(2)

(4)

Narrow widths of Λ single particle states in hypernuclei

H. Bando

Division of Mathematical Physics, Fukui University, Fukui, Japan

T. Motoba

Laboratory of Physics, Osaka Electro-Communcation University, Neyagawa, Osaka, Japan

Y. Yamamoto

Tsuru University, Tsuru, Yamanashi, Japan (Received 16 July 1984)

The narrow widths of highly excited Λ single-particle states are discussed in comparison with large widths of nucleon deep hole states.

Recoilless (K^-, π^-) reactions have produced a Λ particle in various single-particle orbits and disclosed basic properties of the Λ single-particle potential.¹ Figure 1 shows the experimental data on ${}^{40}_{\Lambda}Ca.^2$ Let us look at the widths of the peaks. The width of the $(0d)_{\Lambda}$ orbit [the peaks corresponding to the $(d_{5/2,\Lambda}d_{5/2,\pi})$ and $(d_{3/2,\Lambda}d_{5/2,\pi})$ configurations] looks to be 3-4 MeV, while the energy resolution of the $\pi^$ measurement is 2-3 MeV. This indicates that the physical width $\Gamma_{\Lambda}(0d)$ is quite narrow. It is noticed that the $(0d)_{\Lambda}$ orbit is in $2\pi \Omega_{\Lambda} \approx 20$ MeV excitation. A good contrast to this is the nucleon deep hole, for example, the $(0s)_N$ and $(0p)_N$ holes of ${}^{40}Ca$ have very large widths, $\Gamma_N(0s) \simeq 22$ MeV and $\Gamma_N(0p) \simeq 12$ MeV.³ The $(0s)_N$ hole state is also in $2\pi \Omega_N$ excitation of ${}^{40}Ca$. The situation is schematically shown in Fig. 2. We try to understand how such a big difference arises between the widths of the Λ particle and nucleon-hole states.

Let us consider the second-order contribution to the single-particle (hole) energy $\Delta \epsilon_B(a)$ ($B = \Lambda$ or N) as shown in Fig. 3. The width $\Gamma_B(a)$ due to this diagram process is given by $-2 \operatorname{Im} \Delta \epsilon_B(a)$, which is expressed explicitly as

$$\Gamma_{\Lambda}(a_{\Lambda}) = \sum_{b_{\Lambda}} \sum_{p_{N}h_{N}} (4M_{N}k_{p}) \sum_{LST} \frac{[L][S][T]}{[l_{a}][s_{\Lambda}][t_{\Lambda}]} | \mathscr{Y}_{\Lambda N}(a_{\Lambda}b_{\Lambda}p_{N}h_{N};LST)|^{2} , \qquad (1)$$

$$k_{\rm p}^2/2M_{\rm N} = \epsilon_{\Lambda}(a_{\Lambda}) + \epsilon_{\rm N}(h_{\rm N}) - \epsilon_{\Lambda}(b_{\Lambda})$$
 ,

and

$$\Gamma_{\rm N}(a_{\rm N}) = 2 \sum_{h_{\rm N}'} \sum_{{}^{\rm P_{\rm N}} h_{\rm N}'} \left(4M_{\rm N}k_{\rm P} \right) \sum_{LST} \frac{[L][S][T]}{[l_a][s_{\rm N}][t_{\rm N}]} | \mathscr{V}_{\rm NN}(h_{\rm N}'a_{\rm N}p_{\rm N}h_{\rm N};LST)|^2 , \qquad (3)$$

$$k_{\rm p}^2/2M_{\rm N} = \epsilon_{\rm N}(h_{\rm N}) + \epsilon_{\rm N}(h_{\rm N}') - \epsilon_{\rm N}(a_{\rm N})$$

where [L] = 2L + 1, etc., $\mathscr{V}(LST)$ is the particle-hole coupling interaction matrix elements with orbital angular momentum L, spin S, and isospin T. \mathscr{V}_{NN} here is defined as $\sqrt{(1 + \delta_{ap})(1 + \delta_{hh'})/4}$ times the normalized and antisymmetrized matrix element and the factor 2 in front of the right-hand side of Eq. (3) takes account for the exchange term. Equations (2) and (4) are the energy conserving conditions in the intermediate states of Fig. 3, where the momentum k_p is associated with the nucleon particle state p brought up into the continuum. The wave function of p is normalized as $\sin(k_pr + \cdots)/k_pr$ asymptotically.

Before going to numerical calculations, we make some qualitative discussions on what can be different between Γ_{Λ} of Eq. (1) and Γ_{N} of Eq. (3).

(a) Difference in the spin-isospin (ST) of excited nucleon particle hole. The Λ particle with zero isospin excites only isoscalar $(T=0) p_N - h_N$ mode and furthermore, since ΛN spin-spin interaction is weak, the spin vector (S=1) $p_N - h_N$ mode is weakly excited. Thus, if we take only S = T = 0 in Eq. (1), we have

FIG. 1. Observed excitation function of the ${}^{40}Ca(K^-, \pi^-){}^{40}_{\Lambda}Ca$ reaction at forward angle (Ref. 2).

<u>31</u> 265

$$\sum_{ST} \left([S][T]/[s_{\Lambda}][t_{\Lambda}] \right) | \mathscr{V}_{\Lambda N}|^2 \to \left([0][0]/[\frac{1}{2}][0] \right) | \mathscr{V}_{\Lambda N}(S = T = 0)|^2 = \frac{1}{2} | \mathscr{V}_{\Lambda N}(S = T = 0)|^2.$$

On the other hand, the NN interaction is strongly spinisospin dependent and all (ST) $p_N - h_N$ modes contribute in Eq. (3), giving

$$\sum_{ST} \left([S][T]/[s_N][t_N] \right) | \mathcal{Y}_{NN}|^2 \rightarrow 4 | \mathcal{Y}_{NN}|^2_{av} .$$

(b) Difference in the interaction strengths. The ΛN interaction $\mathscr{V}_{\Lambda N}$ is generally weaker than the NN interaction \mathscr{V}_{NN} .

(c) The exchange factor 2 in Eq. (3) for the N-hole case reflects the antisymmetrization among nucleons, which is not required between Λ and nucleons.

(d) Difference in the excitation energies of, for example, $2\hbar \Omega$ excited states, $(1s0d)_{\Lambda}$ orbit for Λ particle and $(0s)_{N}$ orbit for N hole.

Considering these qualitative differences (a)–(d), we may expect a large factor of a couple of tens between Γ_{Λ} and Γ_{N} .

We now carry out a numerical calculation of Eqs. (1)-(4) to obtain $\Gamma_{\Lambda}(a)$ and $\Gamma_{N}(a)$. We employ the effective ΛN (Ref. 4) and NN (Ref. 5) interactions with three-range Gaussian form, which are designed to simulate the respective G matrices constructed from the Nijmegen model $D \Lambda N$ potential⁶ and the G3RS NN potential.⁷ Fine adjustments are made so as to reasonably reproduce the observed Λ and N single-particle energies. Used nucleon single-particle energies are $\epsilon_{N}(0s) = -56.0$, $\epsilon_{N}(0p) = -36.0$, $\epsilon_{N}(0d) = -15.0$, and $\epsilon_{N}(1s) = -14.0$ MeV. The wave functions of the N and Λ bound single-particle states are taken to be

FIG. 2. Illustrative comparison between Λ particle and N hole.

harmonic oscillator's with size parameters $b_{\rm N} = 1.94$ fm and $b_{\rm A} = \sqrt{M_{\rm N}/M_{\rm A}}b_{\rm N}$. The last choice is to allow the Moshinski transformation. The nucleon wave function in the continuum is obtained by solving the Schrödinger equation with a Wood-Saxon potential ($V_0 = -55$ MeV, $R_0 = 4$ fm, and a = 0.67 fm in the standard notations).

To make comparison clear, in the following computation we intentionally make the Λ single-particle spectrum $\epsilon_{\Lambda}(a)$ exactly the same as that of nucleon $\epsilon_{N}(a)$ and therefore the obtained $\Gamma_{\Lambda}(a)$ is somewhat overestimated. The result is thus

$$\Gamma_{\Lambda}(1s) < 1.03 \text{ MeV}, \quad \Gamma_{N}(0s) = 14.0 \text{ MeV}$$

 $\Gamma_{\Lambda}(0d) < 0.44 \text{ MeV}$.

The obtained $\Gamma_N(0s)$ is smaller than the experimental value ≈ 22 MeV, but should be reasonable as only the simplest diagram contribution has been taken into consideration. The ratio $\Gamma_{\Lambda}(1s0d)/\Gamma_N(0s) < 0.03 - 0.07$ may be of more significance. If the harmonic oscillator wave functions used above for Λ are replaced by more realistic ones pertinently to their loose bindings, the resulting widths $\Gamma_{\Lambda}(1s0d)$ should be further reduced. For example, the use of the Wood-Saxon wave functions⁸ leads to about 20% reduction of Γ_{Λ} . Note that the nucleon wave functions relevant to the present discussion are quite well described by the harmonic oscillator's.

A similar situation will remain in heavier hypernuclei. In lighter hypernuclei, say in $\frac{1}{6}$ O, level densities of nuclear excitations which are responsible to Γ_{Λ} are much lower and therefore give further smaller widths for Λ single-particle states.

An analogous discussion can be applied to the spreading width $\Gamma_{\Sigma}^{\frac{1}{2}}$ for the Σ particle. The ΣN interaction is strongly spin-isospin dependent and we have

$$\sum_{ST} ([S][T]/[s_{\Sigma}][t_{\Sigma}]) | \mathscr{V}_{\Sigma N}|^2 \rightarrow \frac{8}{3} | \mathscr{V}_{\Sigma N}|^2_{av} ,$$

which implies the magnitude of $\Gamma_{\Sigma}^{\frac{1}{2}}$ intermediate between Γ_{Λ} and Γ_{N} . However, the observed Σ single-particle states are located above its escaping threshold and so the wave func-

FIG. 3. Second-order diagrams which give rise to widths of Λ particle and N hole.

It is interesting that kinematical and dynamical characteristics of Λ particle and ΛN interactions simply lead to

very narrow highly excited Λ single-particle states, which sound quite drastic when compared with the case of nucleon deep hole states.

We are thankful to Mr. T. Yamada and Professor K. Ikeda for useful discussion.

¹W. Brückner *et al.*, Phys. Lett. **55B**, 107 (1975); **62B**, 481 (1976); **79B**, 157 (1978); R. Bertini *et al.*, *ibid.* **83B**, 306 (1979); **90B**, 375 (1980); Nucl. Phys. **A360**, 315 (1981); **A368**, 365 (1981); R. E. Chrien *et al.*, Phys. Rev. B **89**, 31 (1979); M. May *et al.*, Phys. Rev. Lett. **47**, 1106 (1981).

³A. N. James et al., Nucl. Phys. A138, 145 (1969).

- ⁴Y. Yamamoto and H. Bando, Prog. Theor. Phys. (to be published).
- ⁵A. Hasegawa and S. Nagata, Prog. Theor. Phys. 45, 1786 (1971); Y. Yamamoto, *ibid.* 52, 471 (1974).
- ⁶M. M. Nagels, T. A. Rijken, and J. J. DeSwart, Phys. Rev. D 15, 2547 (1977).
- ⁷R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
- ⁸A. Bouyssy, Phys. Lett. 84B, 41 (1979).

²B. Povh, Prog. Part. Nucl. Phys. 5, 245 (1981).