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The effect of two-body charge density due to one-pion exchange on the triton photodisintegration
sum rules has been investigated. The inclusion of the two-body charge density modifies the Siegert
form of the dipole operator, resulting in a change in the enhancement factor and the
bremsstrahlung-weighted cross section. The expressions obtained for the integrated and the
bremsstrahlung-weighted cross sections are quite general, as all the two- and three-body intermedi-
ate states have been included. The numerical work is carried out employing a variational wave func-
tion and two-body interactions having only central and tensor components. It is found that the
change in the enhancement factor is quite significant ( —16%%uo) for the pseudoscalar coupling and
only about 2% with the pseudovector coupling, and can provide information about the nuclear in-

teraction and theories of meson exchange contributions to the triton photodisintegration sum rules.

It is a well-known fact that the photonuclear sum rules
play a very important role in understanding the elec-
tromagnetic interaction with the nuclei. The main advan-
tage of the sum rule calculations is that for conventional
dipole interactions one can avoid using the complicated
excited states. By knowing the ground-state wave func-
tion and the nuclear potential one can calculate the first
few moments of the photodisintegration cross sections.

It is known that since the three-nucleon system is sensi-
tive to the nuclear forces, its study can add to our
knowledge of the interaction between the nucleons. The
triton photoeffect can further provide a means for testing
the theories of meson exchange contributions to the elec-
tromagnetic currents. It has been reported earlier' that
the triton sum rules are quite sensitive to the ground-state
wave functions used. The introduction of hard core,
which is effectively equivalent to suppressing the two-
body wave functions at short distances, changes the
bremsstrahlung-weighted cross section and enhancement
factor considerably. ' Without meson exchange effects
the triton photonuclear sum rules have been calculated by
various authors. ' They have used different formalisms
and different forms of potentials, including the realistic
Ones. '

Over the past few years a significant contribution of the
meson exchange and isobar configuration to the enhance-
ment factor for the H(y, n)p reaction has been report-
ed. ' This strongly advocates the need of sum-rule cal-
culations, for the triton including the meson exchange ef-
fects, which can provide a sensitive way to examine the
two-body effects.

The main object of this work is to study the two-body
charge density effects due to one-pion exchange on the tri-
ton sum rules. In the present derivation we have followed
the formalism outlintxl by Cambi, Mosconi, and Ricci
(CMR) to obtain the enhancement factor and the

l

x;=(1/v 3)(RJ+Rk —2R;) .

Here the natural system of units, A'=1 and c =1, is
used. R; represents the position of the ith nucleon. The
three nucleons are labeled (ij,k), where we assume a cy-
clic permutation. The transformation relations between x
and y vectors in the above coordinate system are

Xg Qgj XJ' bgl' yj
y a,l. y +b,lxl

where

a;J ———( —,
'

) for i',
v3

for i~j~k .
gl

(2)

(3)

The two-body modification D [2] to the Siegert form of
the electric dipole operator for the three-body system can
be written as

D[2]=DN~N+DNN+DNN . (4)

According to CMR, the dipole operator DNJ~ can be
written as

bremsstrahlung-weighted cross sections. To our
knowledge this is the first calculation of the enhancement
factor and bremsstrahlung-weighted cross section which
includes the two-body effects.

It is convenient to use the following coordinate system,
which simplifies the kinetic energy term:

y; =(R~ —Rk),

DNN= f (m l2M)p(yk) I [is—,~;.P~+p, (~;+~~), I2]yk X(o.; X o J ) p„(~; ~—~)I2[o—;(o~'yk)+. trj. (tr; yk)]I,
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where f =0.081, and for pseudoscalar coupling
p, =}M~+}M, p, =p~ —p„, and for pseudovector coupling
p, =p„=(—,). M is the nucleon mass, m is the pion mass,
and P.; and o; are the isospin and spin operators for the
ith nucleon, respectively. The mathematical form of
P(yk) is given in Ref. 8. The retardation terms have been
ignored in (5) because their contribution is known' to be
negligible. ' The nonlocal terms are not included.

Following the pioneering work of Levinger and Bethe, "
the enhancement factor k for the triton photodisintegra-
tion can be written as

1+k=(2M/3)g(5, m
~
[D„[H,D, ]] ~

5,m), (6)

where
~
5,m ) is the triton ground state wave function, D,

is the component of the dipole operator in z direction, and
H is the Hamiltonian of the system.

Because of the existence of the noncentral nuclear

forces, only the total angular momentum J;, its projec-
tion operator J;„and parity ~ are conserved. For a com-
pletely charge independent Hamiltonian the isotopic spin

~; and its projection operator v;, are also good quantum
numbers. However, the difference in proton and neutron
masses and magnetic moments imply that total isotopic
spin is only an approximation. The formation of stable
nuclei, H and He of roughly equal binding energy, also
supports this approximation and suggests that the ground
state isotopic spin of these nuclei is ( —,

'
) (w;, = —,

' for He
and v;.,= ——,

' for H). If g} and gz are the two orthonor-
mal isotopic states for the three-nucleon system, where g}
is antisymmetric and gz is symmetric under the inter-
change of nucleons 1 and 2, then the general form of the
ground-state wave function for H can be written as

where }II~ and 4'g are the space and spin dependent func-
- tions, %~ being symmetric, and %~ being antisymmetric

under the interchange of the nucleons 1 and 2. }Ijg and
1

can be expanded in terms of the I.-S or J-J basis
2

states. In the I.-S basis, these states are defined to be an
eigenstate of the operators ( x3), ( y 3), ( 1;), (L;),
(g';) =(1;+L;),(S,' ) =(s}+sz), (S;) =(S,' + s3),
( J;)=(W;+S;),and J;,. Here, 1; is the relative angular
momentum of particles 1 and 2, L; is the relative angular
momentum of particle 3 with respect to the center of
mass of the pair (12), and s }, sz, and s 3 are spin angular
momenta of particles 1, 2, and 3, respectively.

The experiments' show that for the triton ground
state, the total angular momentum and total isospin are
( —,), respectively, and the parity is positive. Thus there
can be many possible angular momentum states which can
yield total angular momentum J;=(—,'), total isospin

~; =(—,
'

), and parity positive. But all these states are not
equally important for the tri'ton ground state. The proba-
bilities of triton wave function components have been cal-
culated by various authors using many realistic potentials,
like the Hamada-Johnston, ' super soft core, ' and Reid
soft core, ' and employing the variational method' ' and
Faddeev approach. ' Approximate calculations based
on the unitary pole approximation (UPA) were done by
Bhatt, Levinger, and Harms. ' According to these calcu-
lations the dominant component of the three-nucleon
wave function is the spatially symmetric S state
[P(S)=90%]. Probabilities of other important com-
ponents are, for the mixed symmetry S' state,
P(S')=1—2%; for D states, P(D)=8—9%; and for the
P state, P(P) =0.05%.

Now the isospin matrix elements of Eq. (6) can be
evaluated by inserting a complete isospin state ~r', ~),
where r ' =(r}+rz) is the isospin of the pair (12) and
s=~' +~& is the total isospin. Evaluating the isospin
matrix elements and exploiting the fact that the Hamil-
tonian operating on the ground state results in the binding
energy with a negative sign, one obtains,

1+k =(4M/3) y ('Pg
~ D,}2,(~,}2,+&)D,}2, ( 'Pg )

r'~rg g'

where

(8)

and X is the kinetic energy. Here, V is the potential energy and can be approximated in terms of two-nucleon interaction
as

y @12+@23+@31 (10)

The summation over g' and g" implies that they can take values g} and gz. The various dipole operators obtained by in-
serting the complete isospin states are found to be

D )(]g2)
——

4 3
(y3 (f rn/M)I —2 }}„}p(y—3)(o }o2y3+CTzlT } g3)

+It'(32)[(}M —6}M )yz X(o'3X 0 })+P (w}&33 2+ ~3~}3 2)]

+tjk(J1 })[(6p —p )3 }X ( cT2X c73)+}I ( (72&3'3 }+ &3o 2 3 })]] )

D}(3/2) ( /~)I y3 (f'~/M)[ —}M.A(y3)(~}~2 3 3+~2' } 3 3)+4(3 2)i ( }73'} 3 2)+4'(3 })P' (o 3o 2 3 })l]
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Do(1I21= [x3—(f m3 3/M)[ —3p, k(y3)y3X(crlXcrZ)+p„p(yZ)(olo3 yZ) —p„p(yl)(oZo3 y, )]j,
2 3

(13)

D 1(1/2) 2 3
(x3—(f'm V 3/M) t $(y3)(p, —2p„/3)y3 X(cr 1 X crZ)

0(y2)[(2ps+pU/6)yZ X(o3Xal)+(pU/»(o3ol y2+ olcr3 y2)]

—$(yl )[(2p +p„/6)yl X( Hp)( o3)—(p„/2)(o3oZ yl + oZo3 yl )'1 i ), (14)

D113i21 ——(1/~6)(x3 —(f'm3/3/M)[ p(y3)(p„/3)[y3X(o 1X crZ)]

+0'(y"2)[( —p. /6)y"ZX(o3X cr1)+(p. /»(o lo3 y2+o3cr1 y2)l

+p(yl)[( —p, /6)yl X(crZX cr3) —(p. /2)(cr3crZ yl+crZcr3 yl)]]),

0(1/2) =
23/3 (y3 —(f m/M) t

—p(y3)p„(o lcrZ y3+ crZo 1 y3)

+$(yZ)[( —3p, +p. /2)yZ X(o3X cr 1)+(p /2)( o3o1 y2+ olo3 y2)]

+p(yl)[(3p, —p. /2)yl X(crZXcr3)+(p. /2)(cr3crZ yl+crZcr3 yl)]]) . (16)

From now on, for the sake of brevity, the isospin state
I

~' r) will be denoted by I
T ) .

Applying the Wigner-Eckart theorem and introducing a complete set of spin-angle states, one can write Eq. (8) in the

1+k =(4M/9) X X(—) '3&'phyll&FIIJ &33&aJ
I
&'+&+I'"

I

a'J&33&a'JIID~ II+g &3

JTf aa'
err

+Q( ) 3&+gl IDf
I IPJ&22&PJ I

~
I P J)22&PJI ID$ I I+("&3

+ 2( —) '3&+gllDkllyJ&11&yJ I

~" Iy'J&11&y'JIIDFII pg &3

where V is the interaction between the nucleons i and j. The states
I aJ),

I PJ), and
I
yJ& represent complete spin-

angle states, where the subscripts 3, 2, and 1 on the angular brackets refer to spectator particles, respectively. Integrating
by parts the second derivative terms that result from the kinetic energy terms, we obtain

1+k=( —, ) g g f fdx3dy3
JTgg' a

T

3
~g'aug'

C)X 3

3
Og aITg' +

c)X3

3
~g aJTg'

+(g aITg )

X '(gaITg') 2 + 2 + 2 +g(ga'IT/")3&aJ I U12 I
Ja'&3L (L +1) l(1 +1) MB

X3 3'3 ~ a'

+g f f dXZdy'2(g pre)(g pITg )2&PJ I U31 I
ÃJ &2

PP'

+ g f fdXld»(gyITg)(grITg )1&yJ I »3 I
y'J&1

yy'

(18)
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where

U,q
——M Vg/(m) (19)

To obtain the preceding equation we have used the fact
that the functions (g~zg) vanish for the limits x;,y;~0
and x;,y;~ oo. The various functions (g~z~) appearing
in the preceding equations are

g~Tg = 3V3 f fdx3dy"3['pg(x3V3»f 3&x3V"31 &3]

(20)

guITg x2V2 f f rix2dy2[+g(x2V2»$ z&x2V2 I ~J&2] ~

(2

Tg x1» f fdxidy I[+g(x Iyi »$ i&xiy I rJ&i] .

(22)

From now on, these functions will be denoted by g',
where i can take the values 1, 2, and 3.

It is more convenient to choose the states ~aJ)3,
~
pJ )3, and

~
yJ ) ~ in the J-J coupling scheme which sim-

plifies the matrix elements for the potential term. In this
basis, the total angular momentum J is computed from
J 'J=(1 "+S'J), the relative orbital plus spin angular

momentum of the nucleon pair (ij), and J"(=L + sk)
is the orbital plus spin angular momentum of the third

I

nucleon, with respect to the center of mass of the nucleons

pair (ij). Here, S'J is equal to s;+ s~. Thus J 'J is the
angular momentum of the two-body system and J is the
angular momentum of the kth particle with respect to the
two-body system (ij).

The various terms g', which depend on x; and y;, may
also depend on the magnitude of xj and yj. , where j is not
equal to I'. Using the Legendre polynomial basis, a func-
tion of xj and yj can be expressed in terms of x;, y;, and
u; (=cosx;yJ). If a function f(x;,y;,xj,yj) is the product
of (xiy;) with the radial part of the ground state %~ and
dipole operator Df, which is the radial part of g', then we
can write

f(x;,y;,xj,y, ) =g[(W)'/4]F~(x;, y; )P~(u; ), (23)

where

1

F~(x;,y; ) =2~f f(x;,y;,xj.,yi )P~(u; )du; . (24)

The angular part of the function g' was calculated by
graphical method, which can be expressed in terms of
the 3nj coefficients of Wigner. The various matrix ele-
ments required for calculating the g' functions and contri-
buting considerably to the integrated and bremsstrah-
lung-weighted cross section are given by

L, l L,;
3&~J)~ 3))&)3=[J,W, S,L,JJ"J'L']

r+s + +J3+g12+s12 i

Y I

/g J;
L J

Y J Y' S; Y

J J "J S. f( y) (25)

/ 1 /;

3&aJ~~y3[~5)3—[J;W;S;/;JJ' J l ] 0 () 0

S; Y I-
g(y)2( )

i+ i i

Y E

2

2&PJ( [ 3) (5&3—— [J,W, S,S,."L,./,.JJ"J'S"L'/2]

S; J Y /3 J Y

J /3 JI2 J; /;

S; Y
f2(x3 V3)

I
(26)

X g Fi~(x2 V2)BI xBkcA(a32V2) (b32x2) '
( —b32y2) (a32x2)" [AA(k' —A)(/; —p) j[k']

WA, Ak~

L W k' l W kb 2~ S 2

0 0 0 0 0 0

0 0 0) ){} 0 0

W; L; l;

O' X1
S' —, S; ~ kb ka

(27)
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z & &J
I I 73 I I

& & 3 =
2

[JWSS'.L I JJ.' J S'3L I ]

+2M(+2 3 2)~L A+k~A(+323 2) (b32X2) ( b323 2) (~32xz) [~+(k ~)(Li +)][k l
WAAkc

k'1 k g~ k I.; —A k' —A.

0 0 0 0 0 0 0 0k'k"

L2Wk' I Wk
0 0 0 0 0 0

L, X Ixg( ) ~, xs,X

13 S; ~ kb ka

X'J J J
L„. L,. —A A

l, l'1
3&~JII403)(~i~z'A)ll&&3= 6[JSS"~I ]I:JJ"J'S"I']

() () () ( —)

(28)

J12 1 2

Xg(&) ( —) +
X 2

1 1X2 2

g12 & g12
l 2

1

2

S12 y, ~ & y I J3 y

J I L J I JF l l l l

FJ;S.
x ~1 Z' J f3(&3+3) (29)

g 12+F12

3&~JII&(X3)(~z~i A)II~&3 ( ) 3&~JII9 (+3)(~i~z &3)ll~&3 (30)

3&~JI I4'(xz)( ~3~i sz )
I I& &3= 6

4m

3/2 S' 1 S'
f~iSi ~iS("L~Ii][JJ"J'S"L'I'] '

I
2 2 2

X g &)g~~(x3 73)(&2353)'(b23+3)' [k'k'~1'[~(1 —~)](—)
k'kb~~

A, k" I; k'(1 —A, )L;
0 0 0 0 0 0 0 0 0 0 0 0

kb ~ k,
' (1—A) A. 1

Xg(X) 'L3 ~ I3
'

~ L; I;

k' x
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Xg(&) '
)

Y 2

J —, Y W; J; S; X W; 1

y S" S" V
l

S12 y
—' J

L 3 I3 J12 L3 J3 (31)

' 3/2 S" r S12
l

3&~J~if(y2)(~, ~3 y2)(~»3= 6 [Js,w, s,"L,l, ][JJ"J's"L'l']
2 2 2

X g Bjg~ ~(x3j 3 )(a23y3 ) (b23x3 )' [k'k W] [A( 1 —p)]
kakb~A

3 g 3~+/12+ J~~+L, 3+/3+ J+s, +J +1 L k ~ l W k
x( —) 0 0 0 0 0 0

0
l; O'A, k'(1 —A) L,~000 0 0

kb ~ kg X k k'
Xg(X) 'L3 ~ l3

'
1 A, (1—A, ) .

l I.

, J" S" I'
Xg(F)

Y

S; J; S;
Y J —' y S.',

X '
1 1X I. 2 . 2

F 1

2

1
(32)

where [J]=(2J+ 1)'~,

B13 I 4m(2l + 1 }!/[(2——A+ 1)!(2l—2k+ 1)!]I '

and 3j, 6j, and 9j coefficients are used in the convention
of Ref. (23).

In the preceding equations the various radial part can
be obtained by multiplying the radial part of the ground
state wave function with the radial part of the dipole
operator. The mathematical form of the various radial
parts can be written as

1

F1~(xz,y2) =2~ (x3)'—1
—I;X (y3 ) 'RsP~(u2 )du 2

F2~(x1,y1)=2w (y 3 )
'

X(x3) 'RsP~(u3)du@,
1

~~(x3 y3) =2~f, [4(y2)~ye]

XRsP~(u3)du3 .

(36)

(37)

(38)

f 1(x3 y3 ) x3Rs

f2(x3 y3) y3RS

f3(x3 y3) 4'(y3)R5

(33)

(34)

(35)

Here, Rs represents the radial part of the ground state
wave function, which corresponds to the angular momen-
tum configuration 5. As an example, 5 can represent a
spherically symmetric S state or mixed symmetry S' state
or a D state. Thus for an S state we choose l;=0, L; =0,
W;=0, S =0, and S;=—,'. Similarly, for an S' state
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Ii ——0, L; =0, W; =0, S =1, and S;= —,', and for one of
the D states we can have 1;=I, L;=1, W;=2, S =1,
and S;=—,.3

The terms 1&yJllx3II5&3 and 1&pJlly3II5&3 call be ob-
tained by interchanging the first and second particles in
the terms 2&f3JI lx31 l&&3»d 2&&JI ly3115&3»d multiply-

(' 12+g12)
ing by a phase factor ( —) ' . Similarly, the terms

and

3& BI 14(y1)( ~2~3 y1) I I~&3

3& ~JI I4 (» )( ~3~2 y1) I
I& &3

3 & ~J
I I 4 (» )( ~3 ~ 1 y 2 )

I I
~ & 3

(g 12+g 12)
and multiplying by a phase factor of ( —)

Following a similar procedure, the bremsstrahlung-
weighted cross section including two-body effects can be
expressed in terms of the g functions. Thus,

can be obtained by interchanging b23 and b&3 in the terms

3 & ~J
I IA(yz )( ~1~3.y2 ) I I& & 3

cr I
—— o. S' 8
=(4&e /9m ) P f fdx3dy3(g~z~)(g~z~. ) .

(39)

The numerical calculations are carried out for the po-
tential given by Gerjuoy and Schwinger. This potential
has a central as well as a tensor component and is given
by

I '1= —[1—0.5G +0.5G ( cr; (7J).

+RSVP]Z

(yk ), (40)

where

The parameters G, R, and the function Z(yk) are given in
Ref. 24.

The ground-state wave function used for the calcula-
tions has a spatially symmetric S state and a D state. The
radial parts of the wave function are chosen to be of the
Gaussian form. The mathematical form of the wave
function in the coordinate system given by Eqs. (1) and (2)
is given by

N, (3) ~
3 2 3 CNg(3) ~

'Pg —— 2»2 exp[ —(3p/4m )(x3+y3)]+, exp[ —(3v/4m )(x3+y3)]
( 1 +C2)1/2 2(1+C )'~

X [3(~1.x3)(~3.73)+3(~3~ y3)(~, ~ x3)—2(x3'Y3)(%1'F3)] 'X,

where X, the spin wave function for the spherically sym-
metric S state, is

1 (1/v 2)(X1+X1 —X, X2+)X, , (43)

2(2v) (3v/2)
(45)V20I'( —,

' )(m) ~

The parameters in the wave functions were obtained by
variational method by Gerjuoy and Schwinger. The
value of parameters used for the present calculations are
C=0.168, p=0. 109, and v=0.266. The numerical in-
tegration is performed by using the Gauss-quadrature
method. Since the potential is independent of parity and
isospin the integrated cross section can be compared only
with the Thomas-Reiche-Kuhn (TRK) sum rule value.
The experimental data available on deuteron and two-
nucleon scattering indicate the presence of exchange
forces in the nucleon-nucleon interaction, such as Majora-
na, Bartlett, and Heisenberg forces. Hence the nucleon-

with X; representing the spin wave function for the ith
nucleon of magnetic quantum number m. N, and Xd are
given by

2(21M)' (3P/2)'s=
I ( —')(m)

nucleon interaction is different for singlet-even, singlet-
odd, triplet-even, and triplet-odd forces. Besides this, the
tensor, spin-orbit, and velocity-dependent components are
also present in the nucleon-nucleon interaction. Thus the
actual N-N potential does not commute with the Siegert
form of the dipole operator. This results in a higher value
of integrated cross section than the TRK sum rule value.
Thus agreement with the experiments cannot be expected.
Hence, comparison with the experiments is not made.
The integrated cross section is compared with the TRK
sum rule value and the bremsstrahlung-weighted cross
section is checked by calculating the expectation value of
the dipole operator for the ground state in two different
ways.

Table I shows the enhancement factor and the
bremsstrahlung-weighted cross section without and with
the two-body effects. The enhancement factor without
meson exchange effect agrees with the TRK sum rule
value. Inclusion of two-body effects changes 1+k to 1.16
for the pseudoscalar coupling, but only to 1.02 for the
pseudovector coupling. The bremsstrahlung-weighted
cross section changes from 1.937 to 1.957 for pseudosca-
lar coupling, and to 1.940 for pseudovector coupling. For
reasons already given, no comparisons with the experi-
mental data are made.

It should be pointed out that there is ambiguity in the
two-body charge density operator coming from the arbi-
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TABLE I. Triton enhancement factor and bremsstrahlung-
weighted cross sections without and with meson exchange ef-
fects.

Without exchange
effect

With exchange- effect
Pseudoscalar Pseudovector

coupling coupling

1+k
o ) (mb)

1.00
1.937

1.16
1.957

1.02
1.940

trariness of the unitary transformation which has been
resolved by Cambi et al. by choosing the free parameter
so that pNN reduces to the form given by Kloet and Tjon
in pseudoscalar coupling. The unitary ambiguity makes a
definite calculation impossible until a potential model and
wave functions are constructed which resolve the ambi-

guity problem. The necessity of a consistent treatment for
the exchange current has been pointed out by Friar.

The present calculations may undergo changes when
calculations with modern potentials and wave functions
are carried out. It should also be pointed out that pseu-
dovector coupling, which gives satisfactory agreement
with experiment for threshold pion production from nu-
cleons, was employed by Jaus and %'oolcock in the two-
body charge density for deuteron photodisintegration in
the forward direction, and yielded a reduced cross section.
However, one does not know whether it will give im-
proved agreement for the entire angular distribution and
for other observables like the nucleon polarization and the
asymmetry function.

This work was partially supported by the National
Aeronautics and Space Administration under Grant No.
NAG1442.

M. L. Rustgi, Phys. Rev. 106, 1256 {1957).
2V. S. Mathur, S. N. Mukherjee, and M. L. Rustgi, Phys. Rev.

127, 1663 (1962).
J. S. O'Connel and F. Prats, Phys. Rev. 184, 1007 (1969).

4D. Drechsel and Y. E. Kim, Phys. Rev. Lett. 40, 531 (1978).
5G. Boutin, B. Goulard, and J. Torre, Can. J. Phys. 56, 1447

(1978).
Karen J. Mayers, K. K. Fang, and J. S. Levinger, Phys. Rev. C

15, 1215 (1977).
7E. Hadjimichael, Phys. Lett. 85B, 17 (1979).
A. Cambi, B. Mosconi, and P. Ricci, Phys. Rev. C 23, 992

(1981). This work is based on M. Gari and H. Hyuga, Z.
Phys. A 277, 291 (1976); H. Hyuga and M. Gari, Nucl. Phys.
A274, 333 (1976); J. L. Friar, Ann. Phys. (N.Y.) 104, 380
(1977).

R. Vyas and M. L. Rustgi, Phys. Rev. C 26, 1399 (1982).
G. Goulard and B.Lorazo, Can. J., Phys. 60, 162 (1982).

IJ. S. Levingei and H. A. Bethe, Phys. Rev. 78, 115 (1950).
C. W. Li, Phys. Rev. 83, 512 (1951).

~3T. Hamada and I. D. Johnson, Nucl. Phys. 34, 382 (1962).
~4R. de Tourreil and D. W. L. Sprung, Nucl. Phys. A201, 193

(1973).
R. V. Reid, Jr., Ann. Phys. {N.Y.) 50, 411 (1968).
J. Bruinsma, R. Van Wageningen, and J. L. Visschers, in Few
Particle Problems in Nuclear Interaction, edited by I. Slaus
et al. (North-Holland, Amsterdam, 1972), p. 368.

7A. D. Jackson, A. Lande, and P. U. Sauer, Phys. Lett. 35B,
365 (1971).
Y. E. Kim and A. Tubis, Phys. Rev. C 7, 1710 (1973).
E. P. Harper, Y. E. Kim, and A. Tubis, Phys. Rev. Lett. 28,
1533 (1972).

2oA. Leverne and C. Gignoux, Nucl. Phys. A203, 597 (1973).
S. C. Bhatt, J. S. Levinger, and E. Harms, Phys. Lett. 40B, 23
(1972).
E. Elbaz and B. Castel, Graphical Methods of Spin Algebras
(Dekker, New York, 1972).
M. Rotenberg, R. Bivins, N. Metropolis, and John K. Wooten,
Jr., The 3-j and 6-j Symbols (The Technology Press, MIT,
Cambridge, Mass. , 1959).
E. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138 (1942).

25V. N. Fetisov, A. N. Gorbunov, and V. T. Varfolomeev, Nucl.
Phys. 71, 305 (1965).
H. M. Gerstenberg and J. S. O' Connell, Phys. Rev. 144, 834
(1966).

A. N. Gorbunov, in Photonuclear and Photomesic Processes,
Proceedings of the P. X. Lebedeu Physics Institute, I974 (Nau-
ka, Moscow), 1974, Vol. 71, p. 1 (in Russian); Photonuclear
and Photomesic Processes, edited by D. V. Skobel'tsyn (Con-
sultants Bureau, New York, 1976), Vol. 71, p. 1 (translation).

88. L. Berman, S. C. Fultz„and P. Yergin, Phys. Rev. C 10,
2221 {1974).
W. Jaus and W. S. Woolcock, Nucl. Phys. A365, 477 (1981).


