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The properties of the seven-nucleon system are examined with a multiconfiguration and multi-
channel resonating-group calculation. The cluster internal functions employed explain the charge-
form-factor data over a wide range of q and satisfy the variational stability condition quite well.
The model space used is spanned by H+o, , n+ Li, n+ Li*, and d+'He cluster configurations.
The result shows that the specific distortion of the H+a system is quite significant. With our mul-

ticonfiguration calculation, the ground-state energy is improved by more than 1 MeV. The calculat-
ed level spectrum agrees well with the level spectrum empirically determined. The energy positions
of both natural-parity and unnatural-parity levels are reasonably explained. In addition, we find
that, because of centrifugal-barrier effects, the aligned configuration generally makes the most sig-
nificant contribution. The characteristics of nucleon-exchange terms are also briefly examined. Here
it is found that, at sufficiently high energies where sharp resonance levels do not exist, the essential
properties of these terms can already be learned by performing relatively simple single-configuration
calculations.

I. INTRODUCTION

The resonating-group method' (RGM) has been uti-
lized, over the past two or three decades, to study level
structures and reaction mechanisms in many nuclear sys-
tems. As is well known, this method is especially suit-
ed to investigate the properties of light- and medium-
weight nuclei where the formation of nucleon clusters
plays an important role. Because of its microscopic na-
ture and resulting computational complexities, however,
the progress in this field of cluster physics has not been
very rapid. Except for light two-cluster systems consist-
ing of s-shell clusters, existing calculations have frequent-
ly been performed with a single cluster configuration and
with the constituent clusters described by simple
translationally-invariant shell-model wave functions
which do not properly account for the density distribution
and the nucleon correlation behavior. As a consequence
of these simplifications, the results obtained can generally
be viewed to have only qualitative, or at most, semiquanti-
tative, significance. A typical example is the microscopic
RGM study of the S nucleus by Ando et al. , where a
single ' 0+ ' 0 cluster configuration was adopted, with
the ' 0 nuclei assumed to occupy the lowest configura-
tions in harmonic-oscillator wells. By examining the cal-
culated phase-shift characteristics, these authors obtained
interesting information concerning the existence of quasi-
molecular structures in this medium-weight nucleus. On
the other hand, a comparison with the results of
Schultheis and Schultheis, using the microscopic cz-

cluster model in which S is described by a more flexible
wave function consisting of eight a clusters, does show
that the energies of the quasimolecular states. calculated
by Ando et al. are not too reliable. This indicates that,

from a quantitative viewpoint, the simplifying assump-
tions adopted by these latter authors are too drastic and a
better calculation, involving more realistic ' 0 internal
wave functions and with specific distortion effects taken
into consideration, should be performed.

Extensive RGM studies with multiple cluster configu-
rations have been undertaken by Hackenbroich and his
collaborators. ' These are elaborate calculations which
required lengthy computing periods. In their considera-
tion of the six-nucleon system, " for example, d+ a,

n+ Li ( —,
'

), p+ 5He**(—, ), and n+ Li**(—', ), con-
figurations were included. For the nucleon-nucleon in-
teraction, they chose to employ a potential possessing a
strong repulsive core which necessitates the introduction
of Jastrow anticorrelation factors into the trial wave func-
tion. To simplify the computation, they were then com-
pelled to adopt a rather crude procedure' ' to handle
these complicated factors and the kinetic-energy part of
the calculation (for details, see Ref. 12 and subsection 5.3c
of Ref. 2). This is unfortunate, since their adopted pro-
cedure is difficult to comprehend and the resulting uncer-
tainties cannot be readily estimated. Therefore, it is our
opinion that the calculations of Hackenbroich and colla-
borators did yield useful information but should not be
quantitatively overemphasized.

In this investigation, we wish to learn the importance of
adopting in RGM calculations multiple cluster configura-
tions and realistic cluster internal wave functions. For
this purpose, we choose the seven-nucleon system for a
careful and systematic study. This particular system is
chosen, not only because the computational requirement is
less severe due to the relatively small number of nucleons
involved, but also because of the following reasons: (i)
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even in the low-excitation region, many cluster configura-
tions are involved; (ii) the constituent cluster Li is known
to exhibit strong nucleon-correlation properties in the
form of d + a clustering and its charge-form-factor
values have been measured over a wide q range; (iii) for
the H+a configuration, where the interacting clusters
have a small nucleon-number difference, core-exchange
effects are very important (iv) the level structure is rath-
er well established and has been summarized recently by
Knox and Lane and (v) the seven-nucleon system is sig-
nificant in astrophysical' and fusion-reaction' applica-
tions.

Since we are aiming for a general understanding, we
shall strive to include only essential ingredients in the cal-
culation such that the results can be interpreted in an
especially simple and clear manner. Thus, we shall per-
form the present calculation by omitting the Coulomb in-
teraction and by adopting a purely central nucleon-
nucleon potential. Because of the long-range nature of the
Coulomb force, its effects can be easily estimated. As for
noncentral spin-orbit and tensor forces, these are neces-
sary for discussing detailed features but are not essential
in light systems if one's desire is mainly to understand the
basic behavior of the intricate interplay among various
cluster configurations. '

Prehminary investigations' ' in the seven-nucleon
system have been carried out to lay the proper ground-
work for the present study. In Ref. 19 (hereafter referred
to as FT1), we have performed a calculation with a single
n+ Li cluster configuration but a number of different
Li internal functions. The purpose there was to deter-

mine the influence of the clustering and charge-form-
factor behavior of Li on the properties of the n+ Li sys-
tem. By examining the cross-section and phase-shift re-
sults, it was found that, in the low-energy region, a proper
consideration of d+ a cluster correlations in Li is essen-
tial to explain the resonance structure, while in the high-
energy region one must adopt in the calculation a Li
internal function which yields the empirical form-factor
values over a wide q range. Next, we performed a calcu-
lation, reported in Refs. 20 and 21 (hereafter referred to as
FT2 and FT3, respectively), to study channel-coupling ef-
fects with multiple cluster configurations. In this latter
calculation, to be designated as the shell model-resonating
group method (SM-RGM) calculation, we included
H + a, n + Li, and n + Li configurations, but with

the simplification of choosing for the H, Li, and Li*
clusters lowest-configuration harmonic-oscillator shell-
model functions having the same width parameter. The
interesting findings there were that the level structure of
Li, determined by Knox and Lane with a careful R-

matrix analysis, ' can be reasonably explained and that
the aligned n+ Li* configuration makes, in general, the
most significant contribution because of centrifugal-
barrier effects.

In this study, we combine the features incorporated in
these preliminary investigations. In other words, we ex-
amine channel-coupling effects in a RGM calculation em-
ploying flexible H and Li internal functions which ac-
count for cluster correlations and which yield satisfactory
values for the charge form factors. As is expected, the re-

suiting calculation turns out to be quite complicated, re-
quiring the formulation of a three-cluster RGM. Re-
cently, however, we have developed for this formulation
the necessary analytical techriique which includes the ex-
tensive use of the method of integral transform. As a
consequence, we have found that even such a complicated
problem can be solved with reasonable computational
periods on moderate-speed computers.

It is appropriate to mention that there also exist other
recent investigations in the seven-nucleon system. These
are the following: (i) RGM calculations by Beck et al.
and by Kanada et al. " These calculations are mainly
aimed toward an understanding of the effects of specific
distortion in the low-lying states of Li. In the study of
Beck et al. , the cluster configurations included are the
two-cluster configuration H+a and the three-cluster
configurations n + d( T=O) + a and n + d'( r= 1) + a,
with the d+ a and d +u subsystems restricted to have
relative orbital angular momenta equal to zero. In the in-
vestigation carried out by Kanada et al. , specific distor-
tion effects are taken into consideration by the introduc-
tion of a 0"+a configuration to improve the description
of the compound nucleus in the strong-interaction re-
gion. 5 Both calculations showed that these effects are
moderately important and, for the L= 1 ground state, the
energy obtained with specific distortion accounted for is
about 0.7 MeV better than that obtained with a single-
configuration H + a calculation. (ii) RGM calculation
by Hofmann et al. This is a multichannel calculation
including H+a, n+ Li, n+ Li*, and d+ He cluster
configurations. The nucleon-nucleon potential used con-
tains central, spin-orbit, and tensor components. Because
of the presence of a strong repulsive core, the above-
mentioned crude procedure of Hackenbroich and colla-
borators has to be adopted again, resulting in some im-
pairment in the quantitative value of this calculation.
Even so, however, it is qualitatively useful. Together with
our present investigation, we shall show in the following
that a rather complete understanding of the main char'ac-
teristics of the level structure and the reaction mechanism
in the seven-nucleon system can now be achieved.

The outline of this paper is as follows. In Sec. II, we
give a brief description of the formulation and describe
the cluster internal functions. Here, also, we shall discuss
some features of the Pauli resonances which generally
occur in a microscopic formulation employing antisym-
metric wave functions. The results for the calculation
with H+ a, n+ Li, and n+ Li* cluster configurations
are presented in Sec. III. In Sec. IV, we further enlarge
the model space and examine the effects of including also
the d+ He configuration in an angular-momentum state
where this cluster configuration is expected to have the
most significant influence. Finally, in Sec. V, we summa-
rize the findings of this investigation and make some con-
cluding remarks.

II. FORMUI. ATION AND GENERAI. DISCUSSION

A. Brief discussion of the formulation

The analytical formulation for a general three-cluster
3 +8+C system, composed of an a cluster and two s-
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shell clusters [i.e., N, d(T=O), d*(T=1), H, He, or a
cluster], is given in a recent report. In this report, we
show in detail the mathematical derivation of the three-
cluster kernel and discuss its algebraic structure. As is
evident, such a general formulation is indispensable for
our present study, where the purpose is to examine clus-
tering effects of subsystems and channel-coupling effects
simultaneously.

In order to utilize the three-cluster RGM formulation
for practical applications, coupled-channel equations, in-
volving two-cluster ( A +B)+C, ( A +C) +B, and
A+(B+C) configurations, are formulated by choosing
appropriate relative-motion functions for the (A+B),
( A +C), and (B +C) subsystems according to variational
procedures constrained by relevant experimental informa-
tion. These coupled-channel equations are then solved by
a variational technique employing Gaussian-type trial
functions. The matrix elements of the RGM kernels
with respect to these Gaussian functions can be easily cal-
culated with a new technique, developed specifically for
this type of investigation by making use of the transfor-
mation theory of the complex-generator-coordinate ker-
nel. In Ref. 22, all these steps are expounded and the
readers are referred to this reference for details.

In this study, we apply it to the situation where A, 8,
and C represent N, d or d*, and a clusters, respectively.
With our present three-cluster formulation, there exists
the restriction that all constituent clusters have to be
described by shell-model functions of the lowest configu-
ration in harmonic-oscillator wells of the same width pa-
rameter. For our case, this common width parameter a is
most appropriately chosen to be equal to 0.514 fm, such
that the empirically determined rms matter radius of 1.48
fm for the a particle is correctly reproduced. '

The two-cluster configurations included in the calcula-
tion are the H+ a, n+ Li, n+ Li*, and d+ He con-
figurations, with Li" being the T=O excited state of Li
having a d+ a cluster structure with relative orbital an-
gular momentum I equal to 2. These will be referred to
as cluster configurations 1, 2, 3, and 4, respectively. The
p + He configuration will not be considered, since it like-
ly has a small influence in view of the fact that the mea-
sured cross section for the He( He, p) reaction leading to
the first T= 1 state of Li at 3.56 MeV is very small. As
for the d* + He configuration, we shall also not include
it here, because it has a higher energy threshold and, being
responsible for the process of four-particle decay, cannot
really be properly accounted for with our present formula-
tion. In any case, it is our belief that the Pauli principle
has the effect of reducing greatly the differences between
seemingly different cluster structures when the nucleons
are close to one another; hence, especially in the low-
excitation region, it is a good approximation to omit some
cluster configurations in order to reduce somewhat the
computational effort.

Since the nucleon-nucleon potential adopted is purely
central, both the total orbital angular momentum L, and
the total spin angular moinentum S (S=—,

' or —,') are
good quantum numbers. Therefore, the values of these
angular momenta can be used to characterize a particular
channel wave function. In addition, for a complete char-

acterization, one must of course also specify the cluster
configuration and the relative orbital angular momentum
l between the constituent clusters which couples with the
internal orbital angular momentum I to yield the desired
value of L.

The trial wave function in a particular (L,S) state is
written as the linear superposition of various channel
wave functions pl!, with the index j specifying the cluster
configuration. These channel wave functions are

0443(I =0) f il (R i ) Yl(R i )
Ri

XkisZ«c. . ) .

it'2! ~ ' 06(I O) f2l (R2) Yl(R2)
R2

X$2sZ(R, ) . ,

r

it!3! —W ' !16(I=2) f3!(R3 )Yl(R3 )
R3

X(3sZ (R, ) (3)

e4! ~ ' 0'205(I 1) f4l (R4)Yl(R4)
R4 L

X$4sZ(R, )

with M being an antisymmetrization 'operator, /is being
appropriate spin-isospin functions, Z(R, ) being any
normalizable function describing the motion of the total
c.m. , and Rz representing the intercluster vector separa-
tion distances. The normalized functions P„(n =2—6)
and $6 describe the internal spatial structures of the vari-
ous constituent clusters, with the subscript n denoting the
number of nucleons within the cluster. As is evident, 1 is
equal to L for cluster configurations 1 ( H+ a) and 2
(n + Li). On the other hand, for cluster configurations 3
(n+ Li*) and 4 (d+ He), several values of 1 are allowed
for a given value of L. Thus, there are, in general, more
channels than cluster configurations. For example, if all
four cluster configurations are included in the calculation,
then in the state with (L,S)=(1,—,), the number of chan-
nels involved is equal to six.

For the purpose of gaining a clear understanding of the
features arising from the interplay among various cluster
configurations, we perform a series of selected calcula-
tions, each in a different model space which is defined ac-
cording to the cluster configurations included. In Table I,
we list the various model spaces considered, with SC, DC,
TC, and QC denoting single-configuration, double-
configuration, triplet-configuration, and quadruple-
configuration calculations, respectively.

The linear variational amplitudes or relative-motion
functions f~~ are obtained by following the usual RGM
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TABLE I. Model spaces considered.

Model space

Single configuration 1 (SC1)
Single configuration 2 (SC2)
Double configuration 1 (DC1)
Double configuration 2 (DC2)
Triple configuration (TC)

Quadrupole configuration (QC)

Cluster configurations

H+ cx

n+ Li
H+ a) n+ Li
n+ Li, n+ Li*
H+ cz, n+ Li,

n+ Li*
H+ cx, n+ Ll)
n+ Li*, d+ He

procedure. Since this procedure has already been careful-
ly explained in Refs. 4 and 22, we shall not further
describe it here.

The nucleon-nucleon potential employed in this investi-
gation has the same form as that used in FT1, FT2, and
FT3. It contains an exchange-mixture parameter u which
will be chosen according to experimental data on the
H+ a cluster separation energies in the —,'ground and

first excited states of Li. This particular nucleon-

nucleon potential is adopted because it yields a satisfacto-
ry description of not only the two-nucleon low-energy
scattering data, but also the essential properties of the
deuteron, H, He, and a particle.

B. Cluster internal wave functions

I. 3H wave function

The triton wave function has both N+ d and N+ d*

components. It has the form

03 N3~[42~3(r1

with N3 being a normalization factor and Z3 being a
function describing the c.m. motion. The spin-isospin
function g3, appropriate for ( T3,S3)=(—,', —,

'
), is chosen to

be totally antisymmetric and is given by

Here it is noted that, in particular, the calculated value of
R 3 agrees well with the empirically determined value.
This is gratifying, since in a calculation where strong
short-range forces are involved, it is important that the
sizes of the interacting nuclei must be properly accounted
for.

To make certain that the function p3 is a reasonable
choice, we have further studied the triton problem with a
totally space-symmetric function of the form analogous to
that given by Eq. (3) of Ref. 35. Using a ten-Gaussian tri-
al function (No = 10) with appropriately chosen but fixed
nonlinear parameters a; ranging from 0.1 to 5.16 fm
we obtain E3 ———6.031 MeV and R3 ——1.69 fm, which are
quite similar to the values given in Eq. (9). Thus, we are
of the opinion that the present choice of p3 is indeed satis-
factory enough for our purposes.

In Fig. 1, we show a comparison between calculated
and experimental values of F„,with E,„d efined by Eq.
(22) of Ref. 24. From this figure, one sees that there is a
satisfactory agreement, indicating again the adequacy of
our chosen triton wave function.

2. 6Li wave function

The Li wave function p6 is taken to be the function p1
of FT1. This particular function is chosen, because it ac-
counts for the nucleon-correlation behavior and yields
satisfactory values for the charge form factor over a wide

range of q . In this function, the d+ 0. relative-motion
function is given by

X6(r24) =exp( —, g6ar24)+—c6exp( ——', $6arz4), (10)

1.0

k3 ~ [401(d41/21/2(N)]1/21/2V2
1~ [410(d gl/21/2(N)]1/21/2 ~v2 (6)

0.1

where the subscripts on the various quantities appearing
in the right-hand side denote the values of isospin and
spin. With this particular choice for g3, the triton func-
tion p3 has then the property of being totally space sym-
metric.

The relative-motion function X3 is chosen as

X3(r12)=exP( —7 1)3ar 12 )+c3 exP( —7$3ar 12 ) ~

2' 2

The parameters 113, $3, and c3 are determined by minimiz-
ing the expectation value of the triton Hamiltonian. The
results are

0.01

7)3—0.24, $3——1 ~ 85, c3 ——0.593 ~ (8)

E3 ———6.045 MeV, R3 ——1.68 fm . (9)

With these parameters, the calculated energy expectation
value E3 and rms matter radius R3 are as follows:

I I I I I I

0 1 2 3 4 5 6 7

q (fm )

FIG. 1. Square of average charge form factor F,„of the
three-nucleon system.
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3. Li wave function

As is well known, Li has predominantly a d+ o. clus-
ter configuration with relative orbital angular momentum
I equal to 2. It is particle unstable, but the lifetime is
comparatively long because of the presence of Coulomb
and centrifugal barriers. In addition, one should note
that, when such a structure occurs in the seven-nucleon
system, the extra neutron may have a further stabilizing
effect (see the discussion in subsection 3.6b of Ref. 2).
Thus, for a description of the influence of this sequential-
decay cluster structure n+ Li', it is not unreasonable to
adopt a normalized bound-state-type function P 6 for Li*,
which has a d + u relative-motion function of the form

&6(r~4) = I:exp( ——,n6ar 24)

+c6 exp( —
3 06ar24)fr24~2M(r24) .

For the determination of the parameters vP&, g6, and c6,
there is, of course, no simple and well-defined criterion.
This is, however, not too serious, since in a calculation
with a large model space, the choice of these parameters is
not too critical from a variational viewpoint. Qnly certain
essential features have to be reasonably accounted for and
these features are the clustering property and the excita-
tion energy of Li*. Thus, we simply choose F16 and g6 as
equal to i)6 and g6, respectively, and variationally deter-
mine c6. The result with u=1 is

c6 ——0.719 . (13)

%"ith these parameters, the excitation energy of Li* is
calculated to be 4.58 MeV, which is not too different from

g, =0.0841, g, =0.60, c,=2.337.

In arriving at these parameter values, we have made a
variational calculation with u = 1, subject to the constraint
that the empirical charge-form-factor data be reasonably
reproduced (see Fig. 1 of FT1). With this Li wave func-
tion, the d+ cx cluster separation energy is calculated to
be 2.85 MeV which compares favorably with the empiri-
cal value of 2.34 MeV obtained by making a Coulomb
correction of 0.86 MeV to the experimental result of 1 48
MeV.

It should be mentioned that, with a strict variational
procedure without the chaige-form-factor constraint, the
optimum cluster separation energy obtained with u=1
and a flexible five-Gaussian trial function for X6 is 2.99
MeV, which is only 0.14 MeV better than the above-
mentioned value. This indicates that our chosen Li wave
function fulfills, to a satisfactory extent, the variational
stability condition which is very important in a calcula-
tion utilizing a large model space, as has been emphasized
previously by LeMere et ah. and, more recently, by Ka-
jino et a1.39

The calculated n+ Li threshold occurs at 3.15 MeV
above the H+ a threshold. This is in reasonable agree-
ment with the empirical result of 3.92 MeV, obtained by
using the measured value of 4.78 MeV (Ref. 34) and a
Coulomb correction of 0.86 MeV.

the empirical value of 3.60 MeV, obtained by averaging
the measured excitation energies of the low-excited D3
and D2 states according to spin-orbit weighting.

+c5 exp( —, ggari4)]—ri4Fi4t(ri4) . (14)

In this case, the determination of the parameters il~, $5,
and c5 is again not clear-cut. The main criterion which
we adopted was that the n+ a cluster separation energy
should turn out to be —2.22 MeV, a value obtained by
utilizing experimental information for the I'3/2 and 8~~2
states W.ith this criterion, we found sets of (iraq, g5)
values, together with the corresponding values of cz deter-
mined variationally. By further demanding that He
should possess strong clustering property, we finally de-
cided to use

il5 ——0.20, $5
——0.84, c5 ——0.344 . (15)

The important point to note here is that g5 is appreciably
smaller than 1, indicating clearly that our adopted func-
tion $5 does describe He as having a considerable degree
of n + a clustering.

By also using calculated energy expectation values of
the deuteron and the a particle, the d+ He threshold is
found to be at 8.23 MeV above the H+a threshold.
This is again a reasonable result, since the empirical value
after Coulomb correction is equal to 8.47 MeV.

5. Important features
of cluster internal wave functions

The essential point we wish to stress is about the varia-
tional stability condition. In our present study, where the
main concern is on the bound-state and phase-shift prop-
erties of H+ o. and n+ Li systems, it is important that
the wave functions describing these stable clusters should
satisfy this condition. This is so, since the purpose of en-
larging the model space is to achieve a realistic account of
specific-distortion or channel-coupling effects, rather than
to compensate crudely and improperly for the unsatisfac-
tory choice of cluster internal wave functions.

As has been discussed already, our H and Li wave
functions do satisfy quite well the stability condition. For
the a particle, our present formulation requires that it be
represented by a translationally-invariant shell-model
function of (1s) configuration in a harmonic-oscillator
well of width parameter a, which is chosen to be 0.514
fm in order to yield correctly the empirically deter-
mined rms matter radius. At first, one might think that
such a wave function is too simple. However, we should

4. 5He wave function

The above-mentioned discussion is also applicable to
the case of He, having predominantly a n+n cluster con-
figuration with relative orbital angular momentum I= l.
Therefore, we choose for its description a normalized
function $5, which has a n+a relative-motion function X5
given by

X,(r,4) = [exp( ——', g,ar', 4)
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tained with a flexible trial function consisting of ten
Gaussian functions.

In Figs. 2(a) and (b), we show the reduced width ampli-
tudes, ' defined as

%2(r) [(2)]=($2/4 5(r24 —r))26(224)$6Z6 P6)
~24

CV

IE
V

H

-0.2

-0.4—

0.6—

0.4

0.2

7=2

for Li (I=O), and analogously for other clusters in-
volved. As is discussed in FT1, where the properties of a
number of suitably chosen Li wave functions were com-
pared, the fact that 9'o for Li has an appreciable magni-
tude in the region of large separation distance r is a clear
indication that Li possesses a large degree of d+ o; clus-
tering. Based on this knowledge, one can similarly con-
clude by examining the behavior of the reduced width am-
plitudes in the He and Li* cases that our chosen wave
functions also describe quite well the strong clustering
properties of these two nuclei.

C. S-matrix elements

0 2 4 6 8 10 12 14
r(fm)

1.4

1.2—
(b)

1.0
OJ

0.8

H 0.6

0.4

0.2

0.6—
CU

I E 0.4—
H

0.2—

0 2 4 6 8 10 12 14

r (fm)
FIG. 2. (a) Reduced-width amplitudes for d+ a clustering in

Li and Li*. (b) Reduced-width amplitudes for N+ d and
N + d* clustering in H, and for n + o. clustering in He.

By solving coupled integro-differential equations, we
obtain the relative-motion functions f~~ and, hence, the
S-matrix elements S~; in S = —,

' and —,
' states. In the fol-

lowing discussion, we shall be mainly concerned with an
examination of the properties of these matrix elements.

As in FT2 and FT3, we shall label the initial channel i
or the final channel f not by the type of cluster configura-
tion and the value of the orbital angular momentum l, but
by the following convenient convention. If the channel
index i or f is represented by a single number, the H+ a
cluster configuration is referred to and this single number
represents the value of l between the H and a clusters.
On the other hand, if the channel index is represented by a
double number, then the n+ Li, n+ Li*, or d+ He
cluster configuration is referred to, with the first and
second numbers denoting the values of I and I, respective-
ly. For example, in the 1.=1 state, S32 &

denotes an
off-diagonal element describing the coupling between the
H + a configuration with l= 1 and the n+ Li' configu-

ration with /=3, while Szii io denotes an off-diagonal ele-
ment describing the coupling between the n + Li configu-
ration with l= 1 and the d+ He configuration with 1=2.

As is customary, the diagonal element will be
parametrized in terms of 'the reflection coefficient g;; and
the phase shift 5;;, i.e.,

S;; =g;; exp(2i5;;) . (17)

For the coupling or off-diagonal element S~;, we shall

mainly be interested in its absolute value, namely, the
transmission coefficient given by

LnI= IS@ I

~ (18)

mention that, because of the compact nature of the a par-
ticle, the stability condition is in fact not seriously violat-
ed. With this a-particle wave function, the calculated en-
ergy expectation value is —24.71 MeV ( —23.88 MeV
with Coulomb interaction taken into account), which is
not greatly different from the value of —25.61 MeV ob-

D. Brief discussion of Pauli resonances

It is well known that, with a microscopic formulation
uti1izing totally antisymmetric wave functions, Pauli reso-
nances (also called almost-forbidden states in the litera-
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TABLE II. Natural-parity forbidden states in the SM-RGM case. The SU3 states labeled (30)~,
(30)2, and (11)~ are FS composed of linear combinations of different cluster configurations.

1

2

3
2

0
1

2
3
0
1

2
3-

Number of FS
in QC model

space

4
5

3
2
2

2
2

H+ cx

(00),{20)
(10)

{20)

Cluster configuration
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ture ) with definite characteristic energies will be present.
In a preliminary study of the seven-nucleon system em-
ploying the present three-cluster RGM formalism, these
resonances were found to occur in the higher-excitation
region and have the interesting property of indirectly
enhancing the coupling between various cluster configura-
tions. In this subsection, we shall briefly consider the
question concerning the number of such resonances in a
definite (L,S) state and demonstrate their presence in two
calculations adopting different model spaces.

For our purpose, it is useful to consider first the SM-
RGM case where all clusters involved are described by
shell-model functions of the lowest configuration in
harmonic-oscillator wells having a common width param-
eter. In this case, the well-known feature in a single-
configuration formulation is that there exist redundant or
forbidden states (FS) which are states with zero eigenvalue
for the normalization kernel. If one expands the model
space to include multiple cluster configurations, then ex-
tra FS will appear as a result of the coupling among the
various configurations. -::Thus, one expects tI|at the num-
ber of FS will become quite large when a large model
space is adopted. This is shown in Table II, where all FS
are classified according to the (Ap, ) label of the SU3 ir-
reducible representation and have natural parity
~=( —1) . In addition, we use the convention to denote
those FS which are .already present in the single-
configuration case by (Ap) with no suffix, and to denote
the additional FS which arise from coupling among clus-
ter configurations by (Ap, ) with a suffix [i.e., (30)1, (30)2,
and (11)1]. For example, if the model space with a single
H+ a configuration is expanded to also include the

n+ Li(20) configuration, then one finds from Table II
that the number of FS in the (L,S)=(1, ~ ) state increases
from one to two, with the extra one coming from configu-
ration coupling.

In our present investigation where more Aexible wave
functions are used to describe the H, He, Li, and Li*
clusters, FS will no longer exist, but there appear now
almost-forbidden states which are eigenstates of the norm
operator with near-zero eigenvalues and which are equal
in number to the FS in the SM-RCxM case. These states
have definite characteristic energies and exhibit thern-
selves as steplike or dispersionlike resonances in the
phase-shift curves of various incident channels. We shall
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FIG. 3. Pauli resonances in the DC1 calculation with

(L,S)=(0, 2 ).

refer to these resonances as Pauli resonances, since they
arise as a consequence of the exact treatment of antisym-
metrization.

The existence of Pauli resonances is illustrated in Figs.
3 and 4, where the results obtained with DC1 and DC2
calculations, respectively, are depicted. The exchange-
mixture parameter u is taken to be 1. In Fig. 3, we show
in the (L,S)=(0,—,

'
) state the phase shift 5pppp and the

transmission coefficient gp pp as a function of Eq, the rela-
tive energy of the neutron and Li in the c.m. system. Ac-
cording to Table II, one expects that there should exist
three Pauli resonances in this particular (L,S) state.
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other (L,S) states. In general, these resonances appear at
energies higher than about 20 MeV. In the energy region
where they occur, the coupling among various cluster con-
figurations becomes generally rather strong, and the
behavior of the seven-nucleon system is quite complicated.

It should be stressed that, within the adopted model
space, the Pauli resonance is a real resonance which
should be treated in the same footing as any other type of
resonance. ' On the other hand, one should also note
that its characteristics are rather sensitively dependent
upon the model space used. For example, even the intro-
duction of a small imaginary potential into the ROM for-
mulation will affect its behavior in a rather significant
manner. Thus, for the sake of achieving a simple and
clear understanding of the level structure and the reaction
mechanism, we shall restrict ourselves mainly to low ener-
gies below 20 MeV, at which the effect of Pauli reso-
nances is expected to be substantially reduced.
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FIG. 4. Resonance structures in the DC2 calculation with

{L,S)=(0,—).

From Fig. 3, it is indeed seen that three dispersionlike res-
onances do appear, with the lowest one occurring at E2
equal to 19.7 MeV.

In Fig. 4 we show, in the (L,S)= (0,—, ) state the n + Li
phase shift 500eo, the n+ Li* phase shift 5q2 z2, and the
transmission coefficient g22 oo as a function of Ei. Here
one notes that there appear two resonances, with the
higher-energy one at 24.6 MeV being predominantly a
Pauli resonance and the lower-energy one at 10.5 MeV be-
ing predominantly a potential resonance having a
n+ Li* cluster structure with l=2. As will be discussed
in Sec. III, this latter resonance has, in particular, a rather
significant influence on the phase-shift behavior of the
n + Li channel in the low-energy region.

Pauli resonances of correct number are also found in

III. RESULTS OF CALCULATIONS IN SC, DC,
AND TC MODEL SPACES

A. Introductory remarks

It is well known that the Pauli principle has the impor-
tant effect of substantially reducing the differences be-
tween apparently different nonorthogonal wave functions.
This has the practical consequence that, especially at low
excitation energies, one can frequently learn the essential
characteristics of a nuclear system by employing a trial
function which consists of a relatively small number of
wave functions in different cluster representations. In this
investigation, we shall make use of this fact to reduce the
computational periods by performing the calculation in
two distinct steps. In the first step, we stay within the
SC, DC, and TC model spaces and make a detailed com-
parison of the results obtained when the model space is
systematically enlarged. Then, as the second step, we

proceed into the QC model space by adding the d+ He
cluster configuration, but carry out the investigation only
in a selected (L,S)= (1,—,

'
) state where the addition of this

particular cluster configuration is expected to be most sig-
nificant. The purpose of this latter step is, of course, to
see whether a further enlargement of the model space can
cause any major modification in the understanding which
we gained from the detailed examination performed in the
first step.

The results from the first step will be presented ex-
clusively in this section. Then, in the next section (Sec.
IV), we discuss the consequences of going into the QC
space.

B. Determination of the exchange-mixture parameter
and channel coupling effects in states
of the ground-state rotational band

The exchange-mixture parameter u in the nucleon-
nucleon potential is determined by the criterion that the
calculated H+ a cluster separation energy in the lowest
(L,S)=(1,—, ) state be nearly equal to 3.17 MeV. As was
discussed in ~I'2, this particular value is obtained by
making Coulomb and spin-orbit corrections to the experi-
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triple-configuration TC calculations. Calculated and experimen-
tal threshold energies for the various cluster configurations are
also shown.

specific distortion. To obtain some idea about what this
overestimate may be, we have made a further computation
using u=0.96. With this u value, the H+ o.' cluster
separation energies in the L=1 state turn out to be 1.48,
2.26, and 2.61 MeV in the SC1, DC1, and TC calcula-
tions, respectively. Upon further extrapolating to a TC
value of 2.31 MeV (see Fig. 1 of FT2), we find then that
the improvement-in the ground-state energy is equal to
about 1.07 MeV. This is somewhat, but not greatly,
smaller than the value of 1.25 MeV already mentioned,
suggesting that the omission of Coulomb effects is a
reasonable simplification in an investigation where the
main purpose is to achieve a general understanding of the
essential properties of the seven-nucleon system.

The specific distortion effect of 1.07 MeV obtained here
is larger than that of 0.76 MeV obtained in the calculation
by Kanada et al. , where the breathing-excitation mode
of the H cluster is carefully taken into account. This in-
dicates that, although a proper consideration of the
breathing mode is certainly of importance, other excita-
tion modes must also be included if a quantitatively reli-
able estimate of the specific distortion effect is to be ob-
tained.

mentally determined H+ a cluster separation energies in
the —,

'
ground and the —,

' first excited states. With
u= 1, we find that the TC calculation yields a value of
3.25 MeV for this energy. Therefore, unless otherwise
stated, this value of u will be adopted in all our subse-
quent calculations.

The ground-state rotational band consists of a L=1
bound state and a L=3 resonance state. In Fig. 5, we
show the improvement of the H+ a relative energies in
these states as one progresses from the SC1 to the DC1
and finally to the TC calculation. From this figure, one
notes the following important points:

(i) Specific-distortion or channel-coupling effects lead
to an improvement of 1.25 and 0.86 MeV in the L= 1 and
3 states, respectively. These values are larger than the
corresponding values of 0.68 and 0.72 MeV obtained in
FT2. This indicates that a careful consideration of the
clustering properties of Li and Li' is quantitatively im-
portant.

(ii) In the L= 1 state, both n+ Li and n+ Li' cluster
configurations seem to be important. This is in contrast
to the L=3 case, where the improvement comes mainly
from the coupling of the n+ Li* configuration to the
dominant H, + a configuration. The reason for this has
already been discussed in FT2; it is related to the fact
that, because of centrifugal-barrier effects, the n+ Li'
aligned configuration (i.e., l =L —2) makes a particularly
important contribution.

The agreement between calculated and empirical results
is quite satisfactory. In the TC calculation, the level spac-
ing between the L=1 and 3 states is 5.23 MeV, which is
only about 2% different from the empirical value of 5.35
MeV.

In our calculation, where Coulomb effects are not in-
cluded, there is some overestimate of the importance of

C. Phase-shift and transmission-coefficient results
in S =

2 natural-parity states

In Figs. 6—9, we show the results for the H + a phase
shifts and transmission coefficients as a function of E&,
the relative energy of the H and the cx clusters in the c.m.
system; and the n+ Li phase shifts and transmission
coefficients as a function of E2, the relative energy of the
neutron, and the Li cluster in the c.m. system. For the
phase shifts, the values obtained in the SC1 or SC2
(dashed curves), DC1 or DC2 (solid circles), and TC (solid
curves) cases are shown, while for the transmission coeffi-
cients only the values obtained in the TC case are depict-
ed. Also, for clarity in presentation, we shall not show
the transmission coefficient for transition into any weakly
coupled state where its value is smaller than 0.1 in the
whole range of relative energy considered (i.e., 0—20
MeV).

The important features in the various L states will be
discussed in the following. In these discussions, we shall
frequently refer to the findings from the SM-RGM calcu-
lations of F'I'2 and FT3.

1. L=O state [Figs. 6(a) and (b)J

From Fig. 6(a), one notes, as in FT2, the appearance of
cusps at the n + Li threshold and the predominance of
coupling between H + a and n + Li configurations.
These features have already been explained in FT2 and,
hence, will not be discussed here further.

The features exhibited by the phase-shift and
transmission-coefficient curves in the n + Li channel
[Fig. 6(b)] are more complicated, but may be summarized
as follows:

(a) Pauli resonances (shown as breaks in the curves)
occur at E2 equal to about 12 and 11.5 MeV in the SC2
and DC2 calculations, respectively. In the TC calcula-
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tion, resonances of this type appear in the higher-energy
region above 20 MeV.

(b) The wavy or dispersionlike behavior at around 8
MeV in the DC2 case arises as a consequence of coupling
to the l =2 potential resonance of n+ Li* cluster config-
uration.

(c) With the inclusion of the H+ a configuration (TC
model space), the n+ Li phase-shift curve becomes very
flat when E2 is between about 5 and 12 MeV. In addi-
tion, it is noted that the transmission coefficient go Oo has
a large magnitude in this energy region. These observa-
tions indicate that the assumption of a broad —, state,
having a predominantly H+ a and n+ Li cluster struc-
ture, by Knox and Lane in their A-matrix study of the
seven-nucleon system is quite reasonable.

(d) In the TC phase-shift curve, the wavy behavior
around 14 MeV is due to the interplay of all three cluster
configurations, with the n+ Li, 1=2 potential reso-
nance making an important contribution.

Using the phase-shift values at very low energies, one
can determine the n+ Li, 5-wave scattering length a
The result from the TC calculation is a =4.71 fm,
which compares favorably with the empirical value of
3.88 fm determined by Knox and Lane. '

2. L=l state/Figs. 7(a) and (b)J
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FIG. 6. (a) Calculated phase shifts and transmission coeffi-
cients for (L,S)=(0, 2 ) in the H+ o,'channel. The dashed

curve, solid circles, and solid curve represent results obtained
with SC1, DC1, and TC calculations, respectively. (b) Calculat-
ed phase shifts and transmission coefficients for (L,S)=(0, 2 )

in the n+ Li channel. The dashed curve, solid circles, and
solid curve represent results obtained with SC2, DC2, and TC
calculations, respectively.

The effect of enlarging the model space'can be seen
quite clearly in this (L,S) state. In Sec. IIIB, we have
discussed the improvement in the ground-state energy as
the model space is enlarged from SC1 to DC1 and, finally,
to TC. Here, we shall make a similar discussion but with
the succession of model spaces being SC2, I3C2, and TC.

In the SC2 case, there appears a n+ Li bound state at
Ez equal to —2.09 MeV and the phase-shift curve shows
a smooth, monotonically decreasing behavior [see Fig.
7(b)]. By adding the n+ Li* cluster configuration to go
into the DC2 model space, we find that this bound state is
now lowered to —4.74 MeV. In addition, the n+ Li
phase-shift result exhibits the presence of a resonance
state at around 6 MeV. This latter state has a dispersion-
like behavior, indicating that it has predominantly a
n+ Li* cluster structure. With the further addition of
the H+ a cluster configuration (TC case), a bound state
and a resonance state exist at —6.40 and 8 MeV, respec-
tively. For the resonance state, the n+ Li phase shift,
shows a steplike behavior, while the H+ a phase shift
shows a dispersionlike behavior. This indicates that this
particular resonance state has mainly a n+ Li structure;
however, it contains also a considerable degree of n + Li*
(I= 1) and H+ a clustering, as is evidenced by the large
magnitudes of the transmission coefficients g&z to and

1
91 10

That the above-mentioned resonance state at 8 MeV has
an appreciable degree of n+ Li* clustering can also be
seen in the following way. In the DC1 calculation, where
the n + Li* configuration is not included, one notes from
Fig. 7(a) that the dispersionlike structure shifts to a much
higher energy of about 13 MeV. This indicates indirectly
then that the n+ Li* configuration does contribute sig-
nificantly in this resonance state.
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tion, the n + Li phase-shift curve shows now a disper-
sionlike resonance behavior around 10.5 MeV. As was
mentioned in Sec. II0, this resonance behavior arises as a
consequence of rather strong coupling to the n+ Li*,
l =2 potential resonance.

The A-matrix study of Knox and Lane requires that a
very broad I.=O, 5 = —,

' state be present in the n+ Li
continuum. In view of our finding here concermng the
n+ Li phase-shift behavior in the low-energy region, we
are of the opinion that the postulate of such a positive-
parity level is not unreasonable.

The n+ Li, 5-wave scattering length a+ determined
by using low-energy phase-shift values in the DC2 case is
1.99 fm. This value is larger than, but still in reasonable
agreement with, the empirical value of 1.15 frn obtained
in the 8-matrix analysis of Knox and Lane. '

2. L=I state (Fig. 11)

Here we see an interesting demonstration of target-
clustering and channel-coupling effects. In a single-
configuration SM-RGM calculation with Li internal
function $5 of FTl, the (L,S)=(l,—', ) resonance state
occurs at 1.78 MeV. Upon improving the internal func-
tion to take proper account of the clustering property of
Li, our present SC2 calculation shows that this state has

now a higher resonance energy of 4.40 MeV (see also the
discussion in FT1). By further expanding the model space
to include also the n+ Li* cluster configuration, the
DC2 result indicates that the resonance energy becomes
smaller and the state is finally located at 2.56 MeV.

Experimentally, there exist —,
' and —, states at 7.46

and 9.9 MeV, respectively. By averaging the resonance
energies of these two states according to spin-orbit
weighting, we obtain an empirical value of 1.67 MeV for
the (L,S)=(1,—,

'
) state. Comparing with our calculated

value of 2.56 MeV, we note that, considering the complex-
ities of this problem, there is indeed a gratifying agree-
ment between theory and experiment.

The importance of centrifugal-barrier effects is again
clearly demonstrated here. From Fig. 11, we find that,
because of such effects, the transmission coefficient iii2 io
is much larger than the transmission coefficient ri3z, o.

3. L=2 state (Fig. 12)

The phase-shift curve in the SC2 case shows that there
exists a resonance state at around 10 MeV. This state is,
however, so broad that its effects on the n+ Li cross sec-
tions are expected to be quite limited. The situation is
changed in the DC2 case. Now, the phase-shift result ex-
hibits a more rapid rise in the low-energy region and indi-
cates the presence of an additional state at 14.S MeV.
This latter state has predominantly a n+ Li', /=2 clus-
ter structure and expresses itself through a dispersionlike
resonance behavior in the n + Li phase-shift curve.

The existence of the n + Li*, /=2 resonance structure
overwhelms even the important effects arising from the
centrifugal barrier. This is shown in Fig. 12 where one
notes that the transmission coefficient gzz 2p is even larger
than the transmission coefficient gp22p. On the other
hand, the barrier effect is still quite evident here, as is seen
by the fact that the transmission coefficient g42 2p is small
over the whole energy range.

Because of' large L, and S values in this state, the spin-
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orbit contribution will be quite appreciable. With this
contribution taken into consideration, one expects that the
phase shift in the —, state will, in particular, increase
rather rapidly in the low-energy region. Thus, it is likely
that low-energy n+ Li cross sections, may be significant-
ly influenced by the presence of such a state (see also the
discussion in Ref. 26). It would indeed be interesting to
carefully analyze the experimental data to determine
whether or not our finding here is borne out.

A phase-shift cusp also exists at the n + Li' threshold.
This cusp is, however, so small in the present calculation
that it cannot be distinctly seen from the phase-shift curve
shown in Fig. 12.

4. 1.=3 state (not shown)

The coupling between n+ Li and n+ Li* cluster con-
figurations is quite weak. This is evidenced by the small
difference of the SC2 and DC2 phase-shift results and the
rather small magnitude of the transmission coefficient
rji2 3Q for the dominant n + Li* aligned configuration.

E. Unnatural-parity states

Experimentally, there exists in Li a —', level with an
excitation energy of 9.67 MeV. This level is known to
have predominantly an (L„S)value equal to (2, —, ). To see
whether or not this particular level is permitted in our
model space, we have made in the I.=2 state a single-
configuration n+ Li* calculation consisting of two chan-
nels specified by I= 1 and 3.

In Fig. 13, we show in both S=—, and —, states the
phase shifts 5i2 i2 as a function of E3, the relative energy
of the neutron and the Li* cluster in the c.m. system.
The transmission coefficients g32 i2 are not shown, since
they are rather small in the energy range of interest. As is
seen from this figure, there is indeed a prominent S = —',
resonance state at 0.55 MeV above the n + Li threshold.

In addition, a broad S = —,
' resonance also seems to occur.

This latter resonance has, however, a considerably higher
excitation energy and lies in an energy region where scant
experimental information exists.

The n+ Li', (L,S)=(2,—, ) configuration can couple
with the H+ a, (L,S)=(3,—,

'
) configuration through the

noncentral part of the nucleon-nucleon potential. Howev-
er, it has been explicitly shown by Hofmann et al. that
such a coupling mechanism is weak. Instead, they pro-
posed that the coupling between these two configurations
is effected through the d + He configuration which acts
as a doorway structure in this particular situation.

F. Scattering and reaction cross sections

Similar to the finding reported in FT2, one also notes
here that, at energies above the n+ Li* threshold, the
calculated cross section cr~ for the H(a, n) Li' reaction is
generally much larger than the calculated cross section o.~
for the H(a, n) Li reaction. For instance, at E& ——15.95
MeV, the calculated ratio ozlcrz is 2.79, which agrees
quite well with the measured value of 2.53 for the
He( He, p) reaction leading to the ground and first excited

states of Li.
Differential cross sections for H + n scattering at

Ei ——20 MeV and for n+ Li scattering at E2 ——20 MeV
have also been calculated. Here it is found that, as in FT2
and FT3, the main characteristics of the single-
configuration results are little affected by the inclusion of
other cluster configurations. This is interesting, since it
means that, at sufficiently high energies, the essential
findings of scattering experiments can already be under-
stood by performing only relatively simple single-
configuration calculations.

G. Effects of channel coupling
on nucleon-exchange calculations

One of the most interesting findings in single-
configuration SM-RGM studies' ' is that core-exchange
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IV. RESULTS OP CALCULATION
IN THE QC MODEL SPACE

To make certain that the calculational results reported
in the previous section are indeed reasonable, we have
made a further study in which the d + He cluster config-
uration is also included. The purpose is of course to see in
what way the conclusions reached in Sec. III will be modi-
fied by the introduction of this extra freedom. Based on
our general understanding that the Pauli principle tends to
reduce appreciably the differences between seemingly dif-
ferent cluster structures, our expectation is that such an
expansion of the model space may cause some modifica-
tion in quantitative details, but will not affect the essential
characteristics of the results.

As is evident, the adoption of one more cluster configu-
ration will increase greatly the requirement of computa-
tional time. Therefore, we shall carry out the examination
only in one suitably-chosen I. state where the d+ He
configuration is expected to contribute most significantly.
The decision as to which L state one should choose is, in
fact, not difficult to make. From the discussion given in
Sec. III, one sees clearly that, because of centrifugal-
barrier effects, channel-coupling contributions become
generally rather unimportant when the relative orbital an-

gular momentum l of the cluster configuration under con-
sideration has a large value. Utilizing this information,

we can easily decide that the state to be considered should
have L= 1, since only in this L state can the I value in the
d+ He configuration take on the smallest possible value
equal to zero. Therefore, we shall conduct our study in
the (L,S)=(1,—,

'
) state and compare the QC (four cluster

configurations and six channels) results obtained here
with the TC (three cluster configurations and four chan-
nels) results reported in Sec. III.

First, we shall discuss the H + n cluster separation en-
ergy in the ground state. With SCl, DC1, TC, and QC
calculations, the separation energies are equal to 2.00,
2.85, 3.25, and 3.50 MeV, respectively. Here we see that,
as the model space is expanded, the separation energy be-
comes larger, but the increase in each step does become
progressively smaller. The difference between TC and QC
results is 0.2S MeV which is much smaller than the differ-
ence between SC1 and TC results. This indicates that the
addition of the d + He cluster configuration has some in-
fluence, but the influence is not major.

At this moment, we wish to mention that, by calculat-
ing in the SC1 model space and model space similar to the
QC space adopted here, Hofmann et al. obtained a
difference in separation energy equal to about 3 MeV.
This value is much larger than the value which we find
from this investigation. The reason is that the cluster
internal functions employed by these authors do not satis-
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fy the variational stability condition stressed in Sec. IIB
and, hence, an expansion of the model space serves in
their case the dual role of not only representing channel-
coupling effects, but also making an unrealistic correction
of the internal structures of the interacting clusters.

A comparison between TC (solid curves) and QC
(double-dot-dashed curves) phase-shift results is shown in
Figs. 16(a) and (b). In addition, various transmission coef-
ficients are also depicted. ' From these figures, one notes
that the phase-shift features obtained in these two calcula-
tions are qualitatively very similar. Even the quantitative
difference is seen to be rather moderate. With the addi-
tion of the d+ He configuration, the (L,S)=(1, 2 ) reso-

nance is lowered by about 1 MeV and there appears a
slightly wavy behavior in the n+ Li phase-shift curve
around E2 equal to 6 MeV. This wavy behavior signifies
the presence of a state which has predominantly a
d+ He cluster structure. However, because of rather
weak coupling, the influence of this state on n+ Li
scattering properties is quite minimal.

In summary, we feel that the reduction effect of the
Pauli principle is demonstrated in this study. The utiliza-
tion of the QC model space is required for a detailed,
quantitative examination, but is not essential to under-
stand the basic characteristics of the seven-nucleon sys-
tem.

V. CONCLUSION

In this investigation, the properties of the seven-nucleon
system are examined with a multiconfiguration and mul-
tichannel RGM study. The model space adopted for most
of the calculations is spanned by the H + a, n + Li, and
n + Li* cluster configurations. However, in one
carefully-selected orbital angular momentum state, we
have also performed a calculation by further including the
d + He cluster configuration in order to make certain the
reliability of the conclusions.

The effect of the Pauli principle in reducing the differ-
ences between seemingly different cluster structures is
rather well demonstrated. The addition of the d+ He
cluster configuration has some moderate influence, but
does not affect the basic characteristics of the results.

The main improvement in this investigation, over a pre-
vious multiconfiguration ROM study, is the adoption of
realistic cluster internal functions which explain the
form-factor data in a large q range and which satisfies
quite well the variational stability condition. Such an im-
provement requires the complicated, analytical formula-
tion for a three-cluster system, which we achieved by

carefully classifying the nucleon-exchange terms and by
making extensive use of the techniques of integral
transform.

The specific distortion of the H+ a system turns out
to be quite significant. With our multiconfiguration cal-
culation, we find that the ground-state energy is improved
by more than 1 MeV. This improvement is substantially
larger than that found in Ref. 24, where only radial dis-
tortion effects were taken into consideration.

The calculated level spectrum agrees well with the level
spectrum empirically determined. The energy positions of
both natural-parity and unnatural-parity levels are reason-
ably explained. In addition, the calculation predicts the
existence of broad levels in the higher-excitation region.
These predictions should be helpful in future phenomeno-
logical analyses, when good-quality higher-energy data be-
come available.

Our interesting finding should be emphasized here. Be-
cause of centrifugal-barrier effects, the aligned configura-
tion is found to be particularly important. This is useful
information to have, since it will enable one to simplify
the calculation by adopting a smaller number of channels.
As is evident, such a simplification would certainly have
to be made in future considerations of more complicated
systems, since one of the major problems facing a mul-
ticonfiguration calculation is connected with severe com-
putational requirements.

At sufficiently high energies where sharp resonance lev-
els of the compound system do not exist, this investigation
shows that the main characteristics of scattering cross sec-
tions and the essential properties of nucleon-exchange
terms can already be learned by performing relatively sim-
ple single-configuration calculations. Again, this is a gra-
tifying finding, since it means that one can now employ
the RGM to systematically explain the experimental data
of light-ion and heavy-ion scattering in the higher-energy
region.

In conclusion, we feel that, with the completion of this
investigation, we have achieved a sufficient understanding
of the interesting properties of the seven-nucleon system.
Additionally, we have learned how to make various sim-
plifications in future calculations. This is important,
since with such knowledge we can now proceed to study
other more complicated problems and hope to
comprehend eventually the intricate nature of three-
cluster interaction.
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