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Anomalous absorption of neutron partial waves by the nuclear optical potential
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Department ofPhysics, Kyushu University, Fukuoka 812, Japan

(Received 23 July 1984)

Anomalously strong absorption of neutron partial waves by the nuclear optical potential is investi-

gated in detail. More than 100 cases of anomalously strong absorption are found over the entire
Periodic Table of stable nuclei in the range of energy 0—80 MeV and orbital angular momentum
0—13. A study of the S matrix in the complex-k plane reveals two different types of anomalous ab-

sorption. Discussions are given on systematics of the anomaly, its wave function, its relation to the
strong absorption in the heavy-ion scattering and to the so-called unstable bound states, and on the
experimental observation of the anomaly, which could be a new test of the optical potential.

I. INTRODUCTION I I I I
I I 1 I I

I I 1 I

In the course of a recent preequilibrium analysis of low
energy (n,n') reactions, ' it was found that the S-matrix
element of the elastic scattering of neutrons by standard
optical potentials becomes anomalously small for certain
combinations of the target nucleus, the incident energy,
and the angular momentum. The modulus of the S-
matrix element was found to be of the order of 10 in
certain cases. Some 30 such anomalies were reported over
the entire mass number region of the target nucleus in the
range of the incident energy from 0 to -40 MeV and the
orbital angular momentum l up to I l.

The physical meaning of the anomaly is obvious. Van-
ishing of the S-matrix element implies absence of the out-
going wave in the asymptotic region. Hence, such a par-
tial wave is completely absorbed by the potential. In gen-
eral, whenever the S-matrix element gets extremely small,
anomalously strong absorption of the partial wave occurs.
In the following, we shall call the phenomenon anomalous
absorption for short.

Strong absorption is common in the scattering of heavy
ions by nuclei. There, however, the S-matrix element is
always nearly equal to zero for all the partial waves up to
a certain angular momentum. In contrast, anomalous ab-
sorption in neutron scattering occurs only for special com-
binations of the target nucleus, energy, and angular
momentum. This suggests that the two kinds of strong
absorption are of different origins. We shall see in the
subsequent sections that this is indeed the case.

In the present paper, we report on a detailed investiga-
tion of anomalous absorption of neutron partial waves by
the optical potential of Becchetti and Greenlees. We
have made a similar survey as in Ref. 1, but in greater de-
tail and with much greater precision. %'e have investigat-
ed the nature of anomalous absorption by studying the S
matrix on the complex-k plane. We found in particular
that one can discern two different types of anomalous ab-
sorption. We have also studied systematics of the anoma-
ly, its wave function, and its relation to the strong absorp-
tion of heavy ions in the optical potential and also to the
so-called unstable bound state.

In Sec. II the result of the survey is presented. In Sec.
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FIG. 1. Distribution of anomalous absorption on the (X,Z)
plane of target nuclides. Anomalies with j = I + 2 and

j = l —
2 are plotted separately in (a) and (b), respectively, each

labeled by its l value. They are classified into series, each with
consecutive l and plotted on different ordinates.
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less than 0.05 on the (N, Z) plane. The regularity of the
distribution in Fig. 1 is striking. Similar regularity can
also be seen in the (E,Z) and (E,l) planes as shown in
Figs. 2 and 3, respectively. We discuss these regularities
in Sec. III.

Table I lists the minimum value of
~

S
~

in each cluster
of anomalies in Fig. l. One sees that in certain cases

~

S
~

is of the order of 10,which is two orders of mag-
nitude smaller than those found in Ref. 1. Even smaller
values of

~

S
~

could be attained if ( N, Z) were not re-
stricted to stable nuclei. It should be remarked in passing
that the minimum value of

~

S
~

is more sensitive to Z
than to the mass number 3 in the vicinity of anomalous
absorption.
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FIG. 2. Distribution of anomalous absorption on the (Z,E)
plane. Circles are for j =(+ 2 and crosses are for j =I —2.
The numbers indicate the I of the anomaly.

III discussions are given on the aspects of the anomaly al-

ready mentioned. A discussion is also given on some con-
ditions for experimental observation of the anomaly. In
Sec. IV, a summary is given. A method of solving the
one-body Schrodinger equation for complex values of k is
described in the Appendix.

II. NUMERICAL RESULTS
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FIG. 3. Distribution of anomalous absorption on the (l,E)
plane. Circles are for j = I + 2 and crosses are for j = l —

2 .

We have made the survey over all the stable nuclei (life-
time & 5)&10 yr) and the range of center-of-mass energy
0&E&80 MeV, orbital angular momentum 0&I &13,
and total angular momentum j =l+ —,'. For each set of I,

j, E, proton number Z, and neutron number cV of the tar-
get nucleus, we have calculated the S-matrix element SIJ
with the parameters of the Becchetti-Greenlees potential
obtained from the formula in Ref. 2.

The result is summarized in Figs. 1—3 and in Table I.
Figure 1 shows the distribution of the anomaly with

~

S
~

III. DISCUSSIONS

In this section we discuss some salient features of
anomalous absorption surveyed in Sec. II.

A. Origin of anomalous absorption

It is evident that anomalous absorption is caused by the
imaginary part of the optical potential; a real potential
can give only S-matrix elements of modulus unity. A
very strong absorptive potential, however, does not always
cause anomalous absorption. In fact, if such a potential
damps the wave function to zero near the potential boun-
dary within a distance much shorter than the wavelength,
it gives rise to a strong reflected outgoing wave. This is
because in such a case the wave function outside the po-
tential behaves as if it had a node at the potential boun-
dary. A node, however, requires the presence of an incom-
ing wave and an outgoing wave of equal amplitudes.

Thus one sees that anomalous absorption occurs only
under very special circumstances. It, therefore, seems re-
rnarkable that it occurs for the realistic neutron optical
potential of Ref. 2. The question then is, what are the ef-
fects of the imaginary potential which cause anomalous
absorption?

To see this, we investigate the behavior of the S-matrix
element SIJ(k) as a function of the wave number k in the
complex-k plane. The Becchetti-Grreenlees potential at
each k is assumed to be that at the energy corresponding
to Re(k ). Figure 4 shows an example of the contour
map of log&0

~

S~J(k)
~

on the complex-k plane when
anomalous absorption takes place. It is for the case of the
neutron partial wave with l= 6 and j = —", on ' Os.

The figure shows that S~J(k) has a zero almost exactly
on the real axis where the minimum value of

~
S~J(k)

~

is
of the order of 1.3&&10, almost complete absorption.
An interesting feature of Fig. 4 is the presence of a pole at
k=(0.65, —0. 18). It turns out that this pole is very
relevant to the discussion of the origin of the zero in ques-
tion.

One can see this if one varies the strength of the imagi-
nary potential by varying a multiplicative factor Xl to ob-
serve the resulting change in the pattern of the contour
map, especially the movement of poles a~d zeros. Actual-
ly, this type of investigation has been reported in Refs. 3
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TABLE I. Summary of the minimum values of
~

S
~

in each cluster of points in Fig. l. The + cor-
respond to j= I+ 2. The numbers in the parentheses represent minus the power of 10 by which the
preceding number is multiplied. The A and R in the last column stand for the anti-bound-state-pole

- and resonance-pole origin, respectively, of the anomaly discussed in Sec. III.

(+)
0 (+) 9

45
144

z
4

21
62

5
24
82

0.303
0.358
0.371

2.117
2.718
2.876

Isl
1.096(2)
2.277(2)
4.077(3)

Origin

(+) 20
83

232
23
88

235

10
36
90
11
38
92

10
47

142
12
50

143

0.442
0.405
0.386
0.450
0.414
0.397

4.256
3 444
3.105
4.384
3.597
3.284

4.395(2)
8.984(4)
2.158(2)
2.714(3)
4.395(3)
9.865(4)

R
R
R
R
R
R

7
36

133
45

141

3
18
55
21
59

0.664
0.556
0.466
0.549
0.479

10.455
6.592
4.539
6.393
4.794

2.982(2)
8.560(4)
4.805(3)
8.769(3}
2.185(3)

63
195

19
74

209

29
78

9
34
83

34
117

10
40

126

0.635
0.528
0.842
0.646
0.540

8.499
5.814

1S.484
8.776
6.079

1.058(2)
8.363(4}
8.197(4)
2.258(3)
2.505(2)

R
R
R
R
R

(+)
4 ( —)

23
98
32

112

11
42
16
50

12
56
16
62

0.962
0.710
0.960
0.728

20.036
10.S66
19.719
11.094

1.145(2)
1.354(3)
1.757{2)
1.031(3)

(+)

( —)

37
138
54

168

17
58
24
68

20
80
30

100

1.050
0.788
1.013
0.776

23.493
12.977
21.686
12.568

2.126(2)
2.069(3)
8.007(3)
1.135(3)

(+)

( —)

55
192
81

232

25
76
35
90

30
116
46

142

1.125
0.842
1.069
0.827

26.737
14.786
24.003
14.252

1.377(2)
1.329(3)
1.591(3)
9.685(3)

R
R
R
R

7 (+)
( —)

79
116

35
48

44
68

1.181
1.113

29.305
25.924

2.529(3)
1.019(3)

110
1S2

46
164

1.223
1 ~ 173

31.316
28.736

1.338(3)
2.227(3)

(+)
( —)

(+)
11 (+ }

141
205

182

232

59
81

90

82
124

108

142

1.286
1.199

1.327

1.361

34.557
29.973

36.737

38.598

6.858(3}
2.763(3)

8.788(4)

1.345(3)

and 4 with some numerical examples for square well po-
tentials. Although those works do not cover the whole
range of situations in the present analysis, they are useful
as references in the numerical works described in the fol-
lowing.

Before going into detailed discussions of the numerical
results, it is useful to remember some general analytical
properties of the 5-matrix element for scattering by a
complex potential. These may be summarized as fol-
lows. '
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FIG. 4. Contour map of log&0
~

S
~

on the complex-k plane in

the case of l=6 and j =
2 on ' Os for which anomalous ab-

sorption occurs.

SIJ(k, V)S()( —k, V)=1 .

(c) If V is a nonregenerative potential, i.e., Im( V) &0,
S(k, V) is regular in the first quadrant of the complex-k
plane.

These properties can be readily derived from the
Schrodinger equation and the boundary condition im-
posed on the wave function.

If one denotes the S-matrix element for a complex po-
tential V by Sgj ( k, V):

(a) SIj(k, V) and its counterpart for the complex conju-
gate potential P' are related to each other through

SIj(k, V)Sl'J(k*, V ) =1 .

In particular, if Vis real,

Si)(k, V)SIJ(k', V) =1 .

(b) For any V, SIJ(k, V) is related to its value at —k
through

0.70.5 0.6 0.8 0.9 1.0
Re(k)

FIG. 6. Same as in Fig. 4, except NI ——0.0, i.e., the potential
is real.

I

Im(k)

Figures 5 and 6 show the coritour maps corresponding
to Fig. 4 but for Xl ——0.5 and 0.0, respectively. At
Nl ——0.0, i.e., when the potential is real, a zero and a pole
of the S-matrix element are located at the positions sym-
metric with respect to the real axis. This is because of Eq.
(2); a pole in the fourth quadrant, a decaying-state-
resonance pole, necessitates a zero in the first quadrant at
a complex-conjugate position.

For %1&0, Eq. (2) does not hold any more, nor does
the symmetry of the pole and the zero with respect to the
real axis. Figures 4 and 5 show, however, that the zero
and the pole move as a correlated pair when Ni changes.
As Xi increases, the pattern of the contour map rotates
clockwise, the pole and the zero both moving downwards.
This is because the pole cannot move upward into the first
quadrant because of property (c). It actually moves away
from it in this particular case, in agreement with the cases
investigated in Ref. 4. Correlated to this movement of the
pole, the zero moves down and almost exactly reaches the
real axis at Xl ——1.0, resulting in Fig. 4. The movement
of the zero is depicted in Fig. 7 by curve (1).
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FICx. 5. Same as in Fig. 4, except the imaginary potential is

reduced by a factor N& ——0.5.

--0.3-

FIG. 7. Loci of the zero for varying strength of the imagi-
nary potential. They are associated with a resonance pole [curve
(1)], a bound-state pole [curve (2)], and an anti-bound-state pole
[curve (3)], corresponding to Fig. 4, the 1=0, j=

z wave on

Cr, and Fig. 8, respectively. The numbers attached to the cir-
cles indicate the values of NI.
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The foregoing analysis suggests that there may be other
types of anomalous absorption, depending on the kind of
pole with which the zero is associated. There are two
types of poles of the S-matrix element other than the reso-
nance pole. For a real potential, one is the bound-state
pole on the positive imaginary axis and the other is the
anti-bound-state pole on the negative imaginary axis. A
zero is associated to each of these poles according to Eq.
(3) which dictates that if a pole is at k =ko, there must be
a zero at k = —ko. On the complex-k plane they are
symmetric to each other with respect to the origin,

This symmetry is maintained even when an absorptive
potential is introduced and the poles move away from the
imaginary axis as the strength of the imaginary potential
is increased. In the particular cases investigated here the
movement of the pole-zero pair turns out to be as follows.

A bound-state pole must move to the left from the
imaginary axis into the second quadrant, again because of
property (c). The zero associated with it, therefore, moves
to the right from ihe negative imaginary axis into the
fourth quadrant. Its vertical movement, however, turns
out to be either downward or only slightly upward. An
example is shown in Fig. 7, curve (2). Even at the full
strength of the imaginary potential, the zero does not ap-
proach the real axis close enough to cause a significant ab-
sorption. Thus, there is no anomalous absorption associ-
ated with a bound-state pole for the Becchetti-Greenlees
potential in the energy range considered here.

There is no restriction of movement for anti-bound-
state poles such as the one for bound-state poles'. It turns
out, however, that in the particular cases investigated here
their movement is such that the associated zeros move
from the imaginary axis to the right and downward,
sometimes getting very close to the real axis at the full
strength of the imaginary potential. An example is shown
in Fig. 7, curve (3), for the case of the l =0, j= —,

' wave on
'44Sm. The corresponding contour map of log&o

~

S
~

at
X& ——1.0 is shown in Fig. 8. One indeed sees a zero very
close to the real axis, but no associated resonance pole in
the fourth quadrant, in contrast to Fig. 4. The latter
feature is in fact a signature of the anti-bound-state-pole
origin of the anomaly.

0 ]

.~~~~~~"~/(+) I,~,

0.'l 0.2 0.3 0.4 0.5
Re(k)

FICr. 8. Contour tnap of log&0
~

S
~

for the case of 1=0
on ' Sm.

Anomalous absorption of this type has been found only
for I=0 among the cases studied here. All the other
anomalies are associated with a resonance pole.

=[re~ '(«)]'/[re~' '(«)] ~,=g, (4)

where u~J(k, r) is r times the radial wave function of the
partial wave (l,j), hI' '(x) is the spherical Hankel func-
tion of the second kind, i.e., an incoming free wave, and R
is an arbitrary point in the asymptotic region. Equation
(4) governs the relationship among the values of E, Z, X,
and I at the anomaly. Since potential parameters and the
functions in Eq. (4) depend smoothly on E, Z, and K and
change systematically with I and j, one would expect some
kind of a systematic pattern in diagrams like Figs. 1—3.
Conversely, the patterns in those figures indicate some
simple relationship between the values of the parameters
at the anomaly. The relationship is even more clearly re-
vealed by a plot on the (l/k, A '

) plane as shown in Fig.
9. One sees that again the points cluster into eight
groups. However, except for the low l's, for all the six
groups already mentioned the lines connecting the points
are very nearly straight. An analytic expression for the
straight lines is

I/O =r, A'~ +6,

[fm) j =(L+ "/2 11.:-
P ~ r

5-
2 .-- .-'2

rO1r
1 r

r

0 I
0 r 0 0 I

I I I I I&r

D1

i=i-"&2 j
9

5- p p3
p'

o .- 3 62

r Of O1

1

o. lr I I

0 2
FIG. 9. Distribution of anomalous absorption on the

( l/k, A '
) plane. The numbers indicate the I of the anomaly.

B. Regularity in the distribution of the anomaly

In Sec. II A we saw in different kinds of representations
in Figs. 1—3 that the distribution of anomalous absorp-
tion is quite regular. In each of those figures, the points
cluster into eight groups, each of which, except for the
isolated two, forms a smooth line with the consecutive I's.
A similar pattern can also be seen in the distribution of
the anomaly on the ( l, 2) plane.

The regularity is perhaps not so surprising if one con-
siders the condition for anomalous absorption

u('(k, r)/u( (k, r)
~ „g
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where r& and 5 are constants. For the six curves (r~, 5)
equals (1.20, 0.76), (1.42, —1.00), and (1.99, —5.84),
respectively, for j= I + —,

' and (1.22, 0.30), (1.40, —1.27),
and (1.89, —5.65), respectively, for j= I ——,'. One cannot
draw meaningful straight lines through the points of the
other two groups.

The analysis described above is related to a previous at-
ternpt of Haruta to deduce the "radius parameter, " rz,
from the relations I =kR and R =r2A', where l and k
are those at anomalous absorption. He obtained for some
16 anomalies the value of r2 ranging from 1.35 to 1.43 for
j=I+—,

' and from 1.19 to 1.26 for j= I ——,', both de-

creasing with increasing I. It is easy to see that this result
can be explained by the linear relationship already
described. We have already seen, however, that there are
actually several series distinguished by different common
values of r

&
and 5.

Another point to be noticed is that the values of r, are
much larger than the radius parameter of the Becchetti-
Greenlees potential, ro ——1.17 fm. This suggests that the
two parameters are not directly related to each other and
the relationship between ro and r& is rather involved.

Finally, a natural association of Fig. 3 might be with a
Regge trajectory. In fact, if the potentials were real the
zeros and the poles would coincide on the (E,l) plane, ac-
cording to Eq. (2). Figure 3 would then be just a represen-
tation of Regge trajectories Eve.n for complex potentials
it then seems natural to expect some strong correlation be-
tween Fig. 3 and the Regge trajectory. The derivation of
an exphcit relationship between the two, however, does
not seem simple.

C. Wave function at anomaly

(arbitrary j
I

1.0—
I I I

/
I I I ~

1
I I I 1 ) I I I I

In order to see what happens to the wave function when
anomalous absorption occurs, we plotted uIJ(k, r) as a
function of r by a solid line in Fig. 10 for the case of the
I=4, j = —, wave on " Sn at 11.094 MeV. For compar-
ison, the same wave function at neighboring energies is

t

also plotted in Fig. 10. One sees that the wave functions
are almost the same inside the potential and the average
modulus of the amplitudes outside the potential is also
essentially the same. The only qualitative dependence on
E is that at the anomaly there is an absence of oscillation
in the asymptotic region, due to the lack of the outgoing
wave.

The features of the wave function already described are
in sharp contrast to the resonance enhancement of a wave
function inside the potential. The difference between the
two cases can be understood qualitatively in terms of
Jost's wave functions f~z '(k, r), defined by the asymptotic
boundary conditions

lim e ~'""f' —'( k, r) = 1,
I ~ oo

if one writes
ulj (k, r) in the form

», (k, r) =ft' '(k, r) —St (k)fI',+'(k, r) .

(6)

(7)

Near a resonance, S,z becomes very large, indicating some
anomalous behavior of ul~(k, r) inside the potential. At a
zero of SJ, however, u~~(k, r) simply reduces to fI'J '(k, r)
and is not drastically different from the wave function at
neighboring energies inside the potential. This is the
reason why nothing spectacular is seen in Fig. 10 except
for the monotonic modulus of the amplitude in the
asymptotic region. Furthermore, the transition from the
oscillating to the monotonic modulus is rather gradual,
being over the "width" of the zero, of the order of an
MeV as one can see, for example, in Fig. 4.

1..0 I I I
I I

16O 208@b

Eo —
L 92 Mev

0.5—

D. Comparison with absorption
in heavy-ion scattering

Let us compare anomalous absorption discussed so far
with the strong absorption of heavy ions by complex opti-
cal potentials. In the case of heavy ions, all the low par-
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I fAQg 1 AQ +
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5
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(MeV) ~ I ~ I

0

FIG. 10. The radial function uIj(k, r) for 1=4, j =
2

on" Sn

as a function of r when anomalous absorption occurs at 11.094
MeV (solid line) and when the energy is off the anomaly by —1

MeV (broken line) and + 1 MeV (dotted line), respectively.

0.0
0 10 15

11.
~
S

~
as a function of l in the case of (a) a heavy-ion

scattering, ' 0 on Pb at E~,b ——192 MeV, after Ref. 6, and (b)
a neutron scattering on ' Os at E~,b ——14.86 MeV.
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tial waves up to a certain angular momentum are almost
completely absorbed by the absorptive potential. An ex-
ample is shown in Fig. 11(a). This is in contrast to the
case of neutrons in which anomalous absorption occurs
only in one particular partial wave, as shown in Fig. 11(b),
for special combinations of the energy and target nucleus.

A basic theoretical difference between the two cases is
that one can use a semiclassical analysis reasonably well
for the heavy-ion scattering but not for the neutron
scattering considered here. Thus, the strong absorption in
the heavy-ion scattering can be attributed to the strong
absorption of the flux by the complex potential in the
course of the wave coming from infinity, getting into the
potential, propagating inward, bounced back by the cen-
trifugal barrier, or at the origin if it is an s wave, and
propagating outward, eventually out of the potential. The
longer the distance the wave has to travel inside the poten-
tial, the more flux is absorbed. In turn, the lower the an-
gular momentum of the partial wave, the longer the dis-
tance it has to travel. If the absorptive potential is suffi-
ciently strong, as in the case of actual heavy-ion scatter-
ing, all the low partial waves up to a certain angular
momentum are almost completely absorbed, resulting in
extremely small S-matrix elements.

The preceding arguments are based on the lowest order
Wentzel-Kramers-Brillouin (WKB) approximation which
is valid if the potential varies slowly, changing little
within a distance of the local wavelength. This, in fact, is
a reasonable zeroth order assumption for the heavy-ion
scattering by the optical potential.

The approximation, however, is not well justified for
neutron scattering by the optical potential at energies less
than 40 MeV. The wavelength is large and the change of
the potential within that distance is appreciable in the sur-
face region. - In such a case, the gradient of the potential
causes a reflection of the wave function. In particular, the
incident wave is partly reflected back on the slope of the
potential, causing outgoing waves. This obviously invali-
dates the lowest order description already given but is
what actually happens in the neutron scattering con-
sidered here. Anomalous absorption in this case is the re-
sult of mutual cancellation of outgoing waves generated at
different regions in the potential. This can happen only
under special circumstances with special combinations of
energy, angular momentum, and potential. Thus, it
differs from the strong absorption of heavy ions in its ori-
gin as well as in its apparent features.

E. Relation to "unstable bound state"

If a zero that causes anomalous absorption is slightly
below the real axis in the complex-k plane, a pole exists in
the second quadrant slightly above the real axis, according
to Eq. (3). The wave number at the pole has a small posi-
tive imaginary part. The wave function, therefore, decays
exponentially at infinity, representing a bound state. Al-
though the complex energy eigenvalue makes the bound
state unstable, its small imaginary part makes the width
of the state narrow. Poles of this nature have been con-
sidered as an interpretation of some X-nuclear states with
extremely narrow widths ' and called unstable bound

states. Present analysis shows that such poles actually ex-
ist in some neutron-nucleus systems. It is, however, clear
that the existence is rather fortuitous, depending critically
on the strength of the imaginary potential; for a slightly
weaker imaginary potential the pole would correspond to
an unbound state. Another problem is whether or not an
unstable bound state is of real physical significance. One
might argue that the negative real part of the wave num-
ber indicates that the pole does not correspond to any
physically realizable state. We shall not discuss this prob-
lem any further here because the subject is obviously
beyond the scope of the present paper.

F. Experimental observation

It would be extremely interesting if anomalous absorp-
tion of neutron partial waves could be observed by experi-
ments. The question is whether and how it could be done.
This is not a trivial question, because anomalous absorp-
tion occurs on1y in one partial wave at an energy, and it
reduces, rather than enhances, its outgoing wave ampli-
tude. Hence, it will be difficult to detect it in any physi-
cal quantity that involves many partial waves. One will
have to look for an experiment that somehow picks out
individual partial waves, in particular the one that is ab-
sorbed anomalously. Another point is that the S-matrix
element varies rather slowly across the anomaly as already
mentioned. One has to look for an anomaly that extends
over an energy range of the order of an MeV. Whether an
experiment satisfying these conditions is actually feasible
is a very interesting open question.

IV. SUMMARY AND CONCLUSION

Anomalous absorption of neutron partial waves by nu-
clei has been investigated with the optical potential of
Becchetti and Greenlees for the stable target nuclides over
the entire Periodic Table. The anomaly is found in more
than 100 cases in the range of angular momentum from 0
to 13 and of energy from 0 to 80 MeV. The anomaly is
investigated in detail through a study of the S-matrix ele-
ment on the complex-k plane. The origin of anomalous
absorption is identified to be a zero conjugate to a pole of
the S-matrix element, moved to a point close to the posi-
tive real axis by the imaginary part of the optical poten-
tial. One can distinguish two types of anomalous absorp-
tion, depending on the kind of pole with which the zero is
associated. Among the three types of poles of the S ma-
trix, i.e., the decaying-state-resonance pole, the anti-
bound-state pole, and the bound-state pole, the first two
have an associated anomalous absorption, while the
bound-state pole happens to have none, at least not in the
particular cases investigated.

Regularity is seen in the distribution of the anomaly on
the (Z,E), ( l,E), and ( Iik, A ~

) planes. The points
representing the anomaly on those planes cluster into
eight groups, each consisting of one, two, or more than
three points. Each of the six last groups form a smooth
line with the points of consecutive l values on it. Espe-
cially, the lines on the ( l/k, A '~

) plane are nearly straight
except for the low I's. The constants r& and 6 in the
equation I/O =r&A' +5 representing the straight line
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are extracted by the method of least squares. The values
of r& are found to be considerably larger than the radius
parameters ro of the Becchetti-Csreenlees potential.

A wave function which suffers anomalous absorption
shows no anomaly inside the potential. This is because of
the presence of the f~~

' component in the wave function
which survives anomalous absorption. The only visible
anomaly is the monotonic modulus of the amplitude in
the external region due to the lack of the outgoing wave.

Anomalous absorption in the neutron scattering is com-
pared with the strong absorption of low partial waves in
the heavy-ion scattering. A qualitative difference between
the two cases is that the former occurs only for special
combinations of target nucleus, angular momentum, and
energy, while the latter occurs always and in all partial
waves up to a certain angular momentum. The difference
is attributed to the presence or virtual absence of the re-
flected waves generated by the gradient of the potential in
the surface region, due to the difference between the two
cases in the wavelength relative to the diffuseness of the
potential.

There are cases in which a zero is just below the posi-
tive real axis. The pole conjugate to such a zero is slightly
above the negative real axis and it corresponds to a so-
called unstable bound state. Existence of such a pole,
however, depends very sensitively on the strength of the
imaginary potential. Its real physical significance is not
yet established either.

Another open question is whether anomalous absorp-
tion is experimentally observable. If it is, it will probably
be in an observation which picks out individual partial
waves, in particular the one anomalously absorbed, over
an energy range of the order of an MeV. Such an experi-
ment, if feasible, would be a new test of the optical poten-
tial because anomalous absorption depends on the optical
potential in a different manner from quantities hitherto
observed.

Finally, it seems natural to assume that anomalous ab-
sorption is not restricted to neutron scattering. In fact, a
preliminary calculation shows it occurs also in proton
scattering. Possibly, it occurs in the scattering of light
composite particles as well. It wi11 be very interesting to
see how universal the phenomenon is in the entire realm
of the nuclear scattering of light ions.
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APPENDIX

The Schrodinger equation for r times the radial wave
function u:—u~j(k, r) for a partial wave (l j) reads

u -u —Su( —) (+) (A2)

where u ' +—' = rh~'+—' are the outgoing and incoming waves,
respectively, with the asymptotic forms

u' +—'-exp[+i (kr —lm/2)] . (A3)

If k is complex, one of the u' +—' grows exponentially as r
increases in the asymptotic region, and so does u. This
causes difficulty if one tries to solve Eq. (Al) in the usual
way with a step-by-step method from r=O to a point
r =r „in the asymptotic region. In this appendix we
describe a method of circumventing this difficulty.

For this purpose, we divide the r space into three re-
gions: (1) 0 & r & ro, (2) ro & r &r,„, and (3) r,„&r, de-
fined in the following way. In region (1), one can solve
Eq. (Al) by a step-by-step method from r=0 to r =ro
and get a solution u =u& without the difficulty of ex-
ponential growth of u. Region (3) is the asymptotic re-
gion where the solution u =u3 has the form of Eq. (A2),

u, =u'-' —Su(+) . (A4)

It is in region (2) in which one has to take care of the ex-
ponential growth of u.

In region (2), one introduces an auxiliary function w by

w =u —u' (A5)

if Im(k) )0. The function w is well behaved in region (2)
and it satisfies the asymptotic boundary condition

w ——Su (+) (A6)

which follows from Eqs. (A2) and (A5). The equation for
w is obtained from Eqs. (Al) and (A5) as

w" +(k —U)w = Uu'

The general solution of Eq. (A7) is of the form

w =Aw~+wJ

(A7)

(A8)

where o; is an arbitrary constant, w~ is a general solution
of the homogeneous equation

wH + (k —U)wH ——0, (A9)

and wz is a particular solution of the inhomogeneous
equation, (A7),

wi" + ( k —U) wi ——Uu ' (A10)

We choose w~ and wz such that they satisfy the asymp-
totic boundary conditions

w~ -au (+)

(A11)

wr-» (+)

where a and b are appropriately chosen constants. In or-
der for this to be possible for wz, it is necessary that the

u "+(k —U)u =0,
where U=(2p/fi )V+l(1+I)/r, p, being the neutron
reduced mass. The asymptotic boundary condition for u
1s
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right-hand side of Eq. (Alo) be negligibly small compared
with the left-hand side for sufficiently large r. If U
changes asymptotically as e ",this requires

at r „.The first condition gives

u 2 (Tp)/Q2(pp) =u
& (1 p)/0 ](rp) =y (A14)

2Im(k) & 1/I . (A12) from which a is determined as

We, therefore, restrict ourselves to the value of k which
satisfies (A12). The solution u =u2 in region (2) thus ob-
tained is given, from Eqs. (AS) and (A8), by

~=[&' '+wI —y(u' '+wl)j/(ywH —wH) . (A15)

The condition at r =r,„ is satisfied if, according to Eqs.
(A4), (Al 1), and (A13),

tl p = 1l + ( A wH +wI ) . (A13) S=—(aa+b) . (A16)

The solution is smoothly connected to u~ at ro and to u3 Equation (A16) together with Eq. (A15) determines S.
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