
PHYSICAL REVIEW C VOLUME 31, NUMBER 2 FEBRUARY 1985

Microscopic analysis of complete Zr(p, n) spectra including the 6 isobar effect
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A microscopic analysis of the complete forward angle spectra of the Zr(p, n) reaction is presented
for an incident energy of 200 MeV. It is shown that the whole spectra up to an excitation energy of
E =70 MeV are the result of correlated one-particle —one-hole (1plh) spin-isospin transitions only.
The spectra reflect, therefore, the linear spin-isospin response of the target nucleus to the probing

(p,n) field. Two different cross section calculations are performed: one with usual random phase
approximation wave functions and one with generalized random phase approximation wave func-
tions which include 5 isobar degrees of freedom explicitly. We find that the theoretical cross sec-
tions calculated with random phase approximation wave functions, which provide the lower limit of
spin-isospin strength, describe the data rather well at all scattering angles, while the random phase
approximation + 6 cross sections underestimate the data at forward angles. In this connection we

discuss the quenching of the spin-isospin strength in detail.

I. INTRODUCTION

The recent discovery of the giant Gamow-Teller reso-
nances (GTR) by intermediate energy (p, n) reactions'
has led to a major breakthrough in our understanding of
spin-isospin correlations in nuclei. In particular, the zero
degree (p, n) spectra are dominated by one prominent peak
which is interpreted as the GTR with quantum numbers
J"=1+,L =0, 5 =1, T =1. This collective mode which
is the spin-isospin nuclear sound was already predicted by
Ikeda, Fujii, and Fujita as early as 1963. The GTR ap-
pears energetically in the continuum region of the nuclear
excitation spectrum and possesses a width of about 6
MeV. While its excitation energy is well reproduced by
the common random phase approximation (RPA), there
is much less Gamow-Teller (GT) strength observed in the
(p,n) experiments than predicted by the RPA. Three
physically different mechanisms have been discussed to
explain this so-called quenching of the total GT strength.
The first is that h(1232)-isobar —nucleon-hole (bN ')
states couple into the proton-particle —neutron-hole (pn ')
GT states and remove strength from the low-lying excita-
tion spectrum. ' Here the internal degrees of freedom
of the nucleon, specifically the 6, are made responsible for
the quenching of the GT strength. The second mecha-
nism is ordinary nuclear configuration mixing, ' ' where
energetically high-lying two-particle —two-hole (2p2h)
states mix with the low-lying one-particle —one-hole
(lplh) GT state and shift GT strength into the energy re-
gion far beyond the GTR. The third possibility, ' '
closely connected with the second mechanism, is that a
large fraction of GT strength is actually located in the
physical background below and beyond the giant GT state
and is therefore escaping experimental detection. The
most exciting quenching mechanism is the one which in-
volves the 6 isobar. Here the collective GT mode is cou-
pled with an internal nucleon excitation which can be
thought of as a spin-isospin flip transition of a quark in

the nucleon. In how far this mechanism is effective is not
easy to decide, especially in view of the other possible
quenching mechanisms. The answer to this question is,
however, of fundamental importance for our understand-
ing of nuclear spin-isospin excitations and, in particular,
also for our understanding of the role of the b, in nuclei.

In this paper, we attack this question by starting out
from the measured (p,n) spectra at different scattering an-
gles 0. We develop a microscopic model which permits us
to calculate the spectra at all scattering angles in a con-
sistent way. The model wave functions for the nuclear ex-
cited states are generated from microscopic RPA calcula-
tions. Two different configuration spaces are used: in the
first one we consider the nucleus to consist of nucleons
only, whereas in the second one 6 isobars are also includ-
ed explicitly. Using these two different sets of wave func-
tions we analyze Zr(p, n) spectra at an incident energy of
200 MeV. We show that essentially all the measured
cross sections up to an excitation energy of E =70 MeV
are produced by 1p1h spin-isospin excitations. Our calcu-
lations describe not only the peaks in the spectra but also
the continuous parts which are usually termed back-
ground. We decompose the spectra into various mul-
tipoles and determine the strength distribution functions
of the various spin-isospin modes such as the GT
(L =O,S = 1,T = 1), the spin flip dipole (L = 1,S = 1,
T =1), and the spin flip quadrupole (L =2,S =1,T =1)
modes. The L = 1 resonance appears energetically at
roughly 10 MeV above the GTR and possesses a width of
about 10 MeV. It has been interpreted as the envelope of
three collective states with spin parity J =0, 1, and
2 . ' The L =2 resonance is a 2%co mode and includes
states with spin parity J = 1+, 2+, and 3+.

Since we analyze the experimental spectra in the whole
excitation range from E =0 to 70 MeV and in the whole
angle range from 0 to 18.7 deg, we are in a good position
to make reliable statements about the total amount of
spin-isospin transition strength observed in the (p,n) reac-
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tions and about the question of whether or not there is
need for quenching of GT strength {or generally spin-
isospin strength) due to b, isobars. By considering the
whole spectra we exclude two major uncertainties which
usually occur in the analysis of the data. First, we have
no background problem because we calculate the whole
spectra. Second, uncertainties in the strength extraction
which are produced by the 2p2h nuclear configuration
mixing mechanism are minimized because we investigate
the spectra up to very high excitation energies. If there
should exist a strong shift of lplh transition strength to
high excitation energies (due to the 2p2h configuration
mixing effect), we will see this directly from the analysis
of the data.

Looking to the spectra as a whole means looking to to-
tal sum rule strengths. In the case of the GT transitions
we have a very general model independent sum rule. '

This sum rule connects the neutron excess (N —Z) of a
nucleus with the difference between the or strength S~
measured in P decay and the o~+ strength Sp mea-
sured in P+ decay in the following way:

Sp =3(N —Z)+Sp

Here, Sp and Sp are defined by

s(i = g g f g cr„(k)~ (k) i)f p k=I

where
~
i ) and

~ f ) denote the initial and final nucleus
states, respectively. We use this sum rule in order to give
a lower limit for the amount of Sp strength observed in
the (p,n) reactions. From the sum rule itself one obtains
the lower limit for Sp by putting Sp ——0, i e.,
Sp =3(N —Z). This condition is approximately fulfilled
for nuclei with a large neutron excess. In this case the
Sp strength is small because all states for transferring a
proton into a neutron within the same major shell are
Pauli blocked. For example, if we assume an uncorrelated
shell model ground state for Zr, then the S~ strength is
zero due to the Pauli blocking. The 2p2h admixtures into
the ground state, however, change this result and give rise
to S~ strength because the sharp proton and neutron
Fermi surfaces are smeared out. Therefore, also the S&
strength is changed and becomes now larger than the
3(N —Z) limit. In Ref. 14, this effect of ground state
correlations was estimated for Zr with the result that the
Sp was increased by -20% as compared with the
3(N —Z) value. A similar effect might also be expected
for states with higher multipolarities such as the I. =1
and L =2 resonances. In our analysis of the (p,n) spectra,
ground state correlations of the 2p2h-type are not includ-
ed. Therefore, all our theoretical cross sections are lower
limits and include only, o.z strength in the GT case given
by the lower sum rule limit S& ——3(N —Z).

In Sec. II, we briefly describe the model assumptions
made in the calculations and give details about the nuclear
structure and reaction calculations. In Sec. III we present
the results of our microscopic analyses of the Zr(p, n)

spectra. In Sec. IV, we summarize the main conclusions
of this work.

II. THE MODEL

A. The model assumptions

The basic model assumption in our analysis of the data
is that for (p,p') and (p,n) reactions at high incident ener-
gies (E„&100 MeV) the cross section at forward angles is
dominated by direct processes as long as the excitation en-
ergy is less than half the beam energy. This assumption is
supported by both experiment and theory. The 0' cross
sections of the 200 MeV (p,n) data of Gaarde et al. , for
instance, show a characteristic falling off with increasing
excitation energy (see also Fig. 2). Large contributions of
multistep processes, however, should instead lead to a rise
in cross sections with increasing excitation energy due to
the greater number of intermediate states available for
higher energy losses. Calculations of multistep reaction
cross sections by Chiang and Hufner' show that the for-
ward angle cross sections in high energy (p,p') reactions
are largely due to one-step processes. Also the microscop-
ic (p,n) background calculations by one of the present au-
thors' showed that this assumption is indeed correct.
Therefore, we may assume that the 200 MeV Zr(p, n)
spectrum at forward angles is a simple superposition of
cross sections of inelastic excitations to bound, quasi-
bound, and continuum states.

Since the impulse approximation ' ' was shown to be
very accurate at intermediate energies, we shall approxi-
mate the effective projectile-target nucleon interaction by
the free nucleon-nucleon (NN) t matrix in the parametri-
zation of Love and Franey. ' The only nuclear states
which are then contributing to the (p,n) spectrum are the
spin flip (S=1,T =1) states This .argument is based on
the fact that the o.~ part of the free NN t matrix ' which
excites the spin flip states is nearly energy independent,
while the r part which excites the nonspin flip states gets
strongly reduced at E & 100 MeV. The cross sections to
the latter states are then much smaller in comparison to
those of the former. For this reason we neglect cross sec-
tions to nonspin flip states in our analysis of the (p,n)
spectra except that of the isobaric analog state (IAS).
From the spin flip states we include all states with mul-
tipolarities L =0—4 (J =0, 1+,1,2+,2,3+,3,4
4+,5+). The wave functions of most of these states
(J =0,1,2, 1+,2+,3+) are based on the RPA, while
the rest of the states are still treated within the unper-
turbed 1p1h doorway model of Refs. 15 and 16.

B. The structure calculations

The wave functions for the nuclear excited states were
calculated within the RPA. The RPA calculations were
performed in the same way as described in Ref. 10. For
the residual particle-hole (ph) interaction we used a realis-
tic interaction which includes the one-pion (m) and one-
rho (p) exchange potentials in the err channel explicitly.
The effects of the other mesons are summarized in a two-
body correlation function and an additional zero-range
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term. The explicit form of the ph interaction in momen-
tum space is then given by:

n' n a'ta") rv' (p-')

d k
V~h(q) = I g (k —q)[ V (k)+ V (k)]

+&goco~s ~27& 72 ) (3a)

2 2

g(q)=(2')'&(q) —,5(
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FIG. 1. Graphical representation of reaction processes in-
cluded in the distorted-wave impulse approximation calcula-
tions. Only direct graphs are shown. For the effective
projectile-target nucleon interaction the parametrization of Love
and Franey (Ref. 21) is used (see the text) and for the projectile-
isobar coupling the m+p potential with the coupling constant
f*=2f (Chew-Low value Ref. 22) has been taken.

f =0.081, I =0.699 fm

A„=6 fm ', fq ——4.86,
m =3.9fm ', A =10fm ',
Co ——302 MeV fm, 5go ——0.5 .

(3e)

f Na ——2f NN and f&Na=2f&NN for the nucleon-isobar
coupling constant. A similar projectile-isobar interaction
was already successfully used in the analysis of 160 MeV

Ca(p, n) data in Ref. 11.

D. Normalization to P decay
The interaction between nucleons and isobars was ob-
tained from Eq. (3) by replacing the spin and isospin
operators o and 7 by the transition operators S and T,
respectively, and by assuming the Chew-Low value
f~Na ——2f NN and correspondingly f&Na =2f NN (Ref. 22)
for the nucleon-isobar coupling constant. Both the direct
and exchange terms of the finite range parts of the ph in-
teraction were taken into account in the nucleonic and the
6 isobar sectors. A large model space was used for the
RPA calculations which included all (3Am ph excitations
for the pn ' configurations and all isobar orbits from 1s
to 1j for the 4N ' configurations. The single particle en-
ergies and single particle wave functions were generated
from a %'oods-Saxon potential which was chosen to
reproduce the known experimental single particle energies.
The generalized RPA wave functions including hN
configurations are then given by

gX (ph)a~~&+ QX~(bh)aa~h Ig s. ) (4)
ph 5h

where g (ph) and X (hh) are the RPA transition ampli-
tudes of the

I
NN ') and

I
b,N ') configurations,

respectively.

C. The reaction calculations

From the wave functions of Eq. (4), we calculate the
(p,n) cross sections with the fast-speed DWBA code
FROST-MARS which includes knock-out exchange ampli-
tudes exactly. Also for the 6 excitations we calculate
both the direct and the knock-out exchange amplitudes.
For the projectile-isobar interaction (see Fig. 1) we simply
used the one-pion and one-rho exchange potentials in
which we replaced the spin (cr) and isospin (r) operators
by the transition operators 8 and T. Again we assumed

The effective projectile-target nucleon interaction has to
be calibrated before it can be used in the reaction calcula-
tions in order to guarantee a force independent analysis of
the spectra. In our calibration procedure we proceed as
follows: First we make use of the fact that the zero de-
gree (p,n) cross section for L =O,S=1,1+ transitions is
proportional to the GT strength of these states. This fol-
lows simply from the low momentum transfer (q) limit of
the zero degree GT cross section which in the impulse ap-
proximation can be written as

2

(q-0)= N, Ig, I
8(GT), (5)

l

where k; and kf denote the iriitial and final projectile
wave numbers, respectively, and p denotes the reduced
mass. N, is the distortion factor by which the cross sec-
tion is reduced due to the absorption of the incoming and
outgoing waves, and g is the volume integral of the ef-
fective projectile-target nucleon interaction which induces
the or transitions. The 8(GT) value for the nuclear tran-
sition i~f is defined as

8(GT)= g f g op(k)r(k) i
p k=1

By selecting now a GT transition with a known 8(GT)
value and known experimental zero degree (p,n) cross sec-
tion, we can fix the volume integral g, in Eq. (5) or,
equivalently, the effective interaction V,(q =0) at zero
momentum transfer q. A good candidate for such a cali-
bration procedure is the transition

Ca(0+)~ Sc(1+, E„=0.61 MeV)

which possesses a 8(GT) value of 2.57 (logft =3.17) and
a large 0' (p, n) cross section. The same transition is also



31 MICROSCOPIC ANALYSIS OF COMPLETE Zr(p, n). . .

used by the experimentalists ' to normalize measured
zero degree (p,n) cross sections to P decay. Since the 13 de-
cay determines the 8(GT) value in a model independent
way we may perform the 0 (p,n) cross section calculation
with any set of initial and final nucleus wave functions
which reproduce the measured 8(GT) value. Accidental-
ly, for the Ca(0+ )~ Sc( 1+ ) transition, a simple

[f7~q] wave function for the 0+ state in" Ca and the 1+
state in Sc already fulfills this condition and gives al-
most exactly the 8(GT) value of 2.57. Using these wave
functions and using the 210 MeV t matrix of Love and
Franey ' for the effective projectile-target nucleon interac-
tion we calculate a zero degree (p,n) cross section of 13.4
mb for the

Ca(p, n) Sc(1+, E„=0.61 MeV)

reaction at 200 MeV incident energy. The experimental
cross section amounts to 15.5 mb (Ref. 24) so that we
have to renormalize the theoretical cross section by a fac-
tor of 15.5/13.4= 1.16. We remark that this renormaliza-
tion not necessarily implies a renormalization of the
Love-Franey interaction. ' From Eq. (5) it is evident that

the distortion factor X, could also be responsible for
this. The latter depends on the optical parameters used.
We remark further that by the preceding calibration pro-
cedure we only calibrate the absolute magnitude of the ef-
fective interaction at q =0, but not yet its q dependence.
The latter can be checked, however, by analyzing angular
distributions of inelastic or charge exchange reactions to
states with known nuclear structure. The q dependence of
the ocrrr central and tensor components of the Love-
Franey interaction ' has been tested, for instance in Ref.
11, and found to be essentially in agreement with experi-
ment.

The calibration procedure has to be modified somewhat
if the nuclear wave functions include AN ' components.
Let us assume that the final nuclear wave function is
given by

~

Pf)=a ~NN-') —b ~bN '), -
where

~
NN ' ) and

~

b,N ' ) stand schematically for the
nuclear part and the 6 part of the wave function, respec-
tively. In this case we have to replace the quantity

~ g, ~

8(GT) in Eq. (5) by

I
~™.

I

'8 (GT) (~ ~ a (NN '
I
~

I
0 &

—~ 'b (&N '
I
&T

I
0) )'

where g~, denotes the volume integral of the effective
projectile-b, isobar interaction. The 8(GT) value is now
defined by

2

8(GT)= a(NN '
~

err
~

0) — b(bN ' ~ST [0&
Rw

I

only two sets of the volume integrals which satisfy simul-
taneously Eqs. (5) and (9), namely g, =0 and

Nh NN

If the first set, g ~, =0, would be valid, this would mean
that the (p,n) probe would be "blind" for b, 's in nuclei.
This is certainly not the case and therefore the second set

with gz/gz being the ratio of the axial vector coupling
constants for the nuclear (gz ) and 5-isobar (g~ ) sector.

Now, we are in the situation that we have to fix two in-
dependent quantities with our calibration procedure,
namely g ~, and g, . But, on the other hand, we have
also two known quantities, the measured 8(GT) value and
the measured 0' (p,n) cross section. Let us suppose that b,
isobars quench the total GT strength to a certain amount.
Then also the transition Ca(0+ )~ Sc(1+) should
suffer from this quenching. Therefore, the

Ca(p, n) Sc(1+) transition density has to contain hN
components, the admixture of which is determined by the
mixing coefficient b in Eq. (7). The magnitude of b de-
pends sensitively on the strength of the AN ' interaction
used in the nuclear structure calculations. [See Eq. (3).]
By appropriate adjustment of the force parameters of this
interaction one always can produce a wave function with
b,N ' components which fits the measured 8(GT) value,
in particular also for Ca—& Sc. The essential point for
us is that with the same wave function we also have to
reproduce the measured zero degree

Ca(p, n) Sc(1+, E„=0.61 MeV)

cross section. This we achieve by varying independently
the volume integrals g and g . We find numerically

is the correct one. This result is very important since it
shows that the (p,n) probe at high incident energies sees
b.'s in nuclei in the same way as the weak interaction in /3

decay. One can also say that the (p,n) reaction at zero de-
grees and high incident energies really measures GT
strength. This has the further important consequence that
from a careful study of (p,n) and (n,p) cross sections taken
at ihe same incident energy one can test the Ikeda sum
rule. '

Using the calibrated effective interaction, we can now
go and analyze (p,n) spectra taken for other target nuclei.
The only uncertainty in going from " Ca to another target
nucleus is the distortion factor N«which changes for
different target nuclei due to the different distortions. It
turns out, however, that in going from Ca to Zr, for
instance, the uncertainty is not larger than 10%. We
checked this point by testing various sets of optical poten-
tial parameters, including those of wine bottle
shape. After all we decided to use the global parameter
set of Nadasen et al. which is given as a function of the
incident energy E and the target mass number A. This
choice gives us the possibility to employ optical parame-
ters of the same potential family for different target nu-
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clei. We want to point out, however, that at 200 MeV in-
cident energy these parameters lead to a 10% larger GT
cross section in Zr(p, n) than those determined from 200
MeV Zr(p, p) elastic scattering data . Therefore, all our
conclusions presented in Sec. III might include such an
uncertainty. Unfortunately there exist no experimentally
determined optical model parameters for Ca which42

would help to rule out this uncertainty. We also mention
that there exists another uncertainty of the order of 10%
which is connected with the normalization of the Zr(p, n)
data relative to the Ca(p, n) data.

III. RESULTS AND DISCUSSIONS

A. The 0' spectrum and the GT resonances

In the microscopic model already described we have
calculated energy spectra at various scattering angles for
the reaction Zr(p, n) at 200 MeV incident energy. In Fig.
2 we show the results for the 0' and 4.5 spectra. The 0'
spectrum in Fig. 2(a) is dominated by the GT 1+ transi-
tions. Two different theoretical spectra are compared to
the data. One is calculated with usual RPA wave func-
tions (full curve) and the other with generalized RPA
wave functions which include 6 isobar degrees of freedom
(dashed curve). Both spectra are incoherent sums of cross
sections with multipolarities I =0 through I.=4

( J~—()+ 0 1+ 1,2+,2,3+,3,4,4+,5+). From
these states, the 0,1,2 and 1+,2+,3+ states were cal-
culated either with RPA or with RPA+ 6, while the
3,4,4+, 5+ states were treated within the unperturbed
lplh doorway model of Ref. 15 which includes the nu-

clear continuum exactly. The RPA model space included
all 3%co excitations so that the RPA states extend in exci-
tation energies up to a Q value of Q = —40 MeV. (Apart
from the small proton-neutron mass difference b,m =0.75
MeV, the negative Q value is equal to the target excitation
energy E„: E ——Q). The cross section beyond

Q = —40 MeV is mainly due to states with E„&3A'co
which were again treated within the unperturbed 1plh
doorway model of Ref. 15.

The continuous spectra in Fig. 2 were obtained by fold-
ing the cross sections to the discrete states into a Breit-
Wigner form with a width taken from experiment. The
width was assumed to be I MeV for states with excitation
energies E~ smaller or equal to the energy of the IAS, to
be 6 MeV for the GT resonance and other states with
E„&15 MeV, and to be 10 MeV for states with E„~15
MeV. The width of the CxT resonance had to be chosen
asymmetrically in order to obtain a reasonably good fit to
the experimental resonance shape. A total width of I =6
MeV was needed and split into two parts I =I ~,g, +I"„~qt
with I ~,ft —2 MeV and I gjggt —4 MeV Then these widths
were used in an asymmetric Breit-%'igner form. For the

xe
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FIG. 2. Neutron spectra from the reaction Zr(p, n) Nb at angles of 0=0 (a) and (b), and 0=4.5' (c) and (d). The data (thin full
line) were taken from Ref. 5. The complete theoretical spectra in (a) and (c) were calculated either with usual RPA wave functions
(thick full line) or with generalized RPA+ 6 wave functions (dashed line). In the latter case the 6 isobar admixtures were adjusted
such that the total GT strength is quenched by 30% (see the text). (b) and (d) show backgrourids (BGR) with respect to the GT reso-
nance alone (BGR GT) and with respect to the GT and L =1 resonance (BGR GT, L =1). The full and the long-short-dashed lines
represent the result obtained with RPA, and the dashed and the long-short-short-dashed lines represent the one obtained with
RPA+ A. By subtracting BGR GT, L =1 from BGR GT one obtains the strength distribution of the 1fuu, L = I resonance. In the
energy range —20 MeV&Q & —60 MeV SCAR CxT, L =1 essentially coincides with the strength distribution of the 2fico,J =1+,2+, 3+ resonance.
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states with E„&1SMeV, we employed the widths I J ft —2
MeV and I „.~h,

——8 MeV, respectively.
By applying the described folding procedure to our

cross section calculations we effectively simulate the
damping (spreading) of the lplh RPA doorway states due
to their coupling to 2p2h and more complicated configu-
rations. When we spread the strength we have to take

care of the fact that the (p,n) probe sees the shifted
strength in a different way than the unshifted one. This is
due to the Q-value dependence [or, equivalently, due to
the momentum transfer (q) dependence] of the hadronic
transition operator. This effect we have taken into ac-
count in our calculations by introducing relative distortion
factors defined by

~(QO+QQ, g,J)=[Po/dQ(QO+bQ, H, J)]/[do. /dQ(QO ~ J)] (10)

which we multiply onto the cross section distribution
functions. The distortion factors M are depending on the
spin J of the final nucleus state, the energy shift b, Q ( Qo.
energy of the state considered), and the scattering angle 8.
For hQ =0, we have &(Qo, g,J)=1. The behavior of &
as a function of b,Q at fixed scattering angle 0 can be
determined from the shape of the angular distribution of
the state under consideration, because an increase in b, Q is
equivalent to an increase in the momentum transfer b,q.
The momentum transfer, however, can be varied in two
ways namely either by changing the Q value or (and) by
changing the scattering angle 0. Therefore, an increase in

Q can also be simulated by an increase in 0 which means
that the qualitative behavior of W can be directly read off
from the shape of the angular distribution to the given fi-
nal nucleus state. For the GT state at 0=0, for instance,
N is decreasing with increasing AQ since the GT angular
distribution possesses a L =0 shape where L denotes the
orbital angular momentum transfer. For all other states
with multipolarities L & 0, however, & is increasing with
increasing b,Q at 0=0' which again follows from the
shapes of angular distributions with L ~0. This means
that by shifting GT strength to higher excitation energies
the total GT cross section at 0=0 is reduced, while by
shifting 0, 1, and 2 strength, for instance, the total
cross section to these states is increased at 0=0 .

From Fig. 2(a), we see that the 0 spectrum calculated
with RPA reproduces the shape of the experimental spec-
trum rather well, but that it slightly overestimates the
data in the low excitation energy region, while it underes-
timates them in the high excitation energy region. In or-
der to bring theory and experiment into agreement in the
low excitation energy region, one apparently has to intro-
duce a quenching mechanism which reduces the amount
of GT strength in the Q-value range —8 MeV & Q & —22
MeV. Two different quenching mechanisms have been
proposed. In the first case the AN ' states couple into
the low-lying GT states and move part of the strength
into the 5 resonance region. In the second case energeti-
cally high-lying 2p2h states mix into the Iplh GT states
and shift GT strength from the low (0 MeV&Q & —20
MeV) to the high ( —20 MeV & Q & —70 MeV) excitation
energy region. In the latter case the total GT cross sec-
tion is spread out continuously over a large energy range
so that some of the GT strength will escape experimental
detection. Which of the two quenching mechanisms is
now dominantly effective can only be determined by a
careful analysis of the complete forward angle (p,n) spec-
tra. We intend to present such an analysis in the follow-

I

ing.
Let us first discuss the assumption that only the Zp2h

effect is responsible for the quenching of the GT strength
by shifting strength from the low to the high excitation
energy region. This effect is to a large extent already in-
cluded in our calculation since we folded the discrete
RPA cross sections into an asymmetric strength distribu-
tion function of Breit-Wigner form. Note, however, that
these strength distribution functions lead to much less
shift (spreading) of strength than those obtained in micro-
scopic 2p2h configuration mixing calculations. ' '

The 2p2h strength distribution functions have a long high
energy tail which falls off only gradually. To that respect
we assume a minimal spreading of strength in our calcula-
tions. It is interesting to know up to which excitation en-
ergy the GT strength is extending under this assumption
of minimal spreading. To show, this we first determine
the background with respect to the GT states in the mea-
sured spectra. The cross section area in the spectrum not
described by the background calculations should then be
GT strength. The result for the GT background of the 0
spectrum is shown in Fig. 2(b). The full curve represents
the result obtained with RPA and the dashed curve the
one obtained with RPA + b, ( quenched background)
The peak at Q = —12 MeV is due to the IAS and all the
rest of the background cross section up to Q = —70 MeV
is mainly due to the 1~ L = 1 and 2%co L =2 resonances

~ whose angular distributions, although peaking at larger
scattering angles [see Figs. 2(c) and 3], are extending for-
ward to O'. The full curve in Fig. 2(b) shows that there is
only very little background just below the GT states. It
shows furthermore that there has to be GT strength in the
Q-value region —20 MeV & Q & —30 MeV which means
that the GT strength indeed is extending beyond the main
peak. This conclusion is quite definite. It will not be
modified if we would use other strength distribution func-
tions since the background being flat is quite insensitive to
such a change. Comparing the calculated spectrum in
Fig. 2(a) with the background cross section in Fig. 2(b),
one notices that the extension of GT strength beyond the
main peak actually follows in a very natural way from the
line shape of the experimental GT resonance. With our
assumption of minimal spreading the GT strength extends
only up to Q = —40 MeV, which is a much smaller value
than that derived from 2p2h configuration mixing calcula-
tions 147 29 32

The theoretical spectrum in Fig. 2(a) calculated with
RPA slightly overestimates the experimental one in the
Q-value range, 0 MeV& Q & —40 MeV. Considering this
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FIG. 3. Same as Fig. 2 but now for the scattering angles 0=9.5, 12.8', and 18.7. The full and dashed curves in (b), (d), and (f)
represent the background (BGR) with respect to the 1%co, L =1 resonance (BGR L =1) calculated either with RPA (full line) or
RPA + 6 (dashed line). Also the background with respect to the 1%co, L = 1, and the 2Aco, J = I+,2+, 3+ resonances calculated with
RPA is shown (BGR L = 1,L =2). By substracting the latter from the BGR L = 1 cross section one obtains the strength distribution
of the 2fico, J =1+,2+, 3+ states.

Q-value range we need a quenching of 15%%uo of the
theoretical spectrum in order to bring experiment and
theory into agreement. Unfortunately we cannot decide
whether this quenching should be due to the 6 isobar ef-
fect or due to additional spreading of both the GT
strength and the I.=1 and L =2 strength. A larger
asymmetric spreading as required by 2p2h calculations
would shift more strength to higher excitation energies.
Such an additional shift would actually be welcome since
the theory is underestimating the data at high negative Q
values with the present widths.

We can, however, show that the 6 isobar effect cannot
be very large, i.e., not 30% or 50% of the minimal sum
rule limit Sp ——3(N —Z) as was required by several au-

thors. This can be seen from the dashed curve in Fig.
2(a) which is the result of a calculation performed with
generalized RPA wave functions which include 6 isobar-
nucleon hole components explicitly. The 6 isobar admix-
tures were adjusted such that the total B(GT) strength is

quenched by 30%. This can be obtained by an appropri-
ate adjustment of the (5go)aN parameter in the b, N
residual interaction. A value (5go )aN ——0.4(f*/f) leads to
such a 30% quenching of the total GT strength. Using
the correspon'ding RPA+ b, wave functions in the cross
section calculations we obtain the dashed curve in Fig.
2(a). In spreading the strength, the same widths were used
as in the RPA result. The spectrum calculated with
RPA + 6 underestimates the data everywhere and partic-
ularly strongly in the GT resonance region. Within the
framework of our model (Sec. II) where we neglect 2p2h
admixtures into the ground state of Zr there is obviously
no need for such a large 6 isobar-nucleon hole quenching.
Actually we underestimate the experimental zero degree
(p,n) cross section then by approximately 37 mb if we con-
sider the whole Q-value range from 0 MeV) Q& —70
MeV. However, we also point out that the inclusion of
ground state correlations of the 2p2h-type might modify
this conclusion. '"
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B. The 4.5 spectrum and the L =1 resonance

In Fig. 2(c) we show the results for the 4.5 spectrum.
At this angle the GT cross section is still large and the
L =1 resonance has its peak cross section. The spectrum
calculated with RPA (full curve) describes the data rather
well although its magnitude is somewhat too large in the
low Q value region (0 MeV&Q& —40 MeV) and too
small at high negative Q values ( —40 MeV&Q & —70
MeV). The spectrum calculated with a 30% b, isobar ef-
fect (dashed curve), on the other hand, underestimates the
data everywhere, in particular also in the GT and L = 1

resonance region. Apparently, we have here a similar sit-
uation as for the 0' spectrum. A 30% quenching effect
due to 6 isobars is too 1arge. It is interesting that the
RPA spectrum describes shape and magnitude of the
L =1 resonance rather well while it overestimates the GT
resonance region. The explanation for this can be found
from Fig. 2(d) where we show the background with
respect to the GT resonance [full curve (RPA), dashed
curve (RPA+ b.)], and with respect to both the GT and
L = 1 resonances [dot-dashed curve (RPA), dot-dot-
dashed curve (RPA + 5)]. By subtracting the dot-dashed
from the full curve we obtain the strength distribution of
the L =1 resonance. Inspecting now the GT resonance
region ( Q ——15 MeV) we find that there is an appreci-
able background below the GT resonance which is due to
the extension of the L =1 resonance to this low Q value.
We remark that the distribution of L = 1 strength is not
necessarily as well determined by the RPA as that of the
GT strength because of the more complicated unperturbed
ph spectrum. Therefore, a slight redistribution of L =1
strength to higher excitation energies would immediately
lead to an improved description of the 4.5 deg RPA spec-
trum. The same is true for the 0 spectrum where also a
large part of the background just below the GT resonance
is due to the L =1 strength, as can be seen from a com-
parison of the full and dot-dashed curves in Fig. 2(b).

The L =1 resonance is a superposition of three reso-
nances with spin parities J =0, 1, and 2 . In Figs.
4(a) and 4(b) we show their separate contributions to the
cross section at angles of 0=4.5 and 0=9.5', respective-
ly, where the L =1 resonance has its largest cross section.
The 2 states are lowest in excitation energy, then follow
the 1 states, and the 0 states have the highest excita-
tion energy. The sum of all these cross sections (full
curve) forms a resonance shape which peaks around
Q = —24 MeV and has a total width of about 15 MeV.

In Table I, the second, the third, and the fourth
columns, we give the detailed numbers for the cross sec-
tions contributed by the individual J resonances to the
total L = 1 cross section at the different scattering angles
0. These cross sections include, besides the 1%co, also the
3Acu 0, 1, and 2 transition strength. The 2 cross
sections are largest at all scattering angles but the 0 and
1 cross sections also give appreciable contributions.

C. The 9.5 spectrum and the L =2 resonance

In Fig. 3(a) we show the 'results for the 9.5' spectrum.
At this angle the GT cross section contribution to the
spectrum is negligibly small and the shape of the spec-
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trum is dominantly determined by the L = 1 and the 2Am

(L =0 and L =2) resonances. Again the theoretical spec-
trum calculated with RPA provides a good description of

TABLE I. Energy integrated theoretical cross sections for
various classes of final nucleus states. In the second to fifth
columns, we list the individual cross sections to states which
form the 1Aco, L =1 resonance (J"=0,1,2 ) and in the sixth
to ninth columns we give analogous cross sections for the 2hcu,

L =2 resonance ( J =1+,2+, 3+). The numbers listed were cal-
culated with RPA wave functions or generalized RPA+ 5
wave functions (numbers in parentheses).

(deg)

L =1 resonance
0 1 2

(mb/sr)

L =2 resonance
1+ 2+ 3+

(mb/sr)

0.0

9.5

12.8

18.7

15
(12)
17

(14)
11
(9)
4

(3)
2

(3)

5
(5)

25
(23)
20

(16)
7

(5)

(3)

32
(28)
43

(30)
31

(19)
22

(19)
11

(15)

27
(23)
29

(20}
32
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(7)
3

(2)

(2)
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(5)

(4)

(1)
1

(1)
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(10)
15

(14)
26

(21)
20

(16)
7

(5)

FIG. 4. The cross section contributions of the 1fzco,
J"=0,1,2 states to the 4.5' (a} and 9.5' (b) spectra, respec-
tively. These states form together the L =1 resonance. The
theoretical cross sections were calculated with RPA wave func-
tions. The full curve represents the sum of the 0, 1, and 2
cross sections.
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the experimental data, while the spectrum calculated with
RPA + 6 is too small in magnitude.

The 2fico excitation with L =0 and L =2 consists of a
superposition of three resonances with spin parities
J~= 1+, 2+, and 3+. In Figs. 5(a) and (b) we show their
separate contributions to the 9.5 and 12.8 spectrum,
respectively. It can be seen that the 3+ resonance is very
broad with the peak cross section at around Q = —25
MeV, while the 1+ resonance has a smaller width and
peaks at around Q = —38 MeV.

In Table I, the fifth to seventh columns, we list the
numbers for the cross sections contributed by the indi-
vidual J states to the 2fuu resonance at different scatter-
ing angles 0. The 1+ states give a large contribution of 27
mb to the 0 cross section. This contribution should, how-
ever, not be mixed up with the CxT strength which enters
in the sum rule, Eq. (1), and which is connected with the
/3 decay operators or~. The expectation value of this
operator with 2%co configurations is zero because of the
orthogonality of the radial wave functions. The 2%co 1+
strength is mainly excited with the operator
f ( r)( Yq X o ),+r which is part of the hadronic transition
operator and which introduces a radial dependence.
Therefore, it is obvious that this cross section contribution
should not be included in the sum rule of Eq. (1).

D. The 12.8 and the 18.7 spectra

Particularly important for our discussions are the re-
sults for the high angle spectra at 0=12.8' and 0=18.7'
which are shown in the lower part of Fig. 3. At these
scattering angles both the GTR and the L =1 resonance
give a comparatively small contribution to the total (p,n)
spectrum (see Tables I and III). The shape and magnitude
of these spectra are therefore mainly determined by states
of other multipolarities.

In Figs. 3(c) and (e) we compare the calculated 12.8'

and 18.7' spectra to the data. The full curve again denotes
the result obtained with RPA, and the dished curve
denotes the one obtained with RPA+ A. While the RPA
result overestimates the data somewhat in the 12.8' spec-
trum, it produces, on the other hand, a perfect description
of the 18.7' spectrum. One reason for the overestimation
in the 12.8' spectrum is that the 3 and 4 states which
are treated in our calculations as unperturbed ph states,
i.e., without RPA correlations, have their peak cross sec-
tion at this angle. The inclusion of RPA correlations
would therefore lead to a reduction in cross section. The
contribution of the L =2 resonance is still appreciable at
this angle as can be seen from Fig. 3(d) where we show the
background cross section with respect to the L = 1 reso-
nance (full curve) and with respect to the L = 1 and L =2
resonances (dot-dashed curve). The same is shown for the
18.7 spectrum in Fig. 3(f).
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FIG. 5. The cross section contributions of the 2Aco,
J =1+,2+, 3+ states to the 9.5' (a) and 12.8' (b) spectra, respec-
tively. These states form together the L =2 resonance. The
theoretical cross sections were calculated with RPA wave func-
tions. The full curve represents the sum of the 1+, 2+, and 3+
cross sections.

E. Convergence of the cross section calculation

The good description of the small and large angle
scattering data by our model calculations leads us to the
following important conclusion: At 200 MeV incident en-
ergy the whole (p,n) spectra up to E =70 MeV are still a
result of one-step processes only. Two-step processes with
explicit excitation of 2p2h states are still suppressed. This
conclusion has important consequences for the interpreta-
tion of the forward angle (8=0', 4.5', and 9.5') spectra. It
implies that the experimental cross section area at large
negative Q values in Figs. 2 and 3, which is not yet
described by our calculations, should also be the result of
one-step processes. This is, however, only possible if there
exists additional lp 1h transition strength in the high Q-
value region —40 MeV) Q )—70 MeV which produces
forward peaked angular distributions, i.e., the latter have
to be of L =0, L, = 1, or L =2 shape. All strength of this
type, however, is already included in our calculations, but
it is dominantly located in the low excitation energy re-
gion where it actually leads to too large theoretical cross
sections. A simple and consistent solution to this problem
can be obtained if we assume an even stronger spreading
of the I =0, L = 1, and L =2 strength to higher excita-
tion energies than we have done so far. With this assump-
tion the overestimate of the data by the theory at low ex-
citation energies and small angles and the underestimate
at high excitation energies would disappear, while the re-
sults for the large angle spectra remain essentially un-
changed.

The preceding conclusion could only be modified if
there would exist a special class of two-step processes
which would produce strongly forward peaked angular
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distributions. One condition for a cross section to be large
at 0' is that the total angular momentum transfer L in the
scattering process has to be small, preferentially L=O. In
the case of a two-step process the total angular momen-
tum transfer L is the sum of the angular momenta
transferred in each step: L=L~+L2, where L~ is the an-
gular momentum transferred in the first step and L2 is
the one transferred in the second step. Since we require
L=O, we have L& ———L2. A further condition for a two-
step cross section being large is that it must be composed
of two strong transitions, each of which has to possess a
reasonably large form factor. The most important pro-
cesses will be inelastic excitation of the target nucleus fol-
lowed by charge exchange or vice versa. This follows
from the fact that one needs a strong projectile-target nu-
cleus coupling in each step in order to obtain a large form
factor. The strong central force components at intermedi-
ate energies are the spin-isospin independent component
Vo and the spin-isospin flip producing component V, . '

One possibility, for instance, which fulfills all the condi-
tions required is the inelastic excitation of the giant mono-
pole resonance followed by a GT transition or vice versa.
Since the giant monopole resonance occurs in Zr at
E„=16 MeV (Ref. 33), the Q value for this two-step pro-
cess will amount roughly to Q = —35 MeV. While the
described process consists of a 2%co excitation followed by
a OAco charge exchange transition, one can also imagine a
1fuu inelastic excitation of an l. = 1 type (excitation of the
giant dipole resonance) followed by a lfuo L =1 charge
exchange mode. Such a two-step process would con-
tribute to the 0 cross section at around Q = —40 MeV.
So, altogether one could expect that two-step contribu-
tions could become important for Q values beyond
Q = —35 MeV. Therefore, we have calculated such types
of processes using an extended version of the computer
code FROST-MARS which can perform a completely an-
tisymmetric, second-order DWBA calculation. We found
that the cross sections due to such two-step processes are
smaller than the first-order ones by more than three or-
ders of magnitude (of the order 10 mb/sr at 0). Al-
though the density of the 2p2h states becomes large at
high excitation energies, it seems nevertheless unlikely to
us that the explicit excitation of 2p2h states can give large
contributions to the cross section since the two-step cross
sections which we expected to be strongest are already so
small.

F. Quenching due to the b, isobar effect

In view of the problems concerning the spreading of
CrT strength (and those of other resonances) due to the
2p2h configuration mixing effect, it seems to be advisable
for a careful discussion of the 5 isobar quenching effect
to work with energy integrated cross sections. In Table II
we list the energy integrated experimental cross sections
(second column) and the calculated ones (third column) as
a function of the scattering angle 0. The integration inter-
val extends from zero to Q = —70 MeV. The theoretical
cross sections were calculated either with RPA or
RPA + b, (numbers in parentheses). The RPA result
reproduces the measured cross sections at all scattering

TABLE II. Energy integrated experimental and theoretical
cross sections for different scattering angles 0. The theoretical
cross sections were calculated either with RPA wave functions
or generalized RPA + 6 wave functions (numbers in
parentheses). All numbers are subject to —10% uncertainty due
to the choice of optical potential parameters.

0, ~catexp

(deg)

0.0
4.5
9.5

12.8
18.7

0 MeV& Q & —70 MeV
(mb/sr)

215
212
203
150
102

0 MeV&Q) —70 MeV
(mb/sr)

232 (178)
211 (164)
192 (156)
164 (144)
102 (104)

angles within an accuracy of 10% while the cross sec-
tions calculated with RPA + 6 underestimate the corre-
sponding experimental values at forward angles (8=0',
4.5', and 9.5') by about 20% to 25%. At 8=18.7' the
cross sections based on RPA and RPA + 5 are essentially
the same and agree with experiment. Fro'm the results in
Table II one might be tempted to conclude that there
should be no quenching due to 6 isobars. This conclusion
is, however, daring since we have so far not included the
following important effect in our analysis of the data.
Bertsch and Hamamoto' have pointed out that by shift-
ing strength from the low to the high excitation energy re-
gion one simultaneously creates new strength at low exci-
tation energies. This is due to the fact that a strong
spreading of the lplh strength due to the admixture of
2p2h configurations also implies the presence of strong
2p2h correlations in the target nucleus ground state.
From the point of view of perturbation theory both pro-
cesses are of the same order in the residual ph interaction.
The presence of strong ground state correlations, on the
other hand, gives the possibility to create new Sp and

S~ strength which have to be equal in magnitude in or-

der to fulfill the sum rule in Eq (1). How. much new
strength is really created depends sensitively on the in-
terference of the ground state correlations with the final
state correlations. This interference is a coherent process
making an estimate of the created strength rather difficu-
lt. From an experimental point of view this question can
only be answered by performing (n,p) experiments at the
same target nucleus which would measure the Sp
strength directly. In lack of such (n,p) experiments one
can also get a good estimate on the amount of Sp ( Sp )

strength to be expected from ground state correlations by
considering the (p,n) reactions from spin saturated K =Z
nuclei like ' O or Ca. In the independent particle model
these nuclei have zero CxT strength. In the presence of
ground state correlations the Sp strength becomes un-

equal to zero (but equally large to the Sp strength) and

should reflect itself in an enhanced zero degree (p,n) cross
section. We have performed a preliminary calculation for
the reaction Ca(p, n) and found that as much as 15 mb of
the zero degree 200 MeV OCa(p, n) cross section might be
due to CiT strength. This value is in good agreement with
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results ' obtained from explicit 2p2h calculations.
In view of these problems we are led to draw the fol-

lowing conclusions with respect to the 4 isobar quenching
effect: Quenching due to 5 isobars is only needed in order
to explain the O' Zr(p, n) spectrum if there exists a large
amount of Sp strength in Zr. Otherwise, the (p,n)+
cross sections are compatible with the strength predictions
as obtained from the usual RPA. The strength has to be
spread out, however, over a relatively large energy range.
In Table III, second column, we list the calculated total
GT cross section as a function of scattering angle 0 and in
the third column the corresponding fraction of GT cross
section which is situated in the high energy tail ( —20
MeV&Q& —70 MeV) of the (p,n) spectrum. The latter
amounts to 20—25 go of the total GT strength. Note also
that at small scattering angles (q transfers) the RPA+ b,
GT cross section is smaller than the one obtained with
RPA, while this behavior is reversed at high scattering an-
gles as it should. At large momentum transfers the 6 iso-
bar effect leads to an enhancement of the GT cross sec-
tion instead of a quenching.

TABLE III. Total calculated GT cross sections for different
scattering angles 0. In the third column, we list the CxT cross
section residing in the high energy tail of the theoretical spec-
trum.

(deg)

~GT ~GT
0 MeV&Q & —70 MeV —20 MeV& Q & —70 MeV

(mb/sr) (mb/sr)

0.0
4.5
9.5

12.8
18.7

115(76)
45(29)

5 (6)
1 (4)
1 (1)

25 (17)
(6)

1 (1)
0 (1)
0 (0)

Cx. Strength distribution estimates
from the experimental spectra

After the analysis of the complete forward angle (p,n)
spectra where we also obtained the angular dependence of
the different modes, one can make simple estimates for
the strength distribution of the various multipoles using
the experimental data only. In the following we want to
demonstrate this. Let us start with the large angle scatter-
ing data. As the L =2 resonance cross sections peak at
9.5 and the L =0 and L =1 resonance cross sections are
small at 18.7', we can determine the L =2 strength distri-
bution by subtracting the experimental 18.7' spectrum
from the data at 9.5'. This procedure is particularly safe
for large Q values, Q (—40 MeV, since the cross section
at this high Q value and at large scattering angles is pro-
duced by L =3 and L =4 transitions whose angular dis-
tributions are still rising going from 0=9.5' to 18.7. By
this subtraction method one finds that the L =2 strength
extends at least up to Q = —50 MeV. Similarly we can
subtract the high energy tail of the 8=0 spectrum from
the 0=4.5' spectrum. Since the L =1 cross section is
growing from 0' to 4.5' we can determine up to which Q
value we should expect at least L =1 strength. We find

Q = —40 MeV for L =1. Finally, we subtract the experi-
mental 12.8 spectrum from the 0' spectrum. At 12.8' the
GT cross section is approximately zero and the L =1
cross section is small. Therefore, by subtracting the 12.8'

spectrum from the 0' spectrum, we obtain a lower limit
for the spread of GT strength. We find that the GT
strength should at least be spread out up to Q = —35
MeV. If we compare these experimental limits for the en-

ergy spread of the different charge exchange modes with
those which we require from our analysis of the (p,n)
spectra, we find that they essentially agree. This gives us
further confidence in our conclusion that a large part of
the L =0, L =1, and L =2 strength is residing in the
high energy tail of the Zr(p, n) spectrum.

H. Comparison with other calculations

Nuclear structure calculations (see Ref. 29 for a recent
review) have been performed for electric giant resonances
which consider the spreading of these states due to their
coupling to 2p2h configurations. Recently, several
groups have carried out similar studies for the GT
states. We refer here to a 2p2h calculation for the GT
strength distribution in Zr as performed by Cha et al.
These authors find that the GT strength function in Zr
exhibits a long tail which extends up to 60 MeV excitation
energy. The tail includes as much as 25% of the total GT
strength. Similar results have also been obtained by other
groups. '4' 3 All these calculations agree qualitative-
ly with our present result.

IV. SUMMARY AND CONCLUSIONS

We have presented a microscopic analysis of forward
angle Zr(p, n) spectra at an incident energy of E„=200
MeV. The analysis shows that the whole spectra up to ex-
citation energies of E =70 MeV are the result of direct
one-step processes only and that the spectra can be regard-
ed as the linear o.~ response of the target nucleus to the
probing (p,n) field. The spectra are background free with-
the understanding that background stands for a cross sec-
tion which is produced by complicated multistep process-
es. Both the peaks and the continuous parts of the spectra
are due to lplh excitations of the target nucleus. There-
fore, one can decompose the spectra into the various mul-
tipoles and obtain in this way information on the strength
distribution of final nuclear states with different J .

Two different analyses of the Zr(p, n) spectra have
been performed in this paper. One has been carried out
with common RPA wave functions and the other with
generalized RPA wave functions which include 6 isobar
degrees of freedom. We find that the theoretical spectra
calculated with RPA describe the experimental data at all
scattering angles rather well, while the spectra obtained
with RPA+ 6 underestimates them at forward angles.
From this result, we deduce that the measured (p,n) cross
sections are compatible with the transition strength pre-
dictions as obtained from the RPA.

Concerning the quenching of the total GT strength, our
calculations suggest that the amount of GT strength in
the low excitation energy region can be as large as the
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lower sum rule limit, i.e., Sp =3(X—Z), without leading

to contradiction with the present (p,n) data. Quenching
due to b, isobars is only needed if Sp &0. This is the

case as soon as there exist 2p2h or other correlations in
the ground state of Zr which are not included in the
RPA. From the sum rule Sp =3(X—Z) +Sp we see

that S~ &0 implies also the production of additional

Sp strength. From our analysis of the data, we cannot

afford more S~ strength than 3(X—Z). Therefore any

additional Sp strength has to be quenched away, for in-

stance, by the 6 isobar quenching mechanism. How
much S strength is present in Zr can be determined13+

from a Zr(n, p) experiment. Therefore, (n,p) experiments
are very crucial tools to settling the problem on the role of
the 6 isobar in nuclei.
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