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Hyperspherical formalism for the photoeffect of the alpha particle
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In this work we employ the hyperspherical harmonics formalism to calculate the moments of the
photoeffect of the alpha particle. The grand orbital quantum number is increased until well-

converged results are obtained. The adiabatic approximation is used to solve the coupled differential
equations. The calculations are performed for a central N-N potential with Serber exchange. Last-

ly, the moments are inverted to obtain the photodisintegration cross section. Comparisons with ex-

perimental observations are presented.

I. INTRODUCTION

The profusion of realistic N-N potentials testifies to the
fact that we still do not have a complete understanding of
the nature of the force between two nucleons. This has
been the driving motivation for some important develop-
ments in the realms of few-nucleon problems. Lately we
have realized that reproduction of few-nucleon binding
energy is not a sufficient criterion for the accuracy of an
N-N potential; potentials with very different shapes lead
to nearly the same binding energy. Thus we are forced to
look for a suitable set of observables, preferably depending
explicitly on the potential used. . The moments of the pho-
toeffect (cd) are adequate for this purpose. The zeroth
moment ( tro) corresponds to the total photodisintegration
cross section integrated over all incident photon energies.
This quantity can be measured experimentally. o.

~ is
proportional to the mean square charge radius, another
experimentally measurable quantity. Moreover, we can
calculate a few other moments and invert these to get the
photodisintegration cross section as a function of the in-
cident photon energy, which can also be compared with
its experimental counterpart.

In this work we employ the hyperspherical harmonics
(HH) formalism to calculate the moments of the photo-
effect of the alpha particle. These moments were calcu-
lated for increasing values of the grand orbital quantum
number X, until well converged values were obtained.
The optimal subset approximation' was used for the ex-
pansion of the ground state wave function. However, ob-
taining an accurate wave function entails the solution of a
coupled set of differential equations. This is a difficult
numerical exercise. The adiabatic approximation ' pro-
vides us with an adequate means of tackling this problem.
Since the binding energy thus obtained is quite close to
the exact ones, we expect that the shape of the hyper-
radial functions wil1 also be quite accurate. This tech-
nique has been used in the present work.

Recently Elminyawi and Levinger calculated the mo-
ments of the photoeffect of the alpha particle, limiting the
expansion of the wave function to the first term alone.
They, however, did not consider the full contribution of
the potential. We attempted to rectify it by considering

all the potential multipoles. As in Ref. 5, we too restrict-
ed the expansion of the ground state to the first term. Ex-
perience with the three-nucleon systems shows that sig-
nificant improvements occur when terms with K &0 are
included in the wave function. Hence in this work we
shall try to achieve well converged results.

In the next section we describe briefly the hyperspheri-
cal expansion technique. Section III contains derivations
of expression for the moments of the photoeffect
(ctrv =0,+1). Also outlined in Sec. III are the methods
of inversion of the moments to obtain the cross section as
a function of the incident photon energy (E&). In Sec. IV
the results and the conclusions thereof are given.

II. THE HYPERSPHERICAL EXPANSION TECHNIQUE

In the HH technique we describe the wave function of
an N particle system as a point moving in the 3N dimen-
sional space [(3Ã —3) dimensional if the center of mass
coordinates are eliminated, as in this paper]. To eliminate
the center of mass degrees of freedom we employ the
Jacobi coordinates x;, defined as

1 j2

xi= r;+, ——$ rj; i =1—(&—1) . (1)
l

x) =r coscx~

x; =r since~ &

. sinn;+ Icosa.;,
x~ 1

=r sincx~ l slncfp,

coscxi = 1

Clearly
X—1r'= gx (3)

Here r; are the position vectors of each nucleon. The hy-
perspherical coordinates are defined in terms of the mag-
nitudes and polar angles of the Jacobi vectors. Each of
the vectors x; will have two polar angles (8;,P;) associated
with them. These lead to (2iV —2) independent coordi-
nates. The remaining (1V —1) are related to the magnitude
of x;as
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8 3N —4 8 L(Q)+ 1II r, Q =0.
Qy2 pe Qpt p2

(4)

(Q) is the set of hyperangles, L (Q) is the grand orbital
angular momentum operator. It satisfies-the eigenvalue
equation

L (Q)H(K)(Q) =E(E+3N —5)H(K)(Q) . . (5)

The function H(K)(Q) is the HH. [EI denotes the full set
of the (3N —4) quantum numbers required to specify an
HH completely. The subscript E, without any square
bracket, represents the grand orbital quantum number.
For the set of hyperspherical coordinates defined above,
H(K)(Q) are

X —1

H(E)(Q)= Y1, '(91,$1) Q Y1 '(Oj, pj)(J)PI
(

',
)

J=2

where

"r," as defined above, is the hyper-radius; and the angles
a; together with the polar angles are the hyperangles.

The Laplace equation in the hyperspherical coordinates
1s

system of N fermions with positive parity in the SK(Q)
basis

I
i & = g U2K(r)szK(Q)A (s, t)r'

K
(10)

)& (2E —2+ 3N/2) U2K(r)

+

I'VE

(»2K(r)=&U2K(»
K'

A (s, t) is a completely antisymmetric spin-isospin func-
tion, and UzK(r) are the expansion coefficients, to be
determined. Substituting

I
i & in the Schrodinger equa-

tion,

i& =EI1&,
multiplying by S2K (Q) on the left, and integrating over
the surface of a unit hypersphere, we obtain a system of
coupled differential equations in UzK(r),

d 1 (2E —3+3N /2)
pl dp p'

I(,)
1. ,L. 2vj(vj —nj )11J.

~LJ (a~ )
Pvj n„——ij ——,

' )I'(nj+ij+ —, )

1/2
where

(r) (szK'(Q)
I
v(r, Q)

I
szK(Q) & (12)

(cosaj ) (slnaj )
1 . L I

v. ),l.+{1/2)
&(P„' ' ' (cos2aj ),

v vJ $ +2P1j + lj + 2 Ljr+ 1
3j

3j=I.J (+2nJ. +lj+ —1 .

The HH obey the orthonormality condition

[K] + ~[K ] [K] [K ]

The 5 function denotes that the HH are orthonormal in
each of the (3N —4) dimensions. We will use the notation
HK(Q, J ) for an HH in which (i) all quantum numbers, ex-
cept the grand orbital quantum number, is zero, and (ii)

x; = ( r; —rj). It should be noted that for a system of
identical particles any permutation of the Jacobi coordi-
nates given in (1) is valid.

The functions HK(Q;j) form a complete basis for the
expansion of any function f(r;~). A symmetric combina-
tion of HK(Q,

&
) would thus be a complete basis for the ex-

pansion of the magnitudes of the N(N —1)/2 particle
pairs. Let us denote such a symmetric combination by
SK(Q). Then

SK(Q)=CK Q HK(Q, J) .
l,j)l

CK is a normalization constant such that
I

J SK(Q)SK(Q)dQ=5KE .

I.et us expand the ground state wave function
I
i & of a

V(r, Q) is the total potential in. the system, expressed in
the hyperspherical coordinates. Since SzK(Q) and the po-
tential are both symmetric with respect to exchange of nu-
cleons, we can write

VK (r) =fKfK&H2K (Qz))
I

V(rz1)
I
H2E(Qz1) &

2FK
+ 1 —

N 1
Vo«»KK

N N —1
(13)

The multipoles Vz (r) are given by

V (r)= V(r cosa -, )' "P '
0

&&(sina)v 1) (cosa)v 1) da)v

The coefficients fK are defined as

fK=&HzE(Q21) I g H2K(Q'j)& (15)

These coefficients as well as the 3P coefficients [i.e.,

( H2K(Q21) I Hzr(Q21) I
H2K'(Q21) &]

are geometric coefficients independent of all extraneous
factors like the shape of the potential. Detailed expres-
sions for them appear in Ref. 1. The procedure for
evaluating these geometrical coefficients and the potential
multipoles (14) are given in the appendices, for N =4.

In actual calculations the potential used is of the form

with

( H2K'(Q21)
I «rzl )

I H2K(Q21) &

g (H2K(Q21) I Hzz'«21) I
H2K'(Q21) & VX (r) .
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V= $ (1—x +xP)) V(r()) . (16) 2% 8

9 Ae

I',J. is a Majorana exchange operator. Thus the potential
is central, with exchange character.

III. THE METHOD FOR CALCULATING
THE MOMENTS OF THE PHOTOEFFECT

OF THE ALPHA PARTICLE

D =e(r &z},=ex &,
—er cosa3cos8& . — (19)

8& is a polar angle of x&, r is the hyper-radius, and a3 is
the hyperangle as defined in (2). Moreover, the cross sec-
tion for the electric dipole transition from ~i) to

~ f)
will be given by

2' e E [&fl i. l
&1'

9fic
(20)

To obtain o.
~ we use the closure property (i.e., sum over

all the final states}
2

o. ,=—", m' (
~
R,'

~

i & .

In the above R, is the mean square charge radius. Now
since the space part of

~
i ) is symmetric, the mean square

charge radius will be equal to the mean square radius.
Therefore

In this section we shall outline the method for calculat-
ing the moments of the photoeffect of the alpha particle.
The number of particles in the system, N, is four. The
moments are defined as

o = E~o E E

In the present work we shall confine ourselves to
P =0,+1. The following two identities are of importance:
(i) the Heisenberg relationship

Er(f [D ~i ) = —(i
~
[H,D] [ f)=(f [ [H,D] [i ), (17)

and (ii) the closure property

g A,fBfc (AB)» .——
f

A,y and Bf; are transition matrices between states
~

i )
and

~
f). Here

~
f) is any final state. D is the dipole

operator and 0 is the Hamiltonian of the system. If we
assume "1"and "2" to be the two protons, and the photon
incident along the z axis (since there is no preferred direc-
tion of the alpha particle}, then

It should be noted that o.
~ does not depend upon the po-

tential explicitly.
The zeroth moment of the photoeffect is obtained by

using the Heisenberg relation and then the closure proper-
ty in (20}

= 2~'
o o

—— (i ,
~
[D, [H,D]] ~

i )

[&~ I [»f»D]] l~ &+&~ I [D,[V,D1]
I

~&1

[V,D] ~i ) =ex g V(rcj)Pcjx~,

(23)

But

P;, /i & =
/
i&. (24)

and P;J(x„~ i )) would have the same symmetry as x&,.
Therefore

[VD]
~

l')= —ex yy V(r„)(r ),
~
i) .

n p

(25a)

Similarly

(i
~
[VD]=ex(i

~ g g V(r„)(r„),
6 p

(25b)

The summation symbols "n" and "p" stand for neutrons
and protons, respectively. The above leads to

8 ex
oo ——59.7 — (i

~
V(r&z)(r~2), ~i ) . (26)

In obtaining (26) a simplification was used, namely

V(r J ) = V(r ~z ) for every pair (ij ) . (27)

Again, since the space part of ~i) is symmetric with
respect to exchange of nucleons we could write,

The first term is given by the Thomas-Reiche-Kuhn sum
rule and is found to be 59.7 MeVmb. The second term
goes to zero if the dipole commutes with the potential.
This is true if the potential contains no Majorana or
Heisenberg exchange character. Thus we will get a
nonzero contribution from the second term for potential
(16). Now

4m exoo=59 7—
9~ g gfxfsc g &~ex(o&2)

I Hzi «iz) I H2x (~&iz) & & U2rc(r}
I
xx(r)

I U2x (r}&

K K' x

'4&e'x fk
1 & UM(r)

I
xo(")

I Uric("}&
0

K

where
m'/2

Xx(r)=rz I V(r cosa3)sin a3cos a3' 'Px' (a3)da3, (29)
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such that

&x (r) =fzfsc g &H2dI~i2)
I
H2x(IIi2) I Hzz «i2) Q'x(r)+

x

E p&0(r++,s.

Thus, by calculating the "multipoles" Xx(r) and performing the one-dimensional integrals over the hyper-radius, we can
evaluate the zeroth moment of the photoeffect.

To find the first moment (o ~) we use the Heisenberg relation twice and then the closure property to get
2

cr) ——— (i I [H,D]2Ii )
Ac

I(i I
[TD] Ii)+(i

I
[TD][VD]+[VD][TD]Ii)+(i

I
[VD] Ii)$

=0'(+0 (+0 ( (3O)

In the above, the last three quantities are the contributions to o.
&

from terms independent of x, terms proportional to x,
and terms proportional to x, respectively. Now,

[T,D]=
m Bx»

Therefore

o 4H e A (.ITI. )9Am'
But (T+ V) I

i ) =E
I
i ), so

2 f2
cr&

——9m (z —(i
I
vIi)) .

(31)

(32)

The expectation value of the potential is obtained by expanding the potential over the basis set Sz(Q). Using relations

(12)—(15) we obtain
2 g2 E —g gf~f~ g &H~~«i2) IHu«iz) IHz~ «~2) & &»z(r) I

Vx(r)
I »~ (r) &

Ac m

1—
K

2 ',

(»K(r)
I
vo(r)

I
»K(r) &

6
(33)

The contribution to o.j from terms proportional to x is
given by

But V(x~) does not depend on 8&. Therefore the second
term vanishes and we have

I {i
I
[rD][VD]+[VD][T,D]

I
i & I . 2e 2 2

o.) ——4m
Ac m

Bv(x()
x i V(x, )+x, i)Bx]

Using (25a) and (25b) and then (31) we get

cree=4~ x i, gg V(r„p)(r„p), . i28 f7 . 8
Ac m ~x»

The differential operator acts only on the potential terms
and not on

I
i ). Employing the simplification (27)

2 $2
", =4 ', ( IV( )I )

Ac m

8+ i x„(v(x~)) E

a

Since x),——x)cos0), we have

8 V(x&) Bv(xi) Bxi Bv(xi) BOi
. +

Bx] Bx& Bx) BO) Bx)

As in the earlier cases, the "operator" can be expanded in
the H~(0~2) basis set

a V(x, )
VIx t )+x ( = g 8'x(r)Hpx(Qgg),

Bxi

7T/2 0 0 Bv(xi)
Wx(r)= ' 'Px' (a3) V(r cosa3)+r cosa3

Q Bx)

+sin a3cos a3da3 .

x~ is set equal to (r cosa3) after the differentiation. In a
notation similar to (14) we then write
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e
CT~= 3' x g &fxfx g &H2x(fI&2)182x(+12) I~2K'(II12) &«~x(r)

I
IVr(r)

I U~x (r) &

K K' x

1—
K

2

& U2x'(r)
I

IVp(r)
I

Upx(r) & (35)

The term proportional to x is given by
2

og ——— &i
I
[VD]2 Ii & .

Rc

Again using (25a) and (25b) and then the simplification (27), yields

v(r»)(r12) ) Ii&.16&e 2

Ac

(36)

Integrating over the polar angles and using the by now familiar technique of expanding over the Hx(Q~z) basis set, we
get,

16m e
ol Q gfscfx Q &H2IC(+12) I H2X(+12)

I
~2E'(+12) & & U2K(r) I Zx(r)

I
U2K'(r) &

3 AC x

1—
K

(r)
I

Z'o(r)
I

U ( ) & (37)

such that

Zr(r) =r ' 'Pr' (a3)(V(r cosa3)) sin a3cos a3da3
0

and

Zx (r) = &'a,x(n») I
(V(«osa, )«osa, )' I I' (n„)&,

Zsc (r) =fkfx'g &Hm«12)
I
H2r(+12)

I
H2X'(~I 12) &Zr(r)+

x
Zp(r)4x' .K p

To recapitulate, in this section we have expressed the mo-
ments of the photoeffect (for p =0,+1) in the hyperspher-
ical coordinates. Now we want to express the cross sec-
tion o(Er) as a function of the incident photon energy
Ez. To achieve this end we invert the moments. '

Let us expand cr(Er) in a complete orthonormal basis
set as

a& ——
Ep op

12D' 12D

0.359 0.141EO
a2 —— , o.

] 1+, +

(39)
0.001 92EO

D'

o'(Er)=Erw ~ exp( —w ~
) ga B (w), (38)

a.p 0.003 84Ep
0.141+

where

w=(Er Ep) jD' . —

Ep is the threshold for two-body breakup, Ep 19.82——
MeV. D' is an adjustable parameter with energy units.
B„(w) are a set of orthonormal polynomials, ' and a„are
the expansion coefficients. The function
[w '~ exp( —w'~ )] is the weight function for B„(w), i.e.,

Bn g/Bm lg Lg exp w dN= nm

Multiplying both sides of (38) by B (w)/Er (for
m =0,1,2) and integrating over w leads to

ap cr, l2D', ——

+ 0.001 92
D&2

The parameter D' is obtained from the relation

g a„B„(0)=0 .

Knowing the moments of the photoeffect, the coefficients
a„and the parameter D' can be evaluated. Substitution
in the expression for o(Er ) gives the desir. ed result.

IV. RESULTS AND CONCLUSIONS

The coupled differential equations (11) are solved using
the adiabatic approximation. Up to five coupled equa-
tions are considered. Even though the binding energy
does not attain its saturation value, the quantities of in-
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TABLE I. The binding energy and the moments of the pho-
toeffect of the alpha particle for increasing values of E. The
values of these quantities, for E =0, are taken from Ref. 6.
Also, the values of the binding energy obtained by Ballot et al. ,
Ref. 4.

Ref. 4

—E (MeV)
Present

work (mb)
00

(Mevmb)
0&

(MeV2 mb)

Expt.

28.6
29.21
29.74
30.08
30.21

28.4

28.58
29.18
29.72
30.07
30.19

2.83
2.837
2.829
2.822
2.818

2.7

99.3
99.742

100.21
100.38
100.44

103

3925.3
3991.1
4011.1
4018.2

O

C3
LLI
(0

terest (i.e., the moments of the photoeffect) are well con-
verged. In Table I we present the value of the moments of
the photoeffect, together with the binding energy, for in-
creasing values of the grand orbital quantum number E.
The calculations were performed using the Volkov poten-
tial for V(rj. )

V(r;~) =144.86exp( —r;1/0. 82 )

—83.32exp( —r;q/1. 60 ) .

Also given in Table I are the values of the binding energy
. calculated by Ballot et al. , using the same uncoupled adi-
abatic approximation.

For the calculation of the moments of the photoeffect,
the fraction of Majorana exchange, x, was taken as —,';
that is, a Serber exchange was chosen. Again, in Table I,
the values of o i and oo for E=O have been taken from
our earlier work. The experimental values of o i and oo,
for the alpha particle, are from Refs. 10 and 11. For both
these experimentally measurable quantities we can see that
as the maximum allowed grand orbital quantum number
increases, the theoretically calculated values converge to-
wards the experimental ones. The agreement between the
two improves. There is no experimental counterpart for
Oi.

In Fig. 1 we have plotted the photodisintegration cross
section as a function of the incident photon energy. The
experimental points are from Ref. 12. An inspection of
the figure shows that the position of the peak, as well as
the high energy portion are reproduced quite well. The
height of the peak, however, leaves much to be desired.
This discrepancy could be due to two reasons. Firstly,
only three moments were considered in the expansion (38).
It is probably that other moments can contribute signifi-
cantly to the expansion. But from Table I we can see that
the higher the moment, the larger the number of coupled
differential equations required to obtain well-converged
results. Thus, computing o.2, etc., would require an exces-

O
CC
(3

00
I l I I

20 40 60 SO
ENERGY Ep (MeV)

IOO

FICi. 1. The plot of o(E~) vs Ez, obtained by inverting the
moments of the photoeffect.
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sive amount of computation. Secondly, it is also probable
that the choice of the potential was faulty.

Perhaps a better method for calculating a(E&) is to find
the final state wave function and compute the cross sec-
tion directly. This technique has been employed by I.ev-
inger, with the minimal subset approximation. However,
in the general case it is necessary to solve the problem of
mixed boundary condition, i.e., the initial and final states
satisfy different boundary conditions. In a future work
we intend using a guessed final state wave function with
the correct asymptotic behavior. This, we hope, wi11 give
better results for the photodisintegration cross section.

APPENDIX A: THE P3 COEFFICIENTS FOR N =4

I.et the I' 3 coefficients be defined as
1

P 3(~y ~i) ( 1 )2( 1+ )
I/2~(2, 1/2)( )~(2, 1/2)

( )P(2, 1/2)
(—1

(A 1)
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These coefficients obey the triangular inequality, i.e., P3(K,X,K') is nonzero only when
~

K K—'
~

(X((K+K'). As
given in Ref. 1, we start with P3(K,K+K',K') and use the recurrence relationships to find the other coefficients; for a
given K and X' we use the expression'

r

P3(K K K' K') +
16 2 2 2

1/2
2(K+K')+ z K+K'+ z

2(K+K )+", 2(K+K'+3) K+K'+1

and then

(A2)

((3)p0
i

(3)p0 0
i

(3)p0,0 )
& 2X+4 X2X+-

2K 2X 2K' +
X+I X+ —, 2/+1 ( (3)p0,0 ) (3)p0,0 ) (3)p0,0 g

2K ] 2(X—1) I
2K' i

5

g( —,,K)g( —,,X)g( —,,K')D1( —,,2K+1,2K'+1,2X), (A3)

where
r

S—2K+ —, S —2K'+.—, S —2X+ —, S+5D1( —,',2K+ 1,2K'+ 1,2X)=
2 2 2 2

S =K+K'+7,
(A4)

1/2
2 (2K+ —,)(2K+1)

g( —,,K)=4V'5/2
(2K+ 5)

APPENDIX B.
THE COEFFICIENTS f» FOR N =4

The coefficients are defined as (15)

fK ~~2K(+21) I g ~2K(+ij ) )
E, J)l

p(2, 1/2)( s2y )
p(2, 1/2)( 1 )

where

cos2(t)2) =1,
cos2(tt43 ———1,
cos2$;.= ——,

' for (ij)=(13),(14),(23),(24) .

APPENDIX C:
POTENTIAL MULTIPOLES

The potential multipoles (14) are given as

V»(r)= J V(r cosa3)' 'P»' (a3)

)&sin a3cos a3da3 . (Cl)

The form of V(r cosa3) chosen in the Volkov potential

V(r cosa3) =144 86exp( —. r cos a3/0. 82 )

—83.34exp( —r cos a3/1. 60 ) .
The integral (Cl) cannot be evaluated analytically for po-
tentials made up of a sum of Gaussians, as in (C2).
Analytical evaluations exist for Yukawa, exponential, har-
monic oscillator, etc., type of potentials. For Gaussian po-
tentials (C7) reduces to the error function erf(rip). For
example,

2

V0'(r)=( ",')'/2 g v, 2, T

where

V1 ——144.86, P1——1.60,
V2 ———83.32, P2 ——0.82 .

Defining the integral I2„as

4 6
15 Pi
4 T

T

1 Pi
exp( —r( /p; )+

2 T

'2
3
2 T

4
15 P
8 r

'6

erf(r /p; )

(C3)
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1

I2„—I—exp( r—t Ip )t "dt,

it is easy to show that

—p p 2 (2n —1)p,I2„—— z exp( r l—p )+ z I2„2, for n &1 .
2l' 2T

(C4)

Using the above recurrence relationship it is easy to write expressions for the higher multipoles. This has been used in
the present work. Standard methods were employed to calculate the error function, numerically.
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