y& are the usual Dirac y matrices,
leads to a many-body Lippmann-Schwinger version of Eq.
(I) given by

T= gvp, + Qv~GT.

Equation (3) has the same schematic form as does the
standard nonrelativistic many-body Lippmann-Schwinger
equation. However, the new definitions of v&, , 6, and T
introduced here are to be noted. Selecting antisymmetric
(physical) intermediate target states in Eq. (3) results in

T=Av +AvGAT, (4)
0

where A projects antisymmetric target nucleus states and
v represents an averaged projectile-target nucleon interac-
tion. This is analogous to the Kerman, McManus, and
Thaler (KMT) (Ref. 2) and Watson' nonrelativistic multi-
ple scattering theories. Clearly, a one-body relativistic
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(for the projectile), many-body nonrelativistic (for the tar-
get) effective operator r can be introduced where

r=U+UGQ1

Here A=P+Q, and P =
I @s, &(Ns, I

projects the nu-
clear ground state channel;

I @s, & is the antisymmetric
target nucleus ground state wave function. Introducing
the pA optical potential for elastic scattering through the
definition,

U„,=APrP +A (A —1)PrQGQ~P+ . (7)

in analogy with NR multiple scattering theory. To obtain
pA observables we therefore solve the one-body Dirac
equation,

(p —m —y eo —U,~, )P~(r) =0,
where P%'=Vs, ——Pn(r)C&s, and II&&s, =eorms, . Suit-
able approximations for U,z, must be provided to proceed
further. The preceding discussion mainly serves to em-
phasize the close similarity between the NR multiple
scattering formalism of Watson' and one which accounts
for relativity of the projectile. Equations (7) and (8) are
equivalent to Eq. (1).

The principal limitation in the preceding formalism is
l

PTP = Uopt + Uopt G PTP

allows U p, to be related to w according to the usual form:

the NR treatment of the target nucleus. The utility of
such an approach becomes particularly questionable in the
evaluation of ~ which in the NN center-of-momentum
system (c.m. ) requires that one of the nucleons be
described with a Dirac Hamiltonian, while the other is
treated nonrelativistically. To circumvent this discrimina-
tive treatment of the two-body subsystem in the pA
scattering process and to permit a numerical study of the
sensitivity of pA scattering observables to relativistic as-
pects of the target nucleus, we have arbitrarily replaced
the nonrelativistic target wave function,

I @s, &, with a
relativistic wave function

I 4s, & which is discussed in
the following. In addition, the complicated, semirela-
tivistic, effective operator r is replaced by the free NN
scattering t matrix Y; (in the appropriate Dirac represen-
tation), and the second- and higher-order correlation
terms in Uo~, in Eq. (7) are dropped. Thus the optical po-
tential used in Eq. (8) is of the form

(9)

B. Kinematics

En momentum space the optical potential of Eq. (9) in-
volves a convolution of off-shell matrix elements of the
two-body t matrix with the one-body target density ma-
trix,

U,z, (ko, ko)=(2m) f f f d r', d r~d k~e 'e ' ' ' g (ko, k~+q I Yolk~, ko&p~(r~, r~),
P

(10)

where ko and ko represent the initial and final projectile
momentum space coordinates, (Yp& represent fully off-
shell t-matrix elements, pp(r, r' ) are one-body target densi-
ty matrices, q=ko —ko and the sum over the subscript (13)

recognizes the differing Lorentz character and isospin
dependence of the two-body interaction. " ' For applica-
tion in proton-nucleus scattering it is reasonable to simpli-
fy Eq. (10) by neglecting the dependence of (Yp& on the
incident target nucleon momentum k&, we therefore use
the so-called "factorized" optical potential form,

Proton

k

0

ko/A+ x
Nu cleu s

o/A—

}(A-I)

Spectators
—))]

k =k —
q

p A c.rn. BREI T SYSTEM

U.",', (ko, ko) ——g «o,~+q I Yp I
x, ko&pp(q),

P

where sc is a momentum parameter for the struck target
nucleon, chosen so as to best approximate the original in-
tegral in Eq. (10).

In Ref. 11 it is pointed out that for the case of on-shell
matrix elements of U,"p'„sc should be chosen such that the
elementary two-body scattering operator is also evaluated
on shell. The value of e can be obtained by requiring
(refer to Fig. 1)

(-ko/Atx

Lt
I—k 0

Incident ka

Proton

0

[-ko/A —x /(A- I )]

k~ —q/2

I kol = lko I

I
—ko/A +x

I

=
I

—ko/A+x+q
I

.

Thus x=(q/2)(l/A —1) and

a.= —ko/A + (q/2)(1/A —1),

(12) Struck
Nucleon k /A q/z +A+ q/z

Initial Final
FICx. 1. Breit frame kinematics.
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and

sB«,, ——(Ep+EsN ) —ka(1 —1/A)

E =(k, +q /4+m )'

EsN ——[(k, /2) +q /4+m ]'

k. =(k,'—q /z4)'~, z

t= —q
2

(13a)

(13b)

(13c)

(13d)

(13e)

~Breit
Tfgb ~ff(NN) = —2m

2m
(13f)

In Eqs. (13) ss„„., is the invariant two-body total energy
squared, E„and Esw are the projectile proton and struck
nucleon total energies, m is the nucleon mass, and

where ko is the pA c.m. momentum corresponding to an
incident laboratory energy T~,b. Introducing the average
momentum k, —= (ko + ko ) /2 and momentum transfer
q = ko —ko, we obtain the convenient kinematic values for
the projectile proton and struck nucleon in the pA center-
of-momentum reference frame given in the lower portion
of Fig. 1. A significant result of this choice of kinematics
is that the two-body c.m. energy depends on the selected
momentum transfer; hence two-body on-shell scattering
information covering a broad energy range above the
value of T~,b is required. Furthermore, on-shell matrix
elements of Yp are defined for all on-shell pA kinematic
values. The following equations include the relevant
kinematic quantities for elastic scattering in this so-called
Breit kinematic frame:"

T),b ff(NN) denotes the equivalent laboratory kinetic en-
ergy for NN elastic scattering corresponding to the total
energy squared, sB„„,. We note that TJ b ff(NN) ) T),b
and that its value monotonically increases with q. For ex-
ample, for 800 MeV proton scattering from Pb, calcula-
tion of the on-shell portion of the optical potential from 0
to 3 fm ' requires NN phase shifts ranging from 800 to
977 MeV.

C. Projectile-target nucleon,
relativistic effective interaction

The basic premise of the impulse approximation is that
the free scattering NN t matrix provides a reasonable esti-
mate of the two-body effective interaction needed to gen-
erate the optical potential. It is customary in nuclear
physics to express the NN scattering amplitudes in the
Pauli spin matrix representation involving five indepen-
dent terms given by

f (q) =& (q)+B(q)~,„~z„+C(q)(~,„+~z„)
+D(q)o) oz +E(q)o) oz (14)

where o;„=o;x, n=(k&k')/~ kXk' ~, q=(k —k')/
~

k —k' ~, p=(k+k')/~ k+k' ~, k and k' are the initial
and final NN c.m. momenta, q=k —k', and the sub-
scripts 1 and 2 refer to the incident and target nucleon,
respectively.

In order to reexpress the preceding NN phenomenology
in a form which displays the proper Lorentz transforma-
tion character, the following Lorentz invariant form has
been proposed for NN scattering:"

F(s, t) =Fs(s, t)I ~Iz+Fp(s, t)y iyz+Fv(s, t)y & yz„+Fz (s, t)y, y", yzyzp+FT(s, t)o
&

'o z„:—QFp(s, t)0)pOzp .
P

This form is analogous to that used in /3 decay studies. ' The conventional Mandelstam kinematic quantities are denoted
by (s, t), while I (unit), y, y&, y y&, and oz are the usual 16 linearly independent 4X4 matrices. The Fp represent Fs,
FI, etc., while 0;p represent I;, y;, etc. , for i =1,2. %ithin the positive energy NN sector we may relate the two repre-
sentations for NN elastic scattering by requiring

u, , (k')u, ( —k')F(s, t)u, , (k)u, ,( —k) =X,, X,f (s, t)/PNN, (s~„;,)X,,X.. . (16)

where PNN, (sB„;,) is, the NN c.m. momentum corre-
sponding to sB„;,of Eq. (13a) and u, (k), given by

u, (k) =[(E+m)/(2m)]' k X, ,

E+m
(17)

denotes the positive energy Dirac spinor with
E =(k +m )'~ . In Eq. (17) g, represents a two-
component Pauli spinor. Simply stated, Eq. (16) requires
that equivalent scattering probability amplitudes be main-
tained in the two representations for the initial and final
spin configurations of the NN system. This relation per-
mits the assignment of values for each component of F in
terms of the Pauli representation of the NN scattering
amplitude. Specifically, a 5&5 matrix equation can be
obtained which relates the Pauli amplitudes

B
C

Fs

Fv

FT ., ~

where explicit values for the B] matrix are provided in
Tables I and II of Ref. 11.

It should be emphasized that the form of the invariant
NN amplitude of Eq. (15) is not complete. Other momen-
turn dependent terms can be introduced which affect the
off-shell dependence of F in the positive energy NN sub-

I

I 2, B,C,D,E I to the invariant amplitudes
I Fs Fp Fv Fg FT I for given on-shell kinematic values s
and t. This matrix equation is given by"
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space. More importantly, other classes of invariant terms
can be added to the expression for F which do not contri-
bute to the positive energy matrix elements in Eq. (16),
but which would contribute to matrix elements of F in-
volving negative energy states of either particles 1, 2 or
both. These additional components of F will contribute
to the proton-nucleus scattering through their effects on
the optical potential. Intermediate scattering of the pro-
jectile through virtual negative energy states, an important
process for medium energy p 3 scattering, would be
directly affected by additional terms in F of this latter
type. These considerations are expanded in Appendix
A.

Since the NN data constrain only the on-shell, positive
energy portion of (F), theoretical models of the NN in-
teraction are needed to provide off-shell and negative en-

ergy matrix elements of F. Until reliable model calcula-
tions of F are available, Eq. (15) must suffice as a reason-
able starting point for the first generation of relativistic
microscopic optical model calculations.

The points mentioned previously and in Appendix A
are fairly obvious, but are belabored here in order to prop-
erly qualify the model under consideration and to provide
a connection with previous nonrelativistic models which,

, roughly speaking, correspond to retention of only the first
term in Eq. (A3) in Appendix A.

Finally, the usual local prescription for the pA optical
potential is used. We set

U,'pI(k(), ko) = QYp(q)pp(q),
P

(19)

D. The RIA optical potential
and the Dirac equation for p A scattering

with q=ko —ko and Y~(q) is evaluated on shell. Such lo-
calization prescriptions for pA elastic scattering at inter-
mediate energies were investigated by Picklesimer et al.
and found to be inadequate only for large momentum
transfers well beyond the region considered here.

The localized NN scattering operator Yp in the pA
Breit kinematic frame is obtained from the invariant am-

plitude F by considering the general expression for an ar-
bitrary two-fermion scattering cross section. The result
obtained in Eq. (85) in Appendix 8 is

Yp(q) = 2~ —P).bFp(q),
(A'c) R (q)

m R(0) (20)

where R (q), involving various kinematic quantities, is
given in Appendix B, P1,b is the laboratory momentum
for the incident proton, and the invariant amplitudes in-
troduced in Eq. (15) have been inserted. The subscripts P
account for the Lorentz structure and isospin dependence
of the scattering amplitudes.

metrized, relativistic nuclear wave function is expanded as

1 A

@,(r) r„)= —det+g( )(r;),
i=1

where

(22)

g( )(r;)= 4'n)J (r) ~„(-)
r))"n')J'( r) Ij r (23)

(24)

Inserting Eqs. (15), (20), and (22) into Eq. (21) yields, for
spin zero nuclei with filled (I, j) subshells (such as Ca,
"Ca, and "'Pb),

277(Pic ) R (q)
R (0)

X [Ug(r)+y) U) (r) —2ia r)UT(r)], (25a)

where subscript 1 refers to the projectile proton. The in-
dividual potentials are given by

Us(r) =(2n. )
' g f d'q e ' 'Fs'(q)ps"(q), (25b)

i=p, n

U) (r) =(2~) ' g f d'q e 'q'F),'(q)p )",(q), (25c)
t=p, n

and

UT(r) = (2)r) ' g r f d'q e "'FT'(q)p 'T (q)
i =p, n

(25d)

In Eq. (25a) the three terms on the right-hand side corre-
spond to scalar, vector, and tensor contributions, while

p&, p &, and p T' represent the scalar, vector, and tensor
density form factors, respectively. These are given by

(26a)

"( )= f d' ' ' "( ), (26b)

and

-(~)(q) f d3r iq r (r)(„)
r (26c)

The superscript i denotes target protons or neutrons. In
terms of the upper and lower components of the nuclear
wave function these densities are given by

represents the four-component Dirac single particle wave
function for the IaI =(n, l, j) orbital. The set of [a) in-
cludes all occupied single particle subshells. The spin-
angle function 3'~~~(r ) is given as usual by

9'~(~(r)= g(l, )b)+m„—,, —m, lg)M)1') '(r)x)g2

The RIA optical potential model is evaluated starting
with [see Eq. (9)j

p'(")=2
4 (IA.I I' —l~.), I'),

njl

(27a)

A

U.",', (q) = g g (e„ I Y~, (q)
I e„), (21) p'v'(r) = g 4

(
I P.), I

'+
I 7.i, I

'),
nlj

(27b)

where (i) denotes the target nucleon label. The antisym- and
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i) 2J +1
pT (r) =2 g Nnlj ~nlj ~4' (27c)

where the sums include occupied proton or neutron orbi-

tais. For the numerical calculations discussed later, the
amplitudes and the density form factors were computed to
4 fm ', and the optical potential [Eqs. (25)] was inserted
into the Dirac equation for protons,

Kp'a).P+P)[m+Us(r)]+[Uv(r)+Uc, „)(r)] iP—a) r 2UT(r)+ Uc,„)(r) .$~(r)=Ega(r) .2' BP"
(28)

In Eq. (28) Uc,„)(r) represents the spin independent pA
Coulomb interaction, 'Kp is the proton anomalous magnetic
moment, QF(r) is the four-component projectile proton
wave function, and E is the total relativistic energy of the
incident proton in the pA c.m. frame. The solution of Eq.
(28) together with the asymptotic boundary conditions for
QF(r) gave the pA scattering amplitude from which elastic
scattering observables were constructed.

E. NN phase shifts and target densities

For the calculations discussed here, the SP82 phase
shift solution of Amdt ' provided the NN amplitudes
needed in Eqs. (14) and (18). The Breit frame NN invari-
ant amplitudes were computed at each laboratory energy
using Eqs. (13) and (18). The variation in NN c.m. energy
with pA momentum transfer was included in the calcula-
tions by inputting NN c.m. amplitudes at five energies
ranging from T(,h to (T),h+200 MeV) and numerically
interpolating for specific T)eh eff(NN).

The RIA optical potential model specified in Eqs.
(25)—(27) requires six separate target densities correspond-
ing to scalar, vector, and tensor distributions for both pro-
tons and neutrons. With the exception of the proton-
vector density all of these were obtained from theoretical
models. The dependence of the RIA predictions on these
theoretical nuclear structure models was minimized, how-
ever, by the method discussed in the following.

For the calculations discussed here the proton-vector
densities for Ca, Ca, and Pb were obtained by un-
folding the single proton (free space) electric form factor
from the nuclear charge density. ' Corrections for the
neutron electric form factor and the nucleon magnetic
form factor contributions (in the Ca and Pb cases) to
the apparent total nuclear charge density were also
made. ' The theoretical neutron vector density used in
the absolute RIA predictions was taken as

pv(r)
~ th o y=pk(r)+[p. (r) —p, (r)]HFB (29)

where the neutron and proton densities in the square
brackets are the mean field, Hartree-Fock-Bogoliubov
(HFB) distributions of Decharge and Gogny. This
prescription therefore relied on theoretical models for the
neutron-proton density difference only; the actual
neutron-vector density was "scaled" to experiment [i.e., to
the p)v(r) from electromagnetic studies] via Eq. (29). The
nonrelativistic HFB neutron-proton density differences
are preferred over the Dirac-Hartree neutron-proton vec-
tor density differences of Horowitz and Serot since the
former account for exchange, pairing effects, and long
range correlations via the random-phase approximation
(RPA) method, whereas the latter do not.

In order to fit the differential cross section data, the
form of pv(r) was taken as

1

PoPv" =PV(")
I theory+

Po

1+exp[(r —csTD )»sTD]
(30)

where po and po are constants that normalize each Woods-Saxon term, csTD and zsTD were fixed to reproduce the surface
region of pv(r)

~
th„, , and (c, z) were adjusted to minimize the

~
X

~

of the fit to the data at each available energy. The
values (csTD, zsTD) are (3.451, 0.534) fm, (3.853, 0.500) fm, and (6.631, 0.658) fm for Ca, Ca, and Pb, respectively.

The scalar densities for the parameter free RIA predictions or for the fits to the cross section data were obtained from

p"( )=p"( )+[p"'( ) —p"( I] .„, (31)

where (i) represents protons or neutrons, and the densities in the square brackets were provided by the Dirac-Hartree
mean field model of Horowitz and Serot. Whenever pv(r) was varied according to Eq. (30) in the fitting procedure,
ps(r) was recomputed according to Eq. (31) at each step.

It is also of interest to study the sensitivity and energy dependent systematics of the scalar-vector density difference.
In order to explore this feature of the RIA model, the form of ps'(r) in Eq. (31) was generalized to

(i) (i)
(i) (i) (i) (i) [Ps Pv ]serot

ps' (r) =p vi (r) +k [ps (")—p v) (")lserot+ 1+exp[(r —c STD )»STD]

1
X

1+exp[(r —& )»sTD]
1

1+exp[(r —cSTD)»sTD]
(32)
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FIG. 2. Point densities for Ca used in the parameter-free
calculations. Protons and neutrons are in the upper and lower
portions, respectively. The baryon (vector) densities are indicat-
ed by solid curves; the scalar by dash-dot lines.
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FIG. 3. Same as Fig. 2,-except for Pb.

In Eq. (32) cs&D and zs~~ were fixed to the same values
as in Eq. (30), while (g,R ) were adjusted to optimize the
fit to the analyzing power ( A~ ) data. Variation of g allows
one to study the effects of the overall strength of the
lower components of the target wave function [see Eq.
(27)j, while deviation of FY from cs&D examines the sensi-
tivity to the radial variation of the scalar-vector density
difference. The parametrization of ps''(r) in Eq. (32) en-

sured that ps'(r) &p'~(r) for all values of Ã (with g&0).
The same values of g and R were assumed for proton and
neutron scalar densities.

Previous work investigated the contribution of the nu-
clear tensor potential to pA scattering using the tensor
densities of Horowitz and Serot for several nuclei and
proton laboratory energies. The effects on the observables
were found to very shght; hence Ur(r) was omitted in all
the calculations discussed here.

The following summarizes the densities used in the
I

various calculations discussed in Sec. IV. The proton-
vector densities were always fixed via electromagnetic
measurements. The absolute RIA predictions used the p~
in Eq. (29) and ps" from Eq. (31). In obtaining fits to the
differential cross sections, Eq. (30) for pr and Eq. (31) for
ps' were employed. The analyzing power fits utilized Eq.
(29) for p"r together with Eq. (32) for ps''. The radial dis-
tributions of the proton and neutron, vector and scalar
point densities used in the absolute RIA predictions are
displayed in Figs. 2 and 3 for Ca and Pb, respectively.

III. THE NONRELATIVISTIC
IMPULSE APPROXIMATION

OPTICAL POTENTIAL

The nonrelativistic impulse approximation (NRIA) op-
tical potential, based on the Kerman, McManus, and
Thaler (KMT) (Ref. 2) formalism, was computed accord-
ing to the methods discussed in Ref. 7. Correlation ef-
fects were omitted in order to permit comparison with the
RIA results. The first-order KMT optical potential was
taken as

UNR&A(r) =(2n ) -- g J 4mq dq tz~(q)pj(qj)0(qr)+ ' f 4mq dq t&z(q)pJ(qj)0(qr)o".I
0 PJ J rBr

(33)
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where

Co
tp~ (q)

t ~J(q) =
k qsinON

(34)

t CO

C)

td
e

Breit'

4m(I!'Ic) ENN
2 8

8g8) C
EpEsN

(35)

where the combined matrix operation 8&8& ' accounts
for relativistic spin precession effects; 8& and 8& are
given explicitly in Ref. 11. The {A,B,C,D,EI are given
in the impulse approximation (IA) by the NN c.m.

l

and 0N is defined by q=2kosin(ON/2); q is the momen-
tum transfer. The summation subscript j represents target
protons and neutrons; the target density form factors,
pj(q), were normalized such that p„(0)= N and p~(0) =Z,
where X+Z =A, the number of target nucleons.

CO
The NN t matrices, t~~ and tz~', in the pA Breit frame,

were obtained from the matrix equation (applied separate-
ly for p-p and p-n)

r

a

scattering amplitudes defined in Eq. (14) at the kinematic
values specified by sB„;, and t T. he spin-orbit terms t '
and t ' apply to the projectile and target nucleon, respec-
tively. " The kinematic quantities ko, Ep, and Esw are
the same as defined in Sec. II B. The total energy of ei-
ther nucleon in the NN c.m. frame corresponding to
T! b ft(NN) appropriate to the specified momentum
transfer q is denoted by ENN in Eq. (35). Notice that the
kinematic quantity ENN/(E~EsN) is implicitly q depen-
dent for the optimally factorized optical potential using
Breit frame kinematics.

The same NN phase shifts (Amdt's SP82 solution) cov-
ering the same energy range, T&,b~T1,b+200 MeV, were
used to evaluate UN~&A as in the RIA calculations. Also,
the same Ca, Ca, and o8Pb proton densities were used
in evaluating UNRIA as used for pI (r) in the RIA calcula-
tions. The neutron densities were obtained using Eq. {29)
for the absolute NRIA predictions, whereas Eq. (30) pro-
vided p„(r) when fits to the differential cross section data
were carried out. The Coulomb interaction was included
according to the KMT No. 3 prescription discussed in
Ref. 41. Electromagnetic spin-orbit effects were omitted
in the NRIA calculations.

The first-order KMT optical potential was inserted in
the radial Schrodinger equation with relativistic kinemat-
ics~

d2

dl'

l(1+1)
[UN RIA {!) + Ucoul {r ) + U NRIA {r ) ( IT l )!j1 +k o

.4, {r ) =o (36)

where p, =E&E& /(E„+E„) is the relativistic reduced en-

ergy, Ez (Ez) is the total energy of the incident proton
(target nucleus) in the pA c.m. system, and

(o".1)» =j (j +1)—l(l+1)——,

as usual. The central, spin-orbit, and Coulomb parts of
the NRIA optical potential are shown explicitly in Eq.
(36). The usual nonrelativistic scattering boundary condi-
tions yielded the p 2 scattering amplitudes, which upon
multiplication by A /(A —1), led to the pA elastic observ-
ables.

IV. DISCUSSION AND RESULTS

Based on the various calculations performed in connec-
tion with this work it was found that variations in the
overall matter or neutron density (with scalar-vector den-
sity differences fixed) primarily affected the angular posi-
tions of the diffractive minima and maxima in the dif-
ferential cross sections (der/dQ), the analyzing power
(Az), the spin rotation (Q), and also the slope of the
overall envelope encompassing der/dQ. Basic structures
in the observables, such as the ratio of the maxima to ad-
jacent minima in the angular distributions, the sharpness
of diffractive minima, or the widths of the cross section
maxima, the shapes of the minima and maxima in A~ and
Q, overall magnitudes of the spin observables, etc., were
not found to be affected by perturbations in the overall

matter densities. Thus, to succinctly characterize the en-

ergy dependence inherent in both the RIA and NRIA
models, the neutron vector and scalar densities were ad-
justed together to ~X

~

optimize the description of the
differential cross section data. The energy dependence of
these effective "neutron densities" will be discussed in the
following.

In contrast to the gentle effects produced by small
changes in the overall matter distributions, variations in
the scalar-vector matter density difference produced sig-
nificant changes in the structure of the computed analyz-
ing power. Typical of these effects in A~ were alterations
in the relative magnitudes of adjacent maxima, changes in
the depths of the minima, gradual sharpening or smooth-
ing of the first few maxima, and changes in the slope of
the predicted A„ immediately following -each maximum.
The differential cross sections, however, were seen to be
only very slightly affected by changes in the scalar densi-
ties; these changes were characterized by minimal varia-
tions in the magnitudes at angles beyond the Coulomb nu-
clear interference region and slight variation in the overall
slope of the diffractive envelope. For these reasons, the
energy dependences of the RIA analyzing power predic-
tions will be, summarized by examining the changes in the
scalar-vector density difference {with fixed neutron-proton
density differences) needed at each energy to optimize the
RIA fit to the A~ data.

The reader is reminded of the fact that these energy
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Fyo. 4. p+ 4oCa R)A differential cross section predictions (solid curves) and fits (dashed curves) discussed in the text compared
with data at 300, 400, 500, 613, 800, and 1040 MeV.

dependent, effective "densities, " while reasonable in
shape, are not intended to accurately represent the physi-
cal target densities. By requiring fits to the data, these ef-
fective densities absorb the contributions of reaction pro-
cesses omitted in the calculations. The variation of the ef-
fective densities with energy directly indicates the magni-
tude of the effect which these omitted physical processes
might have on extracted nuclear structure properties, such
as the ground state neutron and scalar densities. In future
work, when more sophisticated relativistic optical poten-
tials are available which eliminate most of the large, er-
roneous energy dependences discussed here, simultaneous
fits to the complete set of elastic observables should be
carried out in which both the neutron-proton and scalar-
vector density differences are varied.

A. Differential cross sections
and sensitivity to neutron densities

The RIA and NRIA parameter free predictions for the
300, 400, 500, 613, 800, and 1040 MeV p + Ca and the

300, 400, 500, 613, 800, and 1000 MeV p + 2O8Pb elastic
scattering differential cross sections are compared in Figs.
4—7 (solid curves) with the available data. Generally the
RIA predictions are too large in overaH magnitude com-
pared to the lower energy data, are quite good at 500
MeV, and are shifted inward in angle compared to the
higher energy data. The RIA and NRIA fits to these data
were optimized with respect to the total IP j by adjust-
ing the neutron densities discussed in Sec. IIE. The re-
sults are shown by the dashed curves in Figs. 4—7. Good
descriptions of the overall slope of the cross section en-
velope and angular positions of the diffractive maxima
and minima are observed. However, the NRIA fits at the
lower energies continue to display excessively deep dif-
fractive minima, whereas the lower energy RIA fits exhib-
it diffractive patterns with relative1y too little structure
compared with the data. Even so, these results are quite
informative with respect to the overall geometricai defi-
ciencies of the predicted scalar and vector potentials in the
RIA model and the central, spin-independent part of the
NRIA optical potential.
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FIG. 6. p+ Pb RIA differential cross section predictions (solid curves) and fits (dashed curves) discussed in the text compared
with data at 300, 400, 500, 613, 800, and 1000 MeV.

rameter. The convergence of the relativistic and nonrela-
tivistic results at the higher energies is apparent for Pb,
but uncertain for Ca. For the energy range investigated
here, it does not appear that the extracted neutron half'-

density radii approach the theoretical values. This sug-
gests that additional corrections to the simple impulse ap-
proximation are required at all energies.

Of particular interest in Figs. 8—11 is the anomalous

behavior of the density results obtained from analysis of
the 613 MeV data. Both the REA and NRIA energy
dependences of the extracted rms radii for 4 Ca and Pb
abruptly change as the proton energy increases above 600
MeV. Furthermore, the extracted neutron half-radius
and, to a lesser extent, the diffuseness parameters, display
departures from the otherwise smooth energy dependences
observed. Analyses of preliminary p+ Ca 650 MeV
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FIG. 7. Same as Fig. 6, except that NRIA predictions and fits are shorvn.

LAMPF —high-resolution spectrometer (HRS) data give
similar results. The NN amplitudes which affect these re-
sults should be uniformly reliable from 500—800 MeV,
based on the roughly even distribution of NN data
throughout this energy region. ' Further analyses and
perhaps more, high quality pA data in this energy region
are required to determine whether these observations are
consequences of new reaction mechanisms which are pri-
marily operative in the 600 MeV region or of deficiencies
in both models which become important at energies below

600 MeV. A discussion of probable theoretical deficien-
cies in the RIA model with respect to the energy depen-
dence trends will be given in the last part of this section.

Another, particularly sensitive measure of the accuracy
of the pA microscopic optical potentials is the ability of
the models to provide consistent, energy independent neu-
tron isotopic density differences. The RIA and NRIA
models were therefore used to analyze the p + Ca dif-
ferential cross section data at 500 and 800 MeV. The
data were fit in the manner already discussed; the results



550 L. RAY AND G. W. HOFFMANN 31

0,6

0,2—

E

0.

40(
I/2 2 I/2

DI„p= (r„') —(rp )
~ DIRAC
x SCHRODINGER-- HFB

O

E

~O
C

Ct

208pb

(i2 ) I/2 (l )I/2
~P n p

~ RIA
x NRIA

—-- HFB

-0,2-

-0.4—

I

800
I

400200

are given in Figs. 12 and 13 and Table I. At 500 MeV the
NRIA fits are poor (dash-dot curves) near the diffractive
minima so that interpretation of the NRIA 500 MeV neu-
tron density difference should be viewed with some reser-
vation. The fits for the remaining cases are good.

In Fig. 14(a) the NRIA "Ca— Ca neutron density
differences obtained at 500 MeV (dash-dot curve) and 800

I I I I I I

600 1000
EIab(MeV }

FICr. 8. Neutron-proton density rms radii differences for
Ca deduced using the RIA (solid dots) and the first-order

NRIA (crosses). The uncertainties of +0.07 fm reflect statisti-
cal and systematic uncertainties in the data, NN amplitudes,
and fitting procedure (see Ref. 7). The theoretical value of
—0.05 fm (Ref. 39) is indicated by the dashed line. The solid
lines are guides to the eye. Points at 318 and 650 MeV result
from analyses of preliminary HRS data.

O
I

200

MeV (solid curve) are compared. The differences between
the two curves are comparable to or less than the statisti-
cal and model dependence uncertainties arising in careful,
second-order KMT-IA analyses of the 800 MeV data
and indicate the stability of isotopic density differences
obtained with NRIA models. The corresponding RIA
neutron-vector density differences are shown in Fig. 14(b)
where a larger energy variation is noted. In the
Schrodinger equivalent optical potential approach to the
RIA (Ref. 15), isotopic density differences (linear density
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FIG. 10. Same as Fig. 8 except that the Pb results are
shown. The theoretical value of 0.13 fm (Ref. 39) is indicated
by the dashed line.
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TABLE I. Extracted neutron rms radii (in fm).

"Ca
Ca

500 MeV

—0.34
—0.14

800 Mev

hr„p NRIA
—0.27
—0.11

Theory (HFB)

—0.045
0.13

N
N

IO

5~~
C'

IO g
c5

Ca
4'Ca

500 MeV
800 MeV

—0.03
0.13

NRIA
0.21+0.05
0.18+0.05

Ar„p RIA
—0.15 —0.045
—0.02 0.13

~r„„. ("Ca—"'Ca)
RIA Theory (HFB)

0.18 0.20
0.14 0.20

0 5 $0 '5 20 25 30
Center of Mass Angle (deg)

FICi. 12. RIA (solid curves) and NRIA (dash-dot curves) fits
to the p+ Ca and 'Ca HRS differential cross section data at
500 MeV.

differences) are affected directly by nonlinear density
dependent components in the Schrodinger equivalent opti-
cal potential. Thus, Fig. 14(b) may indicate an inadequa-
cy in the treatment of the virtual pair terms in the RIA.
A number of corrections to the RIA, including medium
modifications, correlations, and off-shell dependences,
could combine with the virtual pair process to alter the
overall nonlinear density-dependent components of the
Schrodinger equivalent form of the RIA optical potential.
This point will be discussed further in Sec. IV C.

Finally, the RIA (solid curve) and NRIA (dash-dot
curve) results for the 800 MeV Ca — Ca neutron densi-
ty difference are compared directly in Fig. 14(c). The vir-
tual pair effects in the RIA approach cause the differ-
ences between the two curves. Again, the difference be-
tween the RIA and NRIA isotopic density differences is
comparable to the uncertainties in the results of second-
order KMT analyses. Since the 800 MeV second-order
KMT-IA model has been shown to give accurate matter
density differences in this mass regime, and owing to the
apparent energy dependence for extracted isotopic density

IO5

~~0

o"IO'

XJ

-I
~ IO
C)

0 5 10 15 20
Center of Mass Angle (deg)

FIG. 13. Same as Fig. 12, except at 800 MeV.

'Second order KMT-IA analysis at 800 MeV yields
Ar„„=0.16+0.05 fm, see Ref. 44.

differences obtained via the RIA model, the solid curve
(RIA) in Fig. 14(c) should not necessarily be considered
more representative of the true Ca — Ca neutron densi-
ty difference than the dash-dot curve (NRIA). The pur-
pose of Fig. 14(c) is to demonstrate the kind of effects
which the virtual pair processes in the RIA model pro-
duce in relative measurements of density variations in
neighboring nuclei. Notice that although the Ca — Ca
density distribution differences for the RIA display
greater energy dependence than do the NRIA differences,
the energy dependence of

gr (r2(48Ca) ) lf2 ( r2(40Ca) ) 1/2

is modest and comparable for the two models (see Table
I). All of the extracted values of hr„„are in fair agree-
ment with the HFB predictions.

B. Analyzing power, spin rotation,
and sensitivity to scalar densities

The RIA and NRIA parameter-free predictions for the

p + Ca elastic analyzing power A~ at 300, 400, 500, 800,
and 1000 MeV are shown together with the data in Fig.
15 by the solid and dash-dot curves, respectively. Similar-
ly, the results for p+ Pb at these same energies are
given in Fig. 16. The spin-rotation Q(8) predictions for
p+" Ca and Pb at 500 MeV are shown in Fig. 17 by
the solid (RIA) and dash-dot (NRIA) lines. In Fig. 15,
shown as the dashed curves, are the fits obtained by vary-
ing the scalar density (see the following). The effects of
the anomalous magnetic moment of the incoming proton
in the RIA model [see Eq. (28)] and the electromagnetic
spin-orbit (EMSO) coupling in the NRIA approach' were
omitted in the absolute predictions shown in Figs. 15—17.
Such magnetic effects are only appreciable at and above
800 MeV (Refs. 6 and 12); they affect the position of the
first maximum in A„and the sharpness of the forward
angle analyzing power diffractive structure. Inclusion of
the EMSO coupling in the NRIA approach requires a dif-
ficult series of convergence calculations to be carried out
for each case. ' Since our main intent is to provide a rela-
tive comparison between results from relativistic and cor-
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responding nonrelativistic models, this effect was omitted
for simplicity. However, for the RIA fits to the A~ data
in which the scalar densities were varied (discussed in the
following), the anomalous magnetic moment effects were
included.

The noteworthy features of the parameter-free predic-
tions in Figs. 15—17 are the following: (1) the lack of
structure at forward angles for the NRIA A~ results
(dash-dot lines), (2) the generally successful large angle
NRIA A~ results for Ca, (3) the overestimate of the
NRIA A~ results at back angles for Pb (i.e., the NRIA
suffers an incorrect mass dependence with respect to the
spin components of the effective interaction), (4) the un-
derestimate of the magnitude and the incorrect mass
dependence of the NRIA results for Q, (5) the generally
favorable results for the RIA A~ as a function of energy,
mass, and scattering angle, and (6) the good reproduction
of Q provided by the RIA. The good description of the
available spin-rotation data ' obtained with the RIA is
perhaps the strongest asset of the model. The RIA pre-
dictions for Q are in fact remarkably stable. Gross, factor
of 2, changes in the underlying NN amplitudes which
have large effects on the cross section and analyzing
power predictions leave the essential structure of Q un-
changed.

Earlier it was noted that the analyzing power. predic-
tions are particularly sensitive to scalar-vector density
differences. In Figs. 18—20 various A~, Q, and S (Ref.
47) predictions are compared for p+ Ca at 300, 500,
and 800 MeV, respectively. They were obtained using the
RIA (solid curve), NRIA (dash-dot curve), and RIA with
ps' ——p'~' (dashed curves) (i.e., no lower components of the
target wave function permitted). The differences between
the solid and dashed lines reveal the effects of relativity in
the target wave function, while comparison of the dashed
and dash-dot curves indicates the role of relativity (virtual
pair processes) in describing the projectile proton wave
function. At 300 MeV relativistic target effects are com-
parable to relativistic projectile effects, while at higher en-
ergies the virtual pair terms for the projectile mainly ac-
count for the differences between RIA and NRIA results
and the improvements in the descriptions of the pA spin
observable data. Note that the relativistic effects are very
evident for the alternate (not independent) spin observable,
S (Ref. 47), at 300 MeV.

The sensitivity of the RIA A~ predictions to the
scalar-vector density difference, was exploited by varying
the proton and neutron scalar densities for Ca, as dis-
cussed in Sec. II E, to minimize the total

~

7
~

of the fit
to the A~ data. The results (see dashed curves of Fig. 15)
demonstrated main sensitivity to the scaling parameter g
in Eq. (32); little sensitivity to the radial parameter R was
found. generally, the description of the analyzing power
data was improved at all angles by variation of g and R,
except at 400 MeV where the fits in the mid and back an-
gle regions were improved at the expense of the forward
angle fits. The energy dependence of the scale factor g is
displayed in Fig. 21. /=1.0 corresponds to the target
wave function lower component strength of Horowitz and
Serot. The point at 650 MeV results from an analysis of
preliminary p + Ca Az data provided by Bernstein and



31 RELATIVISTIC AND NONRELATIVESTIC IMPULSE. . . 553

4oCo 4OOM V
TRIUMF DATA

O
ci

20 25 30 L5 40 45
C- —of M:==: Angh (d )

O

0 5 20
Csriiesr of M::

li

, II', ,

4OCa 5OOM V
WS DATA

~oCa SOOM V
HRS DATA

O
I

0 20
Girder of M:::~ (deg)

+OCa %00 QeV
GATCHINA DATA

d
0 5

Qa er of M:==:— Angh (deg)

FIG. 15. p+ 4oca analyzing power RI~ predictions (solid curves), NRIA predictions (dash-dot curves), and RIA fits (dashed
curves) compared with data at 300, 400, 500, 800, and 1000 MeV as discussed in the text.
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estimates using a nonrelativistic isobar coupled-channel
I. 14approach.

Corrections to the pA optical potential due to gtar et
nucleon correlations avh ve been investigated in nonre a-

ries. 'tivistic (NR) microscopic optical model theories; ' stg-
nificant contrt u ions ob t' t the differential cross sections an
analyzing power were observed, particularly at the hig er
energies where t e p

' '
esethe NR otential is strongest. T ese

form and in the relativistic op icacorrections are p in orm
model might also produce significant effects simi ar to e

Recent work by Wallace andvirtual pair processes. ecen
T on suggests, owever,, h that much of the unacceptable
energy dependence ex i i e yh b ted by the RIA model below 500

~ *

MeV might be eliminated if the virtual pair process [t.e.,

the second term of Uerr+ in Appendix A, Eq. (A3)] is
compute y way o ad b f a covariant meson exchange theory

23of the NN interaction.
The results presented in this section suggest an interest-

eV. If thisergy dependent structure around 600
trend persists a er eft th preceding corrections are con-
sidered, one might also consider virtual 6 production and
propagation, since =—600 MeV coincides with the labora-
tory eneergy for NN resonance 6 production.

in theIt is impo an ortant to note that deficiencies remain
dium effectsRI anA nd NRIA models; even at 1 GeV. Medium e ec s

should be minimal at these higher energies.
quenched virtual pair effects (i.e., the reduction in the
RIA-NRIA differences) at higher energies suggest that a
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FIG. 21. Scaling factor, g' [see Eq. (32)], for the overall
strength of the scalar-vector density difference obtained in the
RIA fits to p+ Ca analyzing power data at 300, 400, 500, 650
(Ref. 48), 800, and 1000 MeV.

more sophisticated treatment of this relativistic reaction
mechanism is unnecessary. Target correlation effects,
known to be significant at 1 GeV from NR optical model
work, ' also need to be included in the RIA. For in-
stance, the vector and scalar densities deduced from RIA
fits to the higher energy data, as well as the energy depen-
dence in the extracted neutron isotopic density difference
obtained in the RIA analysis, could be significantly af-
fected by correlation terms.

V. CONCLUSIONS

We have focused on systematic energy dependent
characteristics of the relativistic impulse-approxi-
mation —Dirac-equation approach for intermediate energy
proton-nucleus elastic scattering. The observed charac-
teristics were compared with those obtained from the
traditional nonrelativistic impulse-approximation—
Schrodinger-equation method. The energy dependence
was explicitly displayed by comparing the predictions for
the elastic observables directly with data and indirectly,
but more succinctly, by examining the effective density
parameters required to fit the differential cross section
and A~ data at each energy.

With respect to the differential cross sections, the RIA
model gave evidence of a more extreme energy variation
relative to the data than did the NRIA model, particularly
at low energies. However, above 500 MeV, where medium
modifications and off-shell effects should be less impor-
tant, the RIA analysis yielded effective neutron rms radii
(for Ca and Pb) and neutron surface geometries
(mainly for Ca) which are closer to theoretical expecta-
tions than those obtained from the NRIA analysis. It was
also shown that the effect of the relativistic virtual pair
process, exemplified by the differences between the corre-
sponding RIA and NRIA predictions, diminishes with in-
creasing proton bombarding energy. This results from in-
creased absorption, which depletes the proton distorted
wave function in the high density regions of the nucleus,
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APPENDIX A

In Sec. II C it was noted that pA elastic scattering pre-

dictions can be affected by terms contributing to F in Eq.
(15) which project out of the positi, ve energy matrix ele-
ments formed in Eq. (16). To make this point transparent
we introduce the usual positive and negative energy pro-
jection operators A+ and A (Ref. 28). Equation (6) in
the text then becomes

T++ U++ + U++G+ T++ + U+ —
G

—T—+

00 Uopt Uopt G Too Uopt G T00
(A 1)

where Too
—=—A+PTPA+, U;pt A+ Uppt A+ G

=—A+PGPA+ propagates positive energy projectile states,
and G =A PGPA propagates negative energy states.
U,~, is given either by Eq. (7) or (9) in the text. Eliminat-
ing Too+ in Eq. (Al) gives

and reduced spin-orbit coupling, which lessens the magni-
tudes of the p terms in the NR Schrodinger equivalent
optical potential. ' Through this study we also demon-
strated the sensitivity of the RIA optical model analysis
to the underlying neutron densities; we found sensitivities
similar to those seen' in KMT-IA optical model analyses.
The variations with energy of the deduced effective densi-
ties refiected the magnitude of the perturbation in the ex-
tracted nuclear structure properties which further theoret-
ical corrections will likely produce.

The generally successful description of the analyzing
power data via the RIA model, originally noted at 500
MeV, ' ' was shown to be a general -feature of the relativ-
istic description. The structure of the A~ predictions was
seen to be acutely sensitive to the scalar-vector density
difference (i.e., lower components of the relativistic target
wave functions) and an interesting energy dependence for
the overall scalar-vector density strength was observed.

The RIA fits to the spin-rotation (Q) data were particu-
larly successful. Calculations in which gross (factor of 2)
changes were made in the strengths of the NN ampli-
tudes, along with the density variations discussed in Sec.
IV, demonstrated the remarkable stability of the RIA
model predictions for Q.

The results obtained here for the energy dependent sys-
tematics of the RIA and NRIA optical potential models
will hopefully serve as a guide in future theoretical im-
provement in these impulse models.
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T++ U++ + U++6!+T++

where

++ ++ +- 1
Ueff Uopt + opt ] —— ~p&

(G ) —U,Dt

(A2)

(A3)

pA scattering observables through the second term in Eq.
(A3).

APPENDIX B

For example, it is clear from Eqs. (A2) and (A3) that
components of F which contribute to (u 'iu 2FUiu2) ma-
trix elements (u and U represent positive and negative en-

ergy Dirac spinors, respectively), but not to the positive

energy matrix element (u 'iu zFu&u2), can contribute to
I

The relationship between the invariant t matrix and the
scattering amplitude for a general two-fermion scattering
process, such as that shown in Fig. 22, can be obtained
from the relativistic expression for the infinitesimal cross
section. For arbitrary kinematics this is given by

f 2 2 2 tq~ ~

Y
~

(2lr) 5 (Pi Pi+P2 P2}[(Pi.P2) m im—2]' (2ir) Ei (2ir) E2
(81)

which is in terms of the Lorentz invariant phase space,
the incident flux, and the invariant t matrix, Y. In Eq.
(81) m, and m2 are the fermion masses; (Ei,E2) and
(Et,Ez) are the initial and final total energies, respective-
ly; (Pi,P2) and (Pi,P2) are the initial and final four mo-
menta, respectively; and the delta function requires

I

l

energy-momentum conservation. Identifying the scatter-
ing amplitude F as der/dQ=

~

F ~, using Breit frame
kinematics" where (1) refers to the incident particle and
(2) to the struck particle, and following Bjorken and
Drell, we get

Y(s, t) =—
2

' 1/2
2n. (A'c } [(Pi P2) —m tml] (E„+EsN)— 2

(1—I/A)Et, . F(s, t),k,

mi m2 1/ kp ko
(82)

Y(s, t) = — R (q)F(s, t),2'(lric ) (83a)

where (s, t) are the usual Mandelstam invariants, kp is the
magnitude of the incident projectile momentum in the
Breit frame, and E~, EsN, and k, are defined in Sec. II 8.
In Eq. (82) and throughout this Appendix the scattering
amplitude, I', and t matrix, Y, are assumed to have the
one-column matrix structure introduced in Sec. II C.
Evaluating Eq. (82) for mt ——m2 ——m (the nucleon mass)
yields for NN scattering,

+q /16+q k, /(2A)+k /2 — ~]'~

k,
& Ep+EsN ——,(1—I/&)Ep

ko

1/2
1

mQkp

(83b)

where

R (q) =[E+sN +2EpEsN(q /4+ k, /& )

Equating the invariants FNN, /PNN, and
FNN B«,t/kp (Ref. 49) yields [(NNc. m. ) refers to the NN
center-of-momentum system and (NN, Breit) to the Breit
frame]

2lr(Ac) ko
YB„„,(q) = — R (q) FNNc. m. (q) ~I ~NN c.m.

which differs from the expression used in previous appli-
cations of the RIA model' '

by the extra R(q) factor.
Equation (84) may be conveniently reexpressed as

2~(Pic ) R (q) Pteb
Brett(q) 0 P NN

NN c.m.

FIG. 22. Mornenta and energies for the general two-body
process, 1 + 2~1'+2'.

where P],b is the laboratory momentum of the incident
proton and R (q =0)=Pi,b/kp.

The ratio R (q)/R (0) increases monotonically with in-
creasing q. Typical values of R(q)/R(0) are 1.02, 1.08,
1.17, and 1.30 at q=1, 2, 3, and 4 fm ' for p+ Ca at
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500 MeV. This enhancement of the large Fourier com-
ponents of the NN effective interaction increases the large
angle pA differential cross sections somewhat, resulting in
improved descriptions of the data for most cases. The
most significant effect of these kinematics occurs for light
targets such as ' C and ' 0 for which R (0) is typically
1.1. The magnitudes of the predicted RIA differential
cross sections are increased resulting in better agreement
with the data when the R (q) factor is included.

The nonrelativistic t matrix appropriate for the NRIA
model can similarly be obtained if the difference between
the normalizations of the relativistic and nonrelativistic
plane waves is recognized. With

T(nonrelativistic)

tNRtA(q) =— ~lab
fNN. (q), (B6)

2'(Pic ) R (q)
E&EsN Im R (0) PNN, ~

which, for the cases considered here, is numerically
equivalent to the kinematic part of Eq. (35), traditionally
used in NRIA-Breit kinematic frame calculations.

= m ~m2/(E, E2E', Ez )'~ T(relativistic),

the relationship between the scattering amplitude and t
matrix in the NRIA model is given by

K. M. Watson, Phys. Rev. 89, 575 (1953).
A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.

(N.Y.) 8, 551 (1959).
R. J. Glauber, in L.ectures in Theoretical Physics, edited by W.

E. Brittin and L. G. Dunham (Interscience, New York, 1959),
p. 315.

J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 10,
1391 (1974).

~H. V. von Geramb, in The Interaction Between Medium Energy
Nucleons in Nuclei —1982, Proceedings of the Workshop on
the Interaction Between Medium Energy Nucleons in Nuclei,
(Indiana University Cyclotron Facility), AIP Conf. Proc. No.
97, edited by H. O. Meyer (AIP, New York, 1983), p. 44; L.
Rikus and H. V. von Geramb, Nucl. Phys. A426, 496 (1984).

L. Ray, in The Interaction Between Medium Energy Nucleons
in Nuclei —1982, Proceedings of the Workshop on the In-
teraction Between Medium Energy Nucleons in Nuclei (India-
na University Cyclotron Facility), AIP Conf. Proc. No. 97,
edited by H. O. Meyer (AIP, New York, 1983), p. 121.

7L. Ray, Phys. Rev. C 19, 1855 (1979); L. Ray, W. R. Coker,
and G. W. Hoffmann, ibid. C 18, 2641 (1978).

G. W. Hoffmann et al. , Phys. Rev. Lett. 47, 1436 (1981).
D. A. Hutcheon et al. , Phys. Rev. Lett. 47, 315 (1981).

I A. Rahbar et al. , Phys. Rev. Lett. 47, 1811 (1981).
J. A. McNeil, L. Ray, and S. J. Wallace, Phys. Rev. C 27,
2123 (1983).
G. W. Hoffmann et al. , Phys. Rev. C 24, 541 (1981).
M. L. Barlett, W. R. Coker, G. W. Hoffmann, and L. Ray,
Phys. Rev. C 29, 1407 (1984).

~4L. Ray (unpublished).
~58. C. Clark, S. Hama, and R. L. Mercer, in The- Interaction

Between Medium Energy Nucleons in Nuclei —1982, Proceed-
ings of the Workshop on the Interaction Between Medium
Energy Nucleons in Nuclei (Indiana University Cyclotron Fa-
cility), AIP Conf. Proc. No. 97, edited by H. O. Meyer {AIP,
New York, 1983), p. 260. Elimination of the lower com-
ponents of the wave function in the Dirac equation yields,
after a transformation, a second-order Schrodinger equation
in which the effective central and spin-orbit potentials are
identifiable. The nonlinear density contributions to this effec-
tive NR optical potential include the virtual pair effects dis-
cussed in Appendix A.
J. A. McNeil, J. Shepard, and S. J. Wallace, Phys. Rev. Lett.
50, 1439 (1983).

~7J. Shepard, J. A. McNeil, and S. J. Wallace, Phys. Rev. Lett.
50, 1443 (1983).
B. C. Clark, S. Hama, R. L. Mercer, L. Ray, and B. D. Serot,
Phys. Rev. Lett. 50, 1644 (1983).
B. C. Clark, S. Hama, R. L. Mercer, L. Ray, G. W. Hoff-
mann, and B. D. Serot, Phys. Rev. C 28, 1421 (1983); and
(unpublished).
J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).
R. A. Amdt et al. , Phys. Rev. D 28, 97 (1983); R. A. Amdt,
private communication.
W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).
E. E. van Faassen and J. A. Tjon, Phys. Rev. C 30, 285 (1984).

24S. J. Wallace and J. A. Tjon, private communication.
C. J. Horowitz, private communication.
C. J. Horowitz, in The Interaction Between Medium Energy
Nucleons in Nuclei —1982, Proceedings of the Workshop on
the Interaction Between Medium Energy Nucleons in Nuclei
(Indiana University Cyclotron Facility), AIP Conf. Proc. No.
97, edited by H. O. Meyer (AIP, New York, 1983), p. 329.
R. M. Thaler, in Proceedings of the Third LAMP F II
Workshop, edited by J. C. Allred, T. S. Bhatia, K. Ruminer,
and B. Talley, Los Alamos National Laboratory Conference
Report LA-9933-C, Vol. 1, p. 200; M. V. Hynes, A. Picklesi-
mer, P. C. Tandy, and R. M. Thaler, Phys. Rev. C (to be pub-
lished); see also Ref. 33.

2sJ. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964).
C. J. Horowitz and B.D. Serot, Nucl. Phys. A368, 503 (1981).

OM. J. Moravcsik, The Two-Nucleon Interaction (Clarendon,
Oxford, 1963), pp. 11—18.

'M. Morita, Beta Decay and Muon Capture (Benjamin, Lon-
don, 1973), pp. 15—17.
M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
{N.Y.) 2, 226 {1957).
M. V. Hynes, A. Picklesimer, P. C. Tandy, and R. M. Thaler,
Phys. Rev. Lett. 52, 978 (1984).

A. Picklesirner, P. C. Tandy, R. M. Thaler, and D. H. Wolfe,
Phys. Rev. C 29, 1582 (1984); 30, 1861 (1984).
E. D. Cooper, Ph.D. thesis, University of Alberta, 1981 (un-

published).
I. Sick et al. , Phys. Lett. 888, 245 (1979); H. J. Emrich et al. ,
Nucl. Phys. (to be published).

B. Frois et al. , Phys. Rev. Lett. 38, 152 (1977).
38W. Bertozzi, J. Friar, J. Heisenberg, and J. W. Negele, Phys.



L. RAY AND G. W. HOFFMANN 31

Lett. 41B,408 (1972).
J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980); J.
Decharge, M. Girod, D. Gogny, and B. Grammaticos, Nucl.
Phys. A358, 203c (1981); J. Decharge, private communica-
tion.

~B.C. Clark et al. , Phys. Rev. Lett. 51, 1808 (1983).
L. Ray, G. W. Hoffmann, and R. M. Thaler, Phys. Rev. C 22,
1454 (1980).

The 300 MeV Ca and Pb data and the 400 MeV Ca
TRIUMF data are from D. A. Hutcheon et al. , private com-
munication. The 400 MeV Pb TRIUMF data are published
in Ref. 9. The 500 MeV Los Alamos Meson Physics
Facility —high resolution spectrometer (LAMPF-HRS) data
are published in Ref. 8. The 613 MeV Saclay cross section
data are from the tabulation of G. Bruge, Saclay Report
DPh-N/ME/78-1, 1978 (unpublished). The 800 MeV Ca
HRS cross section data are published in Ref. 44 and the

analyzing power data are presented in G. Igo et al. , Phys.
Lett. 81B, 151 (1979). The 800 MeV Pb HRS cross section
data appear in G. W. Hoffmann et al. , Phys. Rev. C 21, 1488
(1980) and the analyzing power data are given in Ref. 12.
The 1 GeV Ca cross section data from Saclay are in G. D.
Alkhazov et al. , Nucl. Phys. A274, 443 (1976). The 1 GeV

Pb cross section data from Gatchiga are presented in G. D.
Alkhazov et al. , Izv. Akad. Nauk. SSSR Ser. Fiz. 244, 3
(1976). The 1 GeV polarization data of Gatchina are pub-
lished in G. D. Alkhazov et al. , Phys. Lett. 90B, 364 (1980).
The 500 MeV p+ Ca HRS spin rotation data are from Ref.
10, while the Pb g data are from B. Aas et al. , Bull. Am.
Phys. Soc. 26, 1125 (1981); and B. Aas, private communica-
tion. The HRS Ca cross section data at 500 and 800 MeV
are from Refs. 8 and 44', respectively.
G. W. Hoffmann et al. (unpublished).

44L. Ray et al. , Phys. Rev. C 23, 828 (1981).
45L. Ray and G. W. Hoffmann, Phys. Rev. C 27, 2143 (1983).

We have also applied the RIA model to preliminary 800 MeV
spin rotation data for ' O and Ca targets (R. W. Fergerson
et al. , private communication) with successful descriptions re-
sulting.

47R. J. Glauber and P. Osland, Phys. Lett. 80B, 401 (1979).
48A. Bernstein and R. A. Miskimen, private communication.

S. J. Wallace, in Advances in nuclear Physics, edited by J. W.
Negele and E. Vogt (Plenum, New York, 1981), Vol. 12, p.
135~

J. J. Sakurai, Advanced Quantum Mechanics, iAddison-
Wesley, London, 1967), p. 312.


