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The narrow widths of highly excited A single-particle states are discussed in comparison with large widths

of nucleon deep hole states.

Recoilless (K™, 7~ ) reactions have produced a A particle
in various single-particle orbits and disclosed basic proper-
ties of the A single-particle potential.! Figure 1 shows the
experimental data on XCa.?2 Let us look at the widths of the
peaks. The width of the (0d), orbit [the peaks correspond-
ing to the (ds;yadsj2s) and (di,adsj2n) configurations]
looks to be 3—4 MeV, while the energy resolution of the 7~
measurement is 2-3 MeV. This indicates that the physical
width T'4(0d) is quite narrow. It is noticed that the (0d),
orbit is in 28 Q4 =20 MeV excitation. A good contrast to
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where [L1=2L +1, etc., ¥ (LST) is the particle-hole cou-
pling interaction matrix elements with orbital angular
momentum L, spin S, and isospin 7. %"y~ here is defined
as /(1+84,)(1+8,,,)/4 times the normalized and an-

tisymmetrized matrix element and the factor 2 in front of
the right-hand side of Eq. (3) takes account for the ex-
change term. Equations (2) and (4) are the energy conserv-
ing conditions in the intermediate states of Fig. 3, where the
momentum Kk, is associated with the nucleon particle state p
brought up into the continuum. The wave function of p is
normalized as sin(kyr + - - - )/k,r asymptotically.

Before going to numerical calculations, we make some
qualitative discussions on what can be different between I'y
of Eq. (1) and 'y of Eq. (3).

(a) Difference in the spin-isospin (S7) of excited nucleon
particle hole. The A particle with zero isospin excites only
isoscalar (T=0) py— hx mode and furthermore, since AN
spin-spin interaction is weak, the spin vector (S§=1)
pNn— hn mode is weakly excited. Thus, if we take only
S§=T=0in Eq. (1), we have

this is the nucleon deep hole, for example, the (0s)n and
(0p)n holes of °Ca have very large widths, I'n(0s) =22
MeV and I'n(0p) =12 MeV.} The (0s)n hole state is also
in 28 Qn excitation of “°Ca. The situation is schematically
shown in Fig. 2. We try to understand how such a big
difference arises between the widths of the A particle and
nucleon-hole states.

Let us consider the second-order contribution to the
single-particle (hole) energy Aeg(a) (B = A or N) as shown
in Fig. 3. The width I'g(a) due to this diagram process is
given by —2ImAeg(a), which is expressed explicitly as

| 9 an(arbapnhn;LSTH? )

0))]

| " nn(Ajanpnan;LSTH? 3)

O]

790 MeV/c,
300 v T ' T

(ds/5,d5/20n

200 .
(ds/a, d3/2n

-

COUNTS /1 Mev

-1
100 | CPy2,d3/20n
L by
F',,,ﬂf*#, PR

B . { L 1 ) { L |

By(Mev )

FIG. 1. Observed excitation function of the “°Ca(K~, = ~)4Ca
reaction at forward angle (Ref. 2).
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On the other hand, the NN interaction is strongly spin-
isospin dependent and all (ST) px— An modes contribute in
Eq. (3), giving
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(b) Difference in the interaction strengths. The AN in-
teraction ¥ zn is generally weaker than the NN interaction
yNN- '

(c) The exchange factor 2 in Eq. (3) for the N-hole case
reflects the antisymmetrization among nucleons, which is
not required between A and nucleons.

(d) Difference in the excitation energies of, for example,
25 Q) excited states, (1s0d), orbit for A particle and (0s)n
orbit for N hole.

Considering these qualitative differences (a)-(d), we may
expect a large factor of a couple of tens between I', and I'y.

We now carry out a numerical calculation of Egs. (1)-(4)
to obtain I'x(a) and I'n(a). We employ the effective AN
(Ref. 4) and NN (Ref. 5) interactions with three-range
Gaussian form, which are designed to simulate the respec-
tive G matrices constructed from the Nijmegen model D AN
potential® and the G3RS NN potential.” Fine adjustments
are made so as to reasonably reproduce the observed A and
N single-particle energies. Used nucleon single-particle en-
érgies are en(0s)= —56.0, en(0p)=—36.0, en(0d)
= —15.0, and ex(1s)= —14.0 MeV. The wave functions
of the N and A bound single-particle states are taken to be
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FIG. 2. Illustrative comparison between A particle and N hole.

harmonic oscillator’s with size parameters bn=1.94 fm and
ba=~/Mn/Mrbn. The last choice is to allow the Moshinski
transformation. The nucleon wave function in the continu-
um is obtained by solving the Schrédinger equation with a
Wood-Saxon potential (Vo= —55 MeV, Ro=4 fm, and
a =0.67 fm in the standard notations).

To make comparison clear, in the following computation
we intentionally make the A single-particle spectrum e, (a)
exactly the same as that of nucleon ex(a) and therefore the
obtained I'y(a) is somewhat overestimated. The result is
thus

Ia(ls) < 1.03 MeV, T'n(0s)=14.0 MeV ,
I'A(0d) < 0.44 MeV .

The obtained I'n(0s) is smaller than the experimental
value = 22 MeV, but should be reasonable as only the sim-
plest diagram contribution has been taken into considera-
tion. The ratio 'y (15s04)/T'n(0s) < 0.03—0.07 may be of
more significance. If the harmonic oscillator wave functions
used above for A are replaced by more realistic ones per-
tinently to their loose bindings, the resulting widths
T'A(150d) should be further reduced. For example, the use
of the Wood-Saxon wave functions® leads to about 20%
reduction of I'y. Note that the nucleon wave functions
relevant to the present discussion are quite well described
by the harmonic oscillator’s.

A similar situation will remain in heavier hypernuclei. In
lighter hypernuclei, say in A°0, level densities of nuclear ex-
citations which are responsible to I'y are much lower and
therefore give further smaller widths for A single-particle
states.

An analogous discussion can be applied to the spreading
width l"§ for the X particle. The =N interaction is strongly
spin-isospin dependent and we have

SASHTY Isz1lsD |7 2n 2= $1975nl2,
ST

which implies the magnitude of F,l; intermediate between I'y
and I'n. However, the observed 3 single-particle states are
located above its escaping threshold and so the wave func-

FIG. 3. Second-order diagrams which give rise to widths of A
particle and N hole.
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tion effect should largely reduce their I‘é. For ‘‘narrow
I's,”” a mechanism to suppress the escaping width I‘é would
be necessary, which is not required for the bound A single-
particle states.

It is interesting that kinematical and dynamical charac-
teristics of A particle and AN interactions simply lead to

very narrow highly excited A single-particle states, which
sound quite drastic when compared with the case of nucleon
deep hole states.

We are thankful to Mr. T. Yamada and Professor K. Ike-
da for useful discussion.
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