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A previously published s-wave scattering function for 1—450 keV neutrons on Ni is averaged for
comparison to the scattering from an optical model potential. The scattering length R' is found to
be 5.5+0.03 fm at 225 keV. Averaging of the scattering function (both by integration with a nor-
malized weight function and by use of an analytical approximation) produces shape elastic and com-

pound nucleus cross sections which are then fitted by adjustment of the real and imaginary well

depths in both spherical and vibrational optical models with a Woods-Saxon real well (ro ——1.21 fm,
ao ——0.66 fm) and a surface derivative imaginary well (rD ——1.21 fm, az ——0.48 fm). The fitted
depths are Vo ——48 MeV and O'D ——29 MeV for the spherical potentials, and Vo ——50 MeV and
O'D ——24 MeV for the vibrational potentials. Uncertainties are +5 MeV. From an upper limit on
the p-wave strength function the O'D for p waves is found to be 1.5 MeV for the vibrational model.
Thus, the imaginary potential is l dependent for the assumed geometry. For s waves the vibrational
model gives a good fit also with WD ——1.5 MeV and Vo ——54.4 MeV; however, with that Vo the 2p
states are bound too deeply in 'Ni and the 3s size resonance is predicted at too low a mass.

I. INTRQDUCTIGN

For many years a fruitful application of the phe-
nomenological optical model potential (OMP) has been to
the scattering of neutrons at only a few keV, where s
waves dominate. Thereby OMP parameters have been de-
duced specifically for s waves over a broad mass region.
The comparison between the OMP scattering function
and the average experimental scattering function for s
waves has involved two experimental quantities. One is
the strength function So ——(I „)/D, which is the average
s-wave neutron resonance reduced width per energy inter-
val, and is closely related to the imaginary part of the
OMP. The other is the potential scattering length R',
which is found from the off-resonance scattering and is
closely related to the real part of the OMP. Tabulations'
of these quantities are available.

Since early measurements were made over small energy
regions with few resonances, both So and R' had inherent
uncertainties due to the fluctuations in the widths and
spacings of the resonances. A meaningful comparison to
the OMP required data for several neighboring nuclei.
For medium weight and lighter nuclei these uncertainties
can be reduced by extending the measurements with good
resolution to several hundred keV. A careful multilevel
analysis is then required to isolate the s waves from
higher partial waves. Here we evaluate in terms of the
OMP the recent high resolution data for 1 to 450 keV
neutrons on Ni which Percy et al. obtained and
analyzed at the Oak Ridge Electron Linear Accelerator
(ORELA). For s waves their analysis gives small uncer-

tainties not only for S0, because many levels are observed,
but also for the off-resonance parameters, because for
most of the region of measurement the outer levels are far
away relative to their spacings. Cxiven these uncertainties
the comparison to the OMP becomes meaningful even for
this single nucleus.

To deduce an OMP from high resolution cross sections
requires that the A-matrix scattering function be averaged
for comparison to the OMP function. The quantities R'
and S0 do give that aveiage, but only at low energies. In
fact, R ' is usually defined in the zero-energy limit

Real 58'= lcm
E—+0 k

where 5 is the phase shift for the OMP scattering function
and k is the neutron wave number. The S0 is not so lim-
ited, but it is not precisely defined at higher energies be-
cause it depends on the arbitrary radius that is chosen for
the multilevel analysis. This problem of averaging the
scattering function over a larger energy region was treated
recently by Johnson, Larson, Mah aux, and Winters
(JLMW) (Ref. 3). Using a normalized weighting function
they averaged an experimental scattering function by
straightforward numerical integration and then showed
that an acceptable description of this average is achieved
by a simple analytic approximation.

We follow the procedure of JLMW but note that Mac-
Donald and Birse defined the average to be the
parametrized scattering function evaluated at the complex
energy E+iI, with 2I being the width of a Lorentzian
function. They then compared the average thus defined
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Indeed Eq. (7) is a good approximation.

III. SPHERICAL AND COUPLED CHANNEL OMP
FOR s WAVES
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FIG. 2. Compound and shape elastic cross sections for s-

wave neutrons on Ni. For 2I= 180 keV the numerical average
is from Eqs. (8)—(12) plotted vs E and the analytical approxima-
tion is from Eq. (7) plotted vs E. The model is either the cou-

pled channel or spherical OMP with geometry of ra ——rD ——1.21
fm, a0 ——0.66 fm, and aa ——0.48 fm.

p;p(g) 1+iP(E)R(E)
Sbkg E

1 iP (E)R(E)—

S„,(E)=S~(E)/Sbks(E) . (10)

E Fr E,E' dE'=1, (12)

and E is the averaged energy found by replacing S„, by
E' in Eq. (11). Here we use a Lorentzian function

Fg(E,E') =f([(E—E')'+I'] (13)

where f~ satisfies the normalization. The resulting nu-
merical average for 2I= 180 keV is plotted vs E in Fig. 2.

This parametrization of Sbks is convenient but not essen-
tial; the numerical averaging is insensitive to the particu-
lar parametrization. The average of S„,is defined by

(S„,(E)),= i, r, (E,E')S„,(E )dE,

where FI is a weighting function normalized in the re-
gion,

IV. SCATTERING LENGTH R' FOR Ni

In the literature R' has generally been defined by Eq.
(1) as a low energy limit. Ideally R' should represent the
effects of distant levels, but, being so defined, it can be
distorted if a wide level lies just below zero energy. %"e
avoid that uncertainty by using an energy-dependent defi-
nition,

R '(E) =Re5(E) /k . (14)

At the low energy limit this has the same uncertainties as
the usual definition, but over most of the region of a mea-
surement, particularly at the center, it has httle uncertain-
ty because the nearby levels are explicitly included in the
analysis.

Modern models have many parameters, but the present
data on o., and o„can determine only two quantities
which are, qualitatively, the volume integrals of the real
and imaginary parts of the OMP. Thus only two ap-
propriate parameters can be free. To facilitate compar-
ison with the recent work ' on Si, S, and S, we use
the same potential geometry, namely a real Woods-Saxon
well plus a surface derivative spin-orbit term with
r0 ——1.21 fm and a0 ——0.66 fm and a surface-derivative
imaginary form with rD ——1.21 fm and aD ——0.48 fm. We
assume V„=5 MeV for the spin-orbit potential; it has no
consequence for s waves in a spherical well, but enters
into the coupled-channel model. The remaining two ad-
justable parameters are the real and imaginary well
depths, V0 and 8'D.

In Fig. 2 the long-dash curves show the best fits
achieved by adjustment of the well depths for a spherical
OMP. The fitting required minimizing a X with weights
given by the inverse squares of the experimental uncer-
tainties. Table I lists not only the best fit well depths
(sph) with uncertainties but also, for comparison, the pa-
rameters deduced previously ' for Si, S, and S. The
real well depth VD is consistent with other nuclei, but the
imaginary well depth 8'D is quite large, at 29 MeV.

The spherical model could be a poor approximation be-
cause Ni is a vibrational nucleus. Therefore, we repeat-
ed the fit using the coupled-channel formalism, ' ' just as
MacKellar and Castel' ' did earlier for Si, S, and S.
Here the target channels are the 0+ ground state and the
2+ state at 1.33 MeV with P=0.211. We found the 3
state at 4.04 MeV with an assumed P= 0.20 to have negli-
gible effects for s waves.

Using coupled channels we fitted with only minor
changes in VQ and WD (see Table I) to obtain curves al-
most identical to the spherical OMP curves in Fig. 2.
This result is consistent with those shown in Table I for
the lighter nuclei; in each case the inclusion of vibrational
effects requires only minor changes in the well depths for
s waves. Further discussion is given in Sec. VII.
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TABLE I. Model' potential well depths.

Target

30Sic,d 48(1.7)
62(2. 5)

49.5
51.5

V, (MeV)
sph cc

8'D (MeV)
sph cc

2.0(1.5)
4.5(2.5)

V,. (MeV)
sph cc

3 3'
33'

32S,f 51.5{0.4)
61.4{1.1)

50.8
50.8

6.0(3.0)
2.7(1.5)

4.0
0.8 11(3)

5.3
5.3

.'4Sc,d S1.5(1.1)
58.5( 1.2)

50.5
51

3.0{2.0)
3.5{1.9)

2.5
2.5 6(3.5)

3.5
3 ' 5

Ni 48(5)
48g

50
50g

29(5)
2.3(0.4)

24
1.5 58

58

5g

'Model geometric parameters are r0 ——rD ——1.21 fm, a0 ——0.66 fm, aD ——0.48 fm.
bUncertainties for the spherical (sph) model are in parentheses. The same uncertainties apply to the
coupled-channel (cc) model.
'See Ref. 8 for the spherical model.
"See Ref. 15 for the coupled channel model.
'See Ref. 7 for the spherical model.
See Ref. 14 for the coupled channel model.
Assumed well depth.

Figure 3 presents R' for the various averages and
models. Three of these curves are transformations from
Fig. 2 with the same line symbols, i.e., the short-dash
curve is for the numerical average with I=90 keV, the
solid curve is the analytical approximation with I=90
keV, and the long-dash curve is for the models. A fourth
curve (dash-dot) shows the analytical approximation for
very large I. For the models, since R' is nearly constant,
the entire region can be treated as a low energy limit.
Vertical bars are included on the dash-dot curve to show
typical uncertainties propagated from Porter- Thomas
fluctuations in the strength function. The error bar is
smallest at the midpoint where the fluctuation effects for
nearby external levels tend to cancel. At the midpoint we
find R'=5.5+0.03 fm.

To make the connection to previously published values
of R', we first solve for R' from Eq. (14) and the analyti-
cal approximation of Eq. (7) for large I,

)
1 i pR(E) 1 i pR(E)

(
2k
"

1 —~ps 2k
""

1+~ps
'

which is similar to Eq. (17) except that R, unlike R, is
related to the actual scattering function rather than to its
average. The R is defined to be a simple function, say
linear in energy, which adequately describes R'"', except
possibly near the end points. It must increase with energy
whereas R need not. We conclude Eq. (18) is wrong in
concept for the purpose of comparison to an OMP. Al-
though its use yields a proper result if R is evaluated at
the center of the interval, it can also give a wrong answer
if evaluated off center. For the present data, for example,

7.5

7.0

E 6.0

5 5 —.=

where p=ka. This equation gives the dash-dot curve in
Fig. 3. Since the terms in s have opposite signs, their ef-
fects tend to cancel, and the following often becomes a
good approximation:

R'(E) =a —k ' tan '[pR (E)],

4.5

4.0
0

I

100
t

200 500
NEUTRON ENERGY (keV)

400

R'(E) =a [1—R(E)] . (17)

In the literature, e.g., Ref. 1, one often finds the expres-
sion

R'=a(1 —R ), (18)

Finally, if pR is small because either p or R is small, we
have

FICx. 3. Scattering length R' vs neutron energy. (a) Short-
dash curve, numerical average for I=90 keV; (b) solid curve,
analytical for I=90 keV; (c) long-short dash curve, analytic for
very large I; (d) long-dash curve, models. These line symbols
[except (c)] are the same as in Fig. 1. Vertical bars on the long-
short-dash line are uncertainties propagated from Porter-
Thomas fluctuations in the strength function. Previous mea-
surements are plotted at the midpoint of the prev'ious data and
are shown by an open circle {Ref. 17) and closed circle (Ref. 18).
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a linear approximation to R in Fig. 1 would intercept
zero energy at about —0.2 and the resulting R' from Eq.
(18) would be 7.2 fm, in serious disagreement with the
curves in Fig. 3 or with the midpoint value of 5.5 fm. In
effect Eq. (18) has often been evaluated at the midpoint to
give an approximate value for R'. In particular Firk,
Lynn, and Moxon' emphasized that the calculation be
done at the midpoint for proper comparison to the OMP.

Mughabghab et al. ' evaluated R' to be 6.7+0.3 fm on
the basis of two earlier measurements, a 1961 measure-
ment (6.5+0.5 fm) by Bilpuch et al. ' and a 1971 mea-
surement (7.0+0.5 fm) by Stieglitz et al. ' In both cases

Ni transmissions were measured for about 0—200 keV
neutrons and fitted by an approximate multilevel R-
matrix equation. The values of R' were deduced, essen-
tially, from Eq. (18). In Fig. 3 we have plotted each result
by a datum point at the midpoint of the analysis, even
though it is not clear' ' that the evaluation was weighted
toward the center. In Bilpuch's' analysis, for example,
the R' ' was set to zero and the radius a was adjusted for
best fit. Since R must in fact increase with energy, the
resulting fit had to be a compromise. If the compromise
favors the rniddle region, the resulting R' should be a
good estimate, but if it favors the lower region, the R'
would be too large. In any case, both earlier values of R'
are significantly larger than deduced here from Percy's
more recent data.

V. p WAVES

Percy et al. found the resonance structure of Ni too
complicated for definitive conclusions about p-wave neu-
trons. Nevertheless, their listing of resonance energies
and gI „ for the many narrow resonances with l & 0 does
provide us with information on o, because, even though
some of the resonances have l~1, we can calculate an
upper limit for the p wave o, . This limit will not be far
above the true value if we confine our calculations to the
lower part of their energy region where the centrifugal
barrier inhibits higher partial waves. Thus, assuming all
of these resonances are p waves in the limited region from
0 to 200 keV, we find s& ——0.0092+0.0014 for Percy's
boundary condition or a conventional' strength of
S~ ——(0.30+0.05) X 10 for a radius of 1.352 '~ fm.

Following JLMW we average assuming 8=0 (not criti-
cal) and find o, =0.14+0.02 b at the center energy of 100
keV. From our fitted s-wave OMP, assuming it applies to
all even parity waves, we calculate the d-wave contribu-
tion to be only 20%%u~ of the observed value. So, we con-
clude o., & 0.14 b for p waves at 100 keV.

Even this upper limit on o., is much smaller than
predicted by the optical model which was deduced for s
waves in Sec. III. Therefore, following the method
used ' ' " for the lighter nuclei in Table I, we assume a
model with the given geometry but with different poten-
tials for even and odd parities. Since o., is small for p
waves, we expect 8'D for the odd potential to be relatively
small.

For p waves the R"' given by Percy is not accurate
enough for deducing o.„and for fitting with Vo. A possi-

ble assumption is that Vo is the same for both even and
odd potentials. For a spherical well, however, we see for
the lighter nuclei in Table I that this is a bad assumption.
For Ni there is additional evidence in that an odd parity
model with Vo ——48 MeV, as for s waves, predicts the 3p
size resonance to be at 3=110, in disagreement with the
known' peak at 3=95. This difference is related to that
in Vo for the lighter nuclei. On the other hand, we see
from Table I that the coupled-channel model removed the
strong parity dependence for the lighter nuclei. Thus, it is
reasonable to use the coupled-channel model with the as-
sumption that Vo has no parity dependence.

Using the coupled-channel model with an assumed
parity-independent Vo of 50 MeV, which is our fitted
value for s waves, we reduce the odd parity 8'D to 1.5
MeV in order to fit the observed 0.14 b limit in o., for p
waves at E„=100keV. Here the effect of the 3 state at
4.04 MeV (P=0.2) is not negligible; if it were omitted the
8'D would be reduced only to 2 MeV.

VI. AVERAGED TOTAL CROSS SECTIONS FOR Ni

Figure 4 gives a comparison of averaged total cross sec-
tions, both model and experimental, for 0—2 MeV neu-
trons on Ni. The solid curve below 0.45 MeV is the sum
of the s-wave experimental cross sections from Fig. 2
(a, +o„ for the analytic approximation) plus an estimat-
ed contribution for l&0. To estimate o., for l&0 we cal-
culated 2m k (gI „)/D by averaging the observed
non-s-wave resonances in 100-keV intervals. (At 450 keV
we corrected for missing levels. ) To estimate o„ for l & 0

r s &

(
i t r &

(
s i r

60~

C
Q) g) 8 O

500 3000 1500 2000
NEUTRON ENE RGY (keV)

FIG. 4. Total cross section versus neutron energy. (a) Data
points from Ref. 10; (b) histogram, current average of unpub-
lished data of Ref. 2; (c) solid line, total cross section from
present analysis; (d) long-dash curve, estimate for l&0; (e)
short-dash curve, present coupled-channel model; (f) dash-dot
curve, coupled-channel model of Guss et al. , Ref. 11.
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we assumed only p waves to be significant and to be given
by that for a hard sphere of radius 1.35A'~ fm. The
long-dashed curve in Fig. 4 shows the estimated I ~ 0 con-
tribution; it is about 9% of o.T at 225 keV and 25% at
450 keV.

Above 450 keV the solid curve is continued by a histo-
gram which we found by straightforward averaging of
Percy's high resolution cross sections. For comparison,
the points . in the figure show o T deduced by Smith
et al. ' from poor-resolution transmission measurements
with a thicker sample (0.18 atoms/b vs Percy's 0.074). As
Smith et al. predicted, their points lie below the histo-
gram at lower energies because of the nonlinear attenua-
tion on the thicker sample. We also obtained a histogram
(not shown) by the averaging of Percy's transmissions,
rather than cross sections, and found values 3.5% lower at
the low energy end and 0.3% lower at the high end.
These discrepancies confirm that one must average cross
sections rather than transmissions to avoid the nonlinear
effects. The fact that the discrepancies are small indicates
there are negligible remaining perturbations in the plotted
histogram.

Figure 4 also includes curves for two coupled-channel
models. The short-dash curve is for our parity-dependent
model, as already discussed. At 2 MeV the curve falls
below the observed cross sections. Therefore, this model,
which was designed primarily for low energy s waves,
needs modification to describe the sum of all partial
waves at higher energy. Smith et al. ' came to a similar
conclusion; they found OMP parameters which worked
well above 2.5 MeV but gave too high cross sections at
lower energies.

The dash-dot curve is calculated from the coupled-
channel model of Guss et al. " They parametrized their
model not only to fit their measured cross sections and
analyzing powers for fast neutron (8, 10, 12, and 14 MeV)
scattering to the ground and first excited states of Ni,
but also to fit So, S~, R', and o.T at low energies. The
fact that their model gives too high total cross sections in
Fig. 4 probably results from the erroneously large R', as
shown in Fig. 3. Further discussion is given in the follow-
1ng.

VII. DISCUSSION

A. The importance of o.„
A major thesis of our work is that the off-resonance

neutron scattering, as expressed by a shape elastic cross
section o.„, plays a role in the parametrization of the
QMP at least as important as the resonance scattering, as
expressed either by a compound nucleus cross section o.,
or a strength function. This dual importance was recog-
nized by the early workers who measured low energy s-
wave scattering and reported not only the strength func-
tion Sp but also the potential scattering radius R'. Both
quantities were important for the s-wave OMP. However,
many recent measurements at higher energies and higher
partial waves have been reported and interpreted only
with respect to the strength functions.
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FIG. 5. Spherical OMP s-wave shape elastic and compound
nuclear cross sections vs Vo for various imaginary well depths at
E„=200 keV. The horizontal dotted lines indicate the experi-
mental values.

For the spherical OMP the importance of simultaneous
examination of both cr, and o„ for s-wave neutrons on

Ni is demonstrated by Fig. 5, which shows these cross
sections calculated for E„=200 keV and plotted vs Vo

not only for the best fit WD of 29 MeV but also for three
smaller values, namely, 0.1, 5.0, and 10 MeV. The mea-
sured cross sections at 200 keV are shown by horizontal
dashed lines. The peak of the 3s&&2 single-particle reso-
nance in o., occurs near 47.5 MeV. As WD increases, the
peak height Brst increases and then decreases as the 3s
resonance broadens. The experimental o., could be fit by
a broad range of WD if there were no restrictions on Vp,
but the experimental o.„restricts Vp to about 48 MeV.
Given the restrictions on Vo, one might expect a good fit
to be achieved with small WD —0.5 MeV. However, the
resulting o.„would have a strong energy dependence, in
disagreement with Fig. 2. Thus, only a rather large value
of WD is acceptable and, finally, the best fit is achieved
by WD ——29 MeV and Vp ——48 MeV, each with +5 MeV
uncertainty. This Vp is in good agreement with position
of the 3s size resonance near 3=55.

Figure 6 is similar to Fig. 5 but for the coupled-channel
OMP with the 2+ (1.33 MeV) target state included.
Again the o., curve for 8'z ——1.5 shows the 3s&~2 reso-
nance, but it is moved down about 2 MeV from the unper-
turbed energy in Fig. 5. In addition, particle-core reso-
nances are seen near Vp ——55.5 and 59.5 MeV, the first for
[2dq~q2+] —, and the second [2d3/g2+ j —, . The ar-
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b

o I I I I I I

W =5 MeV

Vo the peak of the 3s size resonance is predicted at
A =44, in contradiction to the known position near
3=55. Secondly, the bound 2p states in 'Ni are predict-
ed at —10.8 MeV for p3/2 and —9.5 MeV for p&/2 in
disagreement with the experimental energies of —7.8
and —7.5 MeV. In contrast, our model with Vo ——50
MeV binds these states at —8.1 and —6.8 MeV, in
reasonable agreement with the known values. We also
note that the Vo of 50 MeV is consistent with the values
for other nuclei in Table I.

Essentially the model of Guss et al. ,
" which we dis-

cussed relative to Fig. 4, corresponds to this alternate
solution. Figure 7 shows curves very similar to Fig. 6 ex-
cept that the model geometry is that of Guss et ah. The
primary difference between the two figures is a shift in
resonance energies which results from different real po-
tential radii, 1.213 ' vs 1.1652' . The solid symbols
represent the solution by Guss et al. and the open points
indicate appropriate adjustments to fit the present analysis
of Percy's data. The resulting Vo of 58 MeV for 0.2-MeV
neutrons would require an energy coefficient of 0.62
MeV ' rather than their value of 0.46 MeV to restore
their potential at about 11 MeV. These modified parame-
ters result in a reasonable fit to the o.z- in Fig. 4.

40 45 50 55 60 65
V (MeV)

FIG. 6. Coupled channels OMP s-wave shape elastic and
compound nuclear cross sections as for Fig. 5. The 2+ (1.33
MeV) target state is included with P=0.21 1. Arrows indicate
unperturbed energies of the [2+, 2d5/2] and [2+, 2d3/2]
particie-core states. Experimental uncertainties are indicated by
the limits of the shaded areas. Solid points indicate the accepted
model (Table I) and the open points indicate a rejected solution.

2

WD =&

rows indicate the unperturbed resonance energies deduced
by simple addition of the 1.33-MeV core energy to the
2dsg2 and 2d3/2 binding energies for the model obtained
using the real potential well Vo vs V„. That is, the ar-
rows indicate where E, ~ (Vo)+E(2+)=200 keV. This
clearly identifies the source of the resonances. A plot of
0 vs Vo is equivalent to a plot' of the s;wave strength
function vs A. The shoulder in the strength function
curve for values of A between 75 and 85, which is repro-
duced by the original coupled channels calculation of
Buck and Percy, ' is a manifestation of the resonances due
to d-wave coupling to the 2+ state as exhibited in Fig. 6.

The shaded regions in the figure indicate the limits of
experimental uncertainties propagated primarily from the
+25% uncertainty in the strength function. As for the
spherical model we adjusted 8'D and Vo to obtain a fit as
shown by the solid symbols with Vo ——50 MeV and
8'D ——24 MeV, each with +5 MeV uncertainty.

The open symbols in Fig. 6 indicate an equally accept-
able fit is obtained with Vo ——54.4 MeV and 8'D ——1.5
MeV, each with small uncertainty. That model has desir-
able features in that it gives a reasonably small 8'D and
does not require an / dependence to fit p waves.
Nevertheless, we do not choose this solution because the
Vo is too large to satisfy other factors. Firstly, for this

0

Wo= 'I

I
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0

40 55 65 70
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FIG. 7. Coupled channels OMP s-wave shape elastic and
compound nuclear cross sections as for Fig. 6. The geometrical
parameters and V„of Ref. 11 were assumed. The solid points
indicate the OMP parameters from Ref. 11 and the open points
show the modified parameters for fitting within the experimen-
tal shaded hmits.
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Nevertheless, we do not choose these parameters for the
same reason that we did not choose the equivalent solu-
tion ( Vo ——54.4 MeV) with our geometry.

Qur choice of a model. with a large O'D rather than a
large Vo is a matter of judgment. It is reasonable that nu-
clear structure effects in this mass region could be pro-
ducing an A dependent absorption strength similar to that
previously found in the mass 100 region for both proton '

and neutron scattering.
For the coupled-channel model the s-wave real well

depths for the four nuclei in Table I agree well within the
experimental uncertainties. The agreement is almost as
good for the spherical model. These results came primari-
ly from the data on cr„ for s waves. From corresponding
data on p waves, which are available only for the three
lighter nuclei, the real well is seen to be I dependent for
the spherical model, ' but not for the coupled-channel
models. '4 "

B. I dependence of 8'D

Since we do not have experimental data on o.„for both
s and p waves we made the above-mentioned reasonable
assumption that Vo is parity independent for the
coupled-channel OMP and found WD for the odd parity
potential to be 1.5 MeV, much smaller than O'D ——24
MeV for even parities. The current form of the coupled
channels code used, ' ECIS79, allows for the use of parity
but not I-dependent potentials. Therefore we use the
terms l dependent and parity dependent interchangeably.
Hence, in this model, the —, and —, compound states do
not arise from spreading of the bound 2p states or from
coupling of the odd parity states with the 2+ core, but
primarily from coupling of the 3 core with broadened
states in the even parity potential. The coupled configura-
tions are the (2d, 3 ) particle-core states, which are un-

bound by about 5 MeV but are widely spread by the O'D

potential of 24 MeV.
This conclusion is physically reasonable. It means that

the deeply bound odd parity states are not fragmented as
are the unbound states. But such a hypothesis is prelimi-
nary; data with analyses on other nuclei are needed. Pre-
liminary analyses suggest the same phenomenon for Ca
(Ref. 23) and ' Os (Ref. 24). A reversal in the parity
roles would be expected for the mass =100 region, for
which the even states are bound and the odd unbound.
This corresponds to a region with minimum s-wave and
maximum p-wave strength functions. ' Some preliminary
evidence for this phenomenon shows up in ' Sn.

A study of other possible model geometries could be
made. Moldauer introduced a potential with the absorp-
tive radius placed 0.5 fm outside the real radius and with
a small diffuseness equivalent to aD ——0.23 fm. Using
that geometry and a parity-independent Vo for the spheri-
cal model, we found IVD ——35 MeV for s waves and 9
MeV for p waves. Possibly the present data on s and p
waves could be fit without parity dependence if a very
narrow absorptive potential were placed at the node of the
wave function for p waves, as discussed by Moldauer.
Since such a potential would predict a narrow minimum
at 8=60 in a plot of S& vs mass, it also would need more
study for other nuclei such as Ca.
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