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Resonating group Faddeev approach to deuteron-alpha scattering
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The resonating group Faddeev method is formulated and applied to d-a elastic and breakup
scattering. The effective interaction of the three-cluster resonating group model for the neutron,
proton, and o. particle is approximated by the fish bone optical model potential and decomposed into
two-body and three-body potentials. The three-body potential is neglected, after being reduced in
strength by an off-shell transformation. The two-body potentials are fitted to subsystem on-shell
data. Equivalence of subsystem wave functions with resonating group wave functions is checked.
Results of the numerical calculation indicate that the three-body observables are sensitive to Pauli
effects but are not sensitive to the (unknown} high energy behavior of two-body phase shifts.

I. INTRODUCTION

The resonating group model' has been very successful
in describing single-channel and multichannel two-cluster
scattering of light nuclei. Without explicit inclusion of
cluster distortions and/or compound resonance excita-
tions, this model is simply a folding model with antisym-
metrization. The antisymmetrization is important be-
cause it prevents a doubling of the nuclear density at short
intercluster distances, it reduces the discrepancy of seem-
ingly different cluster descriptions and, therefore, causes
the folding prescription to become a good approximation.
In a calculation on a-a scattering with purely central N-N
potential, Tang et a/. has shown that inclusion of the dis-
tortion of the a particles lowers the position of the l =0,
2, and 4 rotational resonances by only -0.3 MeV. This
shift is even smaller than the shift which is produced, for
instance, by the uncertainty in the exchange mixture of
the phenomenological nucleon-nucleon potential. This
finding indicates that tightly bound clusters of nucleons
sometimes behave like elementary particles, even in situa-
tions where they strongly interpenetrate.

The success of the resonating group model with two-
cluster reactions has stimulated the desire to extend the
calculations to three-cluster reactions. This, however, has
proved to be rather difficult. The complicated dynamics
of a three-body system, in connection with the complicat-
ed exchange interactions of resonating group theory, has
just been too much for practical calculations. Attempts to
employ R-matrix theory, K-harmonics expansion, or
wave packet discretization have failed. Recently, Yahiro
et al. could show by a tremendous numerical effort that
a discretization of the breakup channel, similar to the one
proposed in Ref. 7, Sec. 8.3.2, converges. In an unpub-
lished report one of us proposed a resonating group Fad-
deev method. The main idea was to seriously consider a
three-cluster resonating group equation to be a three-
particle Schrodinger equation, to analyze and simplify the
effective interaction, and to then use existing Faddeev

methods to solve the dynamical problem. The paper has
started a series of investigations which has led to the re-
sults of the present paper. The intermediate steps include
a generalization of resonating group theory to N clus-
ters, ' the two- and three-cluster fish bone optical
model, "' the unitary interpolation method, ' a study of
the Pauli barrier effect, and an investigation on the impor-
tance of the three-cluster Pauli potential. ' ' In the
present paper, we adapt a Faddeev code' to higher rank
separable potentials (with positive-energy bound states)
and use it to calculate the d-u elastic scattering cross sec-
tion, the analyzing powers, and the differential cross sec-
tion of the breakup reaction a(d,pa)n.

In Sec. II, the numerical method employed to solve the
Faddeev equation will be shortly reviewed. The reduction
of the six-nucleon problem to an effective three-body
problem, of a form suitable for the Faddeev code, will be
the topic of Sec. III. Results of the resonating group Fad-
deev calculation are given in Sec. IV and a summary is
given in Sec. V.

II. NUMERICAL ACCURACY GF
THE FADDEEV CALCULATIONS

We are using a computer code which has been tested
and used in several three-nucleon calculations. ' Because
of the rather sharp P3/2 resonance near 1 MeV (c.m. ) in
the N-a system, the npa system is numerically more
tricky than the three-nucleon system. We have tested nu-
merical stability of the elastic and breakup observables by
varying both the number of mesh points and the number
of partial waves. Stability was reached with the number
of mesh points (N&, N2, N3)=(16,6, 7) in each one of the
coupled equations, and partia1 waves up to J =9 . We
repeated, for comparison, calculations of Charnomordic
eI; al. ' and Koike, ' who used the contour deformation
method with rank-1 subsystem potentials. The elastic dif-
ferential cross sections and analyzing powers agreed well
with those calculated by the contour deformation method,
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III. REDUCTION OF THE SIX-NUCLEON PROBLEM
TO AN EFFECTIVE THREE-BODY PROBLEM
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FIG. 1. Elastic differential cross section and tensor analyzing
power T22, calculated with the present code (solid lines) in
comparison with results by Charnomordic et al. (broken lines).

see Fig. 1. In the breakup case the agreement of differen-
tial cross sections was not as good. In certain kinematical
regions, differences of up to 15% of the maximum have
been found, see Fig. 2. In the discussion of the resonating
group Faddeev method, Sec. IV, we use breakup results
only of those kinematical regions where the cross sections
of both numerical procedures agreed well with each other
in the test.examples.

The reduction of the six-nucleon problem to a three-
body problem, one of the bodies being an a particle, has
been described in Ref. 8. There, the effective interactions
including distortion corrections and compound resonance
excitations have been defined. An extension of the
resonating group model to an arbitrary number of parti-
cles and clusters has been given in Refs. 9 and 10. In the
general theory, a difficulty arises from the fact that the
space of distortion functions is no longer a space of square
integrable functions, when there are more than two clus-
ters; in the three-cluster case, this difficulty, however, is
not yet serious. '

In the present paper we are dealing with the npa system
and we want to treat the a particle as an inert particle.
This means that we have to restrict the range of energies
for which the present approach is applicable. At
E =12.096 MeV (c.m. ) above the npa threshold the a
particle can breakup because this is the threshold of the
t- He channel. We have to stay well below this threshold
and we, therefore, limit the range of scattering energies to

Ed &E &—10 MeV (c.m. ), where E is the energy relative
to the npa threshold and Ed is the deuteron binding ener-
gy. From the already mentioned results by Tang et al.
we expect that neglection of the a-particle distortion will
be a rather good approximation in this energy range. The
distortions of the deuteron will, of course, be fully includ-
ed in the three-body calculation. At the present time, we
are not performing a bound state calculation for 6Li.

In the following five subsections we discuss the resonat-
ing group Faddeev method. A sequence of steps will lead
us from the Schrodinger equation for the nucleons via the
resonating group model to the three-body Faddeev equa-
tion.
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FIG. 2. Breakup cross sections at E =15 MeV (lab} calculat-
ed with the present code (solid lines} in comparison with results
by Koike (broken lines).

A. The resonating group model
and the fish bone optical model

In the no-distortion approximation, the resonating
group equation for the npo, system reads

(457
~

W(H E)M
~
4X ) =0—.

The internal motion state N describes the internal proper-
ties of the a particle and also contains the spin and iso-
spin of the additional neutron and proton. The relative
motion state X describes the motion of the neutron, the
proton, and the center of mass of the a particle, relative to
each other, and 5X is an arbitrary variation of X. The
Hamiltonian H is a six-particle Hamiltonian with a
phenomenological N-N interaction, E is the total energy,
and M is the antisymmetrizer.

In the approximation given by Eq. (1) the resonating
group model is a simple folding model with antisymmetri-
zation. Nevertheless, the effective potentials which are
obtained when Eq. (1) is written as an integro-differential
equation for J are very complicated. This is one reason
why one tries to further simplify the equation. The
second reason is that the resonating group equation (1)
does not contain any free parameters. In some respect,
this is an advantage of the resonating group model. In a
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In this equation we have omitted the subsystem index (ab,
bc, or ca) and the partial wave index; the effective poten-
tials carry a bar because we are using the M version of the
fish bone optical model. The states

~
u;) are eigenstates

of the two-cluster norm kernel,

(Nr
~

M
~
+u;) =(1—g;)u;(r), (4)

where N denotes the product of the cluster ground states
and r is the center of mass distance of the two clusters.
For each partial wave, the eigenvalues g; are ordered in
such a way that

~ g;+~ ~

(
~ g; ~

is valid. The matrix MJ.
is then given by

three-cluster calculation, however, it becomes a disadvan-
tage. The effort of doing a three-body calculation and
comparing results with experiment is not justified when
the two-body observables already disagree with experi-
ment. A three-body observable is sensitive to off-shell
properties of the two-body subsystems, but, in order to ex-
tract information from this feature, the subsystem poten-
tials must reproduce the two-body observables. This is
why the fish bone optical model has been introduced. "'

In the three-cluster fish bone model, the effective in-
teraction of three clusters a, b, and c following from Eq.
(1) is analyzed and split into a dominant part and a resi-
dual part [see Ref. 12, Eq. (21a)]. The dominant part
rigorously contains the exchange interaction arising from
the energy term and from the kinetic energy operator.
The exchange interaction arising from potential energy is
only contained in a certain approximation. The approxi-
mation is such that the nucleon-nucleon interaction enters
only after being folded with unexcited cluster states. The
further details of the nucleon-nucleon interaction enter
into a residual interaction term. If the latter term is
dropped and compensated by the introduction of fitting
parameters in the above-mentioned folding potential, one
arrives at the three-cluster fish bone optical model. The
interaction P,b, of the three-cluster fish bone optical
model contains effective two-cluster interactions
P ~, and P «, and an effective three-cluster interaction
V~. The latter is called the three-cluster Pauli potential,
because it arises from antisymmetrization. We.have [see
Ref. 12, Eq. (25)]

b,
——P,bl, +7 b, 1,+P „1b+V

The potentials P,b, P b„and P „are identical to the po-
tentials of the two-cluster fish bone optical model [see
Ref. 11, Eq. (50)],

=V—Q ~
u;)(u;

~
(T+V—E)

~ uj)M~J&u~ ~

. (3)

cluster relative motion. In the starting approximation, the
potential V is the double folding potential of the two-
cluster system. It contains fitting parameters to modify
its depth and shape, in order to reproduce experimental
phase shifts. The parameter e is used to remove Pauli-
forbidden norm kernel eigenstates (redundant states) from
the physical part of the relative motion spectrum. They
become (positive energy) bound states of the two-cluster
equation at energy e. In the present paper, the three clus-
ters a, b, and c will be n, p, and o,', respectively; the pa-
rameter e will be +500 MeV.

B. Fit to subsystem phase shifts

V(r) =
1+exp

+[j(j+1)—l(l+1)—s(s+1)]
V~,.o d 1

X
r dr r —Q(

1+exp

(6)

The parameters are given in Table I. With these parame-
ters, the fish bone optical model potential approximately
reproduces the experimental n-a phase shifts as shown

For the n-p subsystem we use a separable rank-1 poten-
tial in the coupled S&- D~ partial wave with parameters
given in Ref. 16. We neglect the interaction in higher par-
tial waves and, since we also neglect isospin mixing, the
So partial wave will not contribute in the d-a scattering

calculation.
For the n-a and p-a subsystems we use a charge in-

dependent potential in the form of Eq. (3) in the S~~2,
I']&2, and I'3/2 partial waves, and neglect the interaction

in higher partial waves. For the internal motion state of
the o. particle we assume a single Gaussian function. In
this case, the norm kernel eigenfunctions u; are harmonic
oscillator functions and the norm kernel eigenvalues are
known. ' For the a particle we choose the width parame-
ter a =0.55 fm, which corresponds to an rms radius of
1.4 fm for the bare nucleon distribution and —1.6 fm for
the charge distribution. The norm kernel eigenvalues are
1, 1/16, 1/16, . . . , in the S&&2 wave and —1/4,
—1/(4. 16), —1/(4 16), . . . , in the P)gp and I'3/2
waves. The first eigenstate of the S&&z wave is Pauli for-
bidden. By choosing m=500 MeV we turn it into a bound
state at + 500 MeV. For the direct part V of the poten-
tial P"N~ we use a local potential of Woods-Saxon shape
with a spin-orbit part,

TABLE I. Parameters of the Woods-Saxon potential, Eq. (6).

1 —t1

1/2 '
[(1—g;)(1—g )]

g;=0 if q;=1
=g; if g;&1 .

(5)

n Eq. (3), T is the kinetic energy operator of the two-

V~ (MeV)
kI (fm)
kp (fm)
V... (MeV)
aI (fm)
a, (fm)

2
S&/2

34.6474
2.3555
0.3726

2~1/2

36.8507
2.3236
0.3238

32.9296
1.1190
0.3137

35.0000
2.5206
0.2312
5.3272
1.6717
1.1189
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TABLE II. Coupling parameters A;J of the rank-3(2) separ-
able potentials, Eq. (7).

A;J coupling constants
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2

2
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J
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J
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1

483.2744
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—0.0389

1

—18.3947
—3.3111

1
—30.0542
—5.0052

2
—0.4650

—18.2855
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FIG. 3. Neutron-alpha phase shifts of the fish bone optical
model (solid lines), of a phenomenological model by Char-
nomordic et al. (broken lines), and of a second phenomenologi-
cal model (dotted line, only SI/2 wave). Experimental data by
Satchler et aI. (crosses).

in Fig. 3. Above 18 MeV (c.m. ) the phase shift fit be-
comes ambiguous because of the presence of inelastic
channels which, however, are closed in our three-body cal-
culation. We are using this degree of freedom to repro-
duce the phase shifts of the phenomenological potential of
Charnomordic et al. ' up to about 400 MeV. This will
enable us to study off-shell effects by comparing Faddeev
results of the phenomenological model by these authors
with results of the present resonating group Faddeev cal-
culation.

C. Separable potential approximation

Our Faddeev code uses separable two-body t matrices.
It would be possible to generate them directly from the

potential of Eq. (3) by a truncated Hilbert-Schmidt expan-
sion. We are getting more physical insight, however, by
using an interpolation method which has been described
and tested earlier. ' The method is similar to the one by
Ernst, Shakin, and Thaler ' and differs only by the in-
clusion of positive energy bound states. The separable po-
tential is generated by the condition that it reproduces the
positive energy bound state(s) of the original potential to-
gether with the wave functions at a chosen set of interpo-
lation energies. The rank of the separable potential is
equal to the number of positive energy bound states plus
the number of interpolation energies.

In the present case we use a rank-3 potential in the
S&/2 partial wave and rank-2 potentials in the P&/2 and
P3/2 waves. The S~/z potential has to reproduce the

positive energy bound state at 500 MeV. The interpola-
tion energies are chosen to be E~ ——5 MeV and E2 ——30
MeV. In the Pj/z wave the interpolation energies are 10
and 20 MeV and in the P3/p wave they are 0.96 and 20

TABLE III. Expansion coefficients of the form factors k; of the separable potentials, Eq. (8).
2
S~/p

&ik

—0.9996
0.0289

2
S~/p

&2k

0.0252
0.8734
0.4663
0.0472

—0.0634
—0.0839
—0.0628
—0.0335
—0.0098

0.0050
0.0117
0.0129
0.0111
0.0079
0.0046
0.0018

—0.0002
—0.0014
—0.0021
—0.0023

2S]/2

&3k

—0.0055
—0.1894

0.3578
0.7742
0.4279
0.1625

—0.0078
—0.0838
—0.0972
—0.0800
—0.0518
—0.0248
—0.0046

0.0083
0.0148
0.0163
0.0146
0.0113
0.0078
0.0045

2P 1 /2

0.7901
—0.0513
—0.2728
—0.3682
—0.3012
—0.1852
—0.0759

0.0054
0.0554
0.0793
0.0844
0.0780
0.0658
0.0515
0.0377
0.0257
0.0161
0.0088
0.0033

—0.0006

PI /2

—0.3729
0.6493

—0.0563
—0.2388
—0.3610
—0.3361
—0.2414
—0.1296
—0.0308

0.0414
0.0859
0.1066
0.1093
0.1006
0.0855
0.0681
0.0507
0.0351
0.0221
0.0119

2
P3/2
&&k

0.9023
0.3732
0.0862

—0.0959
—0.1257
—0.0893
—0.0372

0.0050
0.0294
0.0373
0.0336
0.0237
0.0121
0.0016

—0.0059
—0.0105
—0.0121
—0.0114
—0.0091

0.0060

2

&2k

—0.2688
0.6874
0.4880
0.3844
0.1488

—0.0210
—0.1065
—0.1238
—0.0991
—0.0578
—0.0169

0.0145
0.0333
0.0401
0.0379
0.0299
0.0195
0.0087

—0.0006
—0.0077
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MeV. The obtained potentials have the form

(7)

As a representation basis for the form factors we use the
norm kernel eigenstates,

The matrix elements A,J and expansion coefficients a;k
are given in Tables II and III. With the chosen rank, the
separable potentials reproduce the wave functions of the
original potentials of Eq. (3) very well in the energy range
0—40 MeV. We do not show the plots because, with the
usual scale of wave function plots, the curves coincide.

It has been stated already that the unitary interpolation
method gives us some physical insight. First, we observe
that the only subsystem information which will enter into
the Faddeev equations is a set of wave functions together
with the nonuniqueness feature of resonating group wave
functions. [Pauli-Forbidden relative motion states are
trivial solutions of Eq. (1) and may be added to the solu-
tion X at all energies, or, if one takes provisions like we
did in Eq. (3), only at a chosen energy e. ] This will allow
us to look for Pauli effects in terms of wave functions
rather than in terms of nonlocal potentials. Second, we
can test a feature which is crucial for the resonating group
Faddeev method. The effective N-a potential of Eq. (3)
defines wave functions also at energies which are much
higher than 18 MeV. But we know that these wave func-
tions do not correctly describe N-o. scattering because
many inelastic channels are open. If the results of our
Faddeev calculations were sensitive to the high-energy
behavior of the effective N-a potential, the resonating
group Faddeev method would be useless. With the uni-
tary interpolation method we can check this sensitivity.
In the case of the S~&z partial wave we construct a rank-4
separable potential as an alternative to the rank-3 poten-
tial. The rank-4 potential has a third interpolation energy
E3 —120 MeV, which means that it reproduces wave
functions of the potential of Eq. (2) up to about 140 MeV.
Figure 4 shows the phase shifts of the original potential
and of the rank-3 and rank-4 potentials in a wide energy
range. The rank-3 and rank-4 potentials differ in the
range 40—300 MeV by up to 50 deg of phase shift. We
then perform two Faddeev calculations, the first with the
rank-3, the second with the rank-4 potential in the S&~2

I I I I

20 200 400
energy (MeV)

FIG. 4. Comparison of S~~~ neutron-alpha phase shifts at
higher energies; fish bone optical model (solid line), rank-3
separable potential (broken line), and rank-4 separable potential
(dashed-dotted line).

partial wave, while all remaining interactions are kept
fixed. The comparison of the differential cross sections
and of the analyzing powers in elastic d-o, scattering and
of the differential cross sections in the breakup reaction
d(a, pa)n shows that the rank-3 potential produces practi-
cally the same results as the rank-4 potential. The analo-
gous investigations in the case of the P&&2 and P3/2 par-
tial waves show that, in low energy d-a scattering, the
Faddeev results are practically independent of the
behavior of the effective N-u potential at energies'above
40 MeV.

D. Comparison of the separable potential model
with the resonating group model

By the fish bone optical model and the unitary interpo-
lation method we have obtained separable potentials
which reproduce experimental N-o. phase shifts and
which approximately contain the Pauli effect by their half
off-shell behavior. We want to check now whether there
is a substantial difference between the interaction of the
resonating group model and our separable potentials.

The resonating group interaction is strongly influenced
by the Pauli principle. They are also inAuenced by the
particular choice of a nucleon-nucleon interaction, but
this influence is smaller. Since the nucleon-nucleon in-
teraction is not known from first principles, the effective
interactions of the resonating group model are uncertain
to some extent. If we plot the relative motion wave func-
tions of the resonating group model for a given energy,
but for different microscopic interactions, we expect them
to lie in a narrow band, provided that the phase shifts are
similar. Our hope is that the wave function of the fish
bone optical model will also lie in that band. Only if this
turns out to be true, then the present method may be
called a "resonating group Faddeev method. "

Reichstein et al. have presented four different resonat-
ing group potentials for N-a scattering, which are
denoted there by I, II, III, and IV. They are phase
equivalent within -3 deg and differ mainly by a different
treatment of the spin-orbit interaction. For our test we
have chosen two different shapes for the direct part of the
fish bone optical model potential, a Gaussian and a
Woods-Saxon shape, and have fitted the parameters to
reproduce the phase shift of potential III by Reichstein
et al. In order to make a comparison of wave functions
possible, we have transformed the wave functions ob-
tained from the Reichstein et aI. potentials by the same
off-shell transformation which also leads from the M ver-
sion to the M version of the fish bone optical model and
which would make the Reichstein et ah. potentials energy
independent [see Ref. 11, Eq. (45)]. Figure 5 shows the
comparison at 10 MeV; at other energies the pictures look
similar.

In the S~~2 partial wave, the resonating group wave
functions lie, indeed, in a very narrow band. With a
direct potential of Gaussian shape, the wave function of
the fish bone optical model lies within this band. With a
Woods-Saxon shape, the wave function of the fish bone
optical model lies a little outside, . but not much. The
reason is that the direct parts of the Reichstein et al. po-
tentials have a Gaussian shape.
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In the P ~~2 and P3/p partial waves the band of
resonating group wave functions is wider than in the S~&2
wave. Again, the wave function of the fish bone optical
model with a Gaussian (central) direct part lies, in or close
to, that band and the one with a Woods-Saxon shape lies a
little outside.

We decided to use the Woods-Saxon shape, in our fur-
ther calculations, because it seems to be more realistic
than the Gaussian shape. The Gaussian shape is correct
when the o. particle wave function is assumed to be a sin-
gle Gaussian function and when the nucleon-nucleon po-
tential is of Gaussian shape. When the nucleon-nucleon
potential is assumed to have a hard core, or some other
strongly repulsive core, the direct part of the effective
cluster-cluster potential becomes less attractive at short
distances and a Woods-Saxon shape seems to be more
appropriate than a Gaussian shape.

FIG. 5. Comparison of neutron-alpha wave functions.
Resonating group models by Reichstein et al. (solid lines), and
the fish bone optical model with a Gaussian direct potential
(broken lines) and with a Woods-Saxon direct potential (dashed-
dotted lines).

E. Importance of three-body potentials

Effective three-body forces in systems of three fermion
clusters have become a rather new and interesting field of
research. It is known that they arise by the Pauli poten-
tial, by cluster distortions, and by the hard core of the mi-
croscopic potential. ' ' A numerical test has shown
that the three-body Pauli potential is very strong in the
usual resonating group model with an energy-dependent
exchange interaction. '

A strong three-body potential would be unpleasant in a
Faddeev calculation. Therefore, it has been suggested to
reduce its strength by an off-shell transformation. It has
been found that the three-body Pauli potential is greatly
reduced by an off-shell transformation which renormal-
izes the relative motion states of clusters. ' ' Renormali-
zation means that the norm of the relative motion state
becomes identical to the norm of the corresponding mi-
croscopic state, which is not true in the usual resonating
group model and in the corresponding M version of the
fish bone optical model. The off-shell transformation
which achieves the renormalization is the same, in the
resonating group model and in the fish bone optical
model. In the latter it leads to the M version of the model
which we are using in the present paper. The off-shell
transformation not only reduces the strength of the three-
body Pauli potential, it also leads to an energy-
independent exchange interaction. It has been found that
smallness of the three-body potential, correct normaliza-
tion of the relative motion wave function, and the proba-
bility interpretation of the relative motion wave function
are related concepts.

In the present paper, we are neglecting the three-body
Pauli potential V~ and we are neglecting the three-body
potentials which would arise from hard core correlations
and from cluster distortions; we are also neglecting distor-
tion effects in the two-body potentials. By these neglec-
tions we are making the transition from a six-particle
theory to a three-body theory. In the three-body theory,
all information about the internal properties of the bodies
is represented by the interaction.

Our present assumption that the three-body forces are
small is based on rather simple numerical examples.
We are aware of the need for more investigations on
three-body forces.

IV. FADDEEV RESULTS AND DISCUSSION

Numerical Faddeev calculations were performed for in-
cident alpha-particle ene'rgies E =24 and 15 MeV (lab).
Results for d-a elastic scattering are depicted in Figs. 6
and 7. Some breakup results are shown in Figs. 8 and 9.
More results are presented and discussed in Refs. 28 and
29. In all Faddeev calculations the Coulomb potential has
been switched off.

In elastic scattering the agreement between theory and
experiment is satisfying, with discrepancies mainly at
forward angles. Let us discuss the possible reasons for the
discrepancies. First, there is the neglection of the
Coulomb potentiaL This should have a large influence at
small scattering angles. Also, neglection of the Coulomb
interaction shifts the. . position of the Li resonances.
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en from Koersner et al. (Ref. 30).
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shows the wave function of the CFL potential. It has a
node at a somewhat smaller distance and, in comparison
with the resonating group wave function, it underesti-
mates a little the probability of finding the nucleon inside
the a particle. But it looks rather similar to the resonat-
ing group wave function. Also, in the P3/2 and I'I~2
partial waves, the resonating group wave functions and
the wave functions of the CFL potential look similar; at
short distances the wave functions of the CFL potential
have somewhat larger values than the resonating group
wave functions. In Figs. 6—9 we have plotted Faddeev re-
sults obtained with the CFL potential in dashed lines. We

60-
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E
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I
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FIG. 9. Breakup cross sections at E= 15 MeV (lab),
0 =17.1', 8~=17.1, and b,P „=180. Marking of lines and ex-
perimental data as in Fig. 8.

I I

2 4
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FIG. 10. Comparison of neutron-alpha wave functions calcu-
lated with the fish bone optical model (solid lines), with the

.phenomenological model of Charnomordic et ai. (broken lines),
and with our second choice of a phenomenological potential
(dotted line, only S~q2 wave).

are tempted to say that the Faddeev results of Char-
nomordic, Fayard, and Lamot agree rather well with ex-
periment because their N-a wave functions do not differ
too much from resonating group wave functions.

As a counter example, we took another phenomenologi-
cal N-a potential in the S~~2 wave. This second
phenomenological potential also reproduces the experi-
mental n-a shifts of the elastic energy region rather well
{see the dotted line in Fig. 3). But its wave functions are
not similar to resonating group wave functions. The dot-
ted line in Fig. 10 shows the wave function at 10 MeV.
Also, this potential has a rising phase shift between 25
and 40 MeV which means that, without any microscopic
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foundation, it simulates some a-particle distortion effect.
In a Faddeev calculation for d-a. elastic scattering with
Ea =24 MeV (lab) we have used this second phenomeno-
logical N-a potential in the S&~z partial wave, together
with CFL potentials in the I'3~2 and P&&2 waves. The
result is shown by the dotted line in Figs. 6 and 7. Even
though the S~~2 partial wave does not dominate the
scattering process, we immediately get worse agreement
with experiment at backward angles. This may demon-
strate that the off-shell behavior of the effective ¹tin-
teraction, as imposed by the Pauli principle, plays an im-
portant role, and that it is not sufficient just to reproduce
the experimental phase shifts of the elastic energy region.

The resonating group Faddeev method has been formu-
lated and applied to deuteron-alpha elastic and breakup
scattering. The reduction of the six-nucleon problem to
an effective three-body problem is done in several steps.

(1) The three-cluster resonating group model for the
npa system, without distortion of the a particle, is ap-
proximated by the fish bone optical model. In the latter
model, the effective interaction is decomposed into three
two-body interactions and a three-body interaction.

(2) The fitting parameters of the fish bone optical
model are determined by the condition that the two-body
potentials reproduce experimental two-body data.

(3) The effective two-body potentials are brought into a
separable form of rank r by a unitary interpolation
method. In the elastic region, the separable potentials do
not only reproduce the phase shift, but also reproduce the
wave function of the original potential.

(4) Two-body wave functions of the separable potentials
are compared with (off-shell transformed) resonating
group wave functions, in order to establish equivalence
with the resonating group model.

(5) The three-body potential is dropped.
By solving the Faddeev equations in a test case it is seen

that the high-energy phase shift of the two-body poten-
tials has only little influence on the three-body observ-
ables, at energies under consideration. The half-shell
property of the two-body potentials, in the elastic region,
does have an influence on the three-body observables. At
backward angles, where the missing Coulomb contribu-
tions are expected to be small, the elastic d-cz differential
cross section and analyzing powers of the resonating
group Faddeev model agree better with experiment than
those of two phenomenological models; the agreement
with experiment is worse in the model which deviates
most of the resonating group model.
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