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Narrow widths of A single particle states in hypernuclei

H. Bando
Division of Mathematical Physics, Fukui University, Fukui, Japan

T. Motoba
Laboratory of Physics, Osaka Electro-Communcation University,

Neyagawa, Osaka, Japan

Y. Yamamoto
Tsuru University, Tsuru, Yamanashi, Japan

(Received 16 July 1984)

The narrow widths of highly excited A single-particie states are discussed in comparison with large widths

of nucleon deep hole states.

Recoilless (K, m ) reactions have produced a A particle
in various single-particle orbits and disclosed basic proper-
ties of the A single-particle potential. ' Figure 1 shows the
experimental data on ~ Ca. Let us look at the widths of the
peaks. The width of the (Od)~ orbit [the peaks correspond-
ing to the (d5~2 +d572'„) and (dy2 Adg2'„) configurations]
looks to be 3-4 MeV, while the energy resolution of the m

measurement is 2-3 MeV. This indicates that the physical
width 1~(Od) is quite narrow. It is noticed that the (Od)~
orbit is in 2h QA = 20 MeV excitation. A good contrast to

this is the nucleon deep hole, for example, the (Os)N and
(Gp)N holes of Ca have very large widths, I' N(0s) =22
MeV and I' N(Op) = 12 MeV. ' The (Os)N hole state is also
in 2tAN excitation of Ca. The situation is schematically
shown in Fig. 2. We try to understand how such a big
difference arises between the widths of the A particle and
nucleon-hole states.

Let us consider the second-order contribution to the
single-particle (hole) energy Ass (a) (8 = A or N) as shown
in Fig. 3. The width I s(a) due to this diagram process is
given by —21mAes(a), which is expressed explicitly as

and
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where [Lj = 2L + 1, etc. , ~(LST) is the particle-hole cou-
pling interaction matrix elements with orbital angular
momentum L, spin S, and isospin T. ~NN here is defined
as Q(1+5,~)(1+5„„i)/4 times the normalized and an-

tisymmetrized matrix element and the factor 2 in front of
the right-hand side of Eq. (3) takes account for the ex-
change term. Equations (2) and (4) are the energy conserv-
ing conditions in the intermediate states of Fig. 3, ~here the
momentum k„ is associated with the nucleon particle state p
brought up into the continuum. The wave function of p is
normalized as sin(k, r + . )/k„r asymptotically.

Before going to numerical calculations, we make some
qualitative discussions on what can be different between I A

of Eq. (1) and I'N of Eq. (3).
(a) Difference in the spin-isospin (ST) of excited nucleon

particle hole. The A particle with zero isospin excites only
isoscalar ( T =0) pN

—hN mode and furthermore, since AN
spin-spin interaction is weak, the spin vector (S = 1)
pN

—AN mode is weakly excited. Thus, if we take only
S = T =0 in Eq. (1), we have
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FIG. 1. - Observed excitation function of the Ca(K, m )4AOCa

reaction at forward angle (Ref. 2}.
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g([S][T]/[s~]frJ,])I &~NI' ([0][0]/[~1[0])Iy AN(S= T=0)I'= —,
'

I y ~N(S= T=O)I'.

On the other hand, the NN interaction is strongly spin-
isospin dependent and all (ST) pN

—hN modes contribute in
Eq. (3), giving

g ( [S][T]/ [+N ] [rN ] ) I 7 NN
I' —4 I r NN I.'„

(b) Difference in the interaction strengths. The AN in-
teraction ~qN is generally weaker than the NN interaction
~NN.

(c) The exchange factor 2 in Eq. (3) for the N-hole case
reflects the antisymmetrization among nucleons, which is
not required between A and nucleons.

(d) Difference in the excitation energies of, for example,
2A'0 excited states, (IsOd)A orbit for A particle and (Os)N
orbit for N hole.

Considering these qualitative differences (a)-(d), we may
expect a large factor of a couple of tens between I ~ and I N.

We now carry out a numerical calculation of Eqs. (1)—(4)
to obtain I ~(a) and I'N(a). We employ the effective AN
(Ref. 4) and NN (Ref. 5) interactions with three-range
Gaussian form, which are designed to simulate the respec-
tive 6 matrices constructed from the Nijmegen model D AN
potential and the 63AS NN potential. Fine adjustments
are made so as to reasonably reproduce the observed A and
N single-particle energies. Used nucleon single-particle en-
ergies are eN(0s) = —56.0, eN(Op) = —36.0, eN(Od)
= —15.0, and eN(ls) = —14.0 MeV. The wave functions
of the N and A bound single-particle states are taken to be

K(Mev)

1SOC ~

harmonic oscillator's with size parameters bN = 1.94 fm and
b„=QMN/M~bN. The last choice is to allow the Moshinski
transformation. The nucleon wave function in the continu-
um is obtained by solving the Schrodinger equation with a
Wood-Saxon potential (Vo= —55 MeV, 80=4 fm, and
a = 0.67 fm in the standard notations).

To make comparison clear, in the following computation
we intentionally make the A single-particle spectrum eA(a)
exactly the same as that of nucleon eN(a) and therefore the
obtained 1~(a) is somewhat overestimated. The result is
thus

I ~(ls) ( 1.03 MeV, I N(Os) = 14.0 MeV

I'g(0d) ( 0.44 MeV

The obtained I N(0s) is smaller than the experimental
value = 22 MeV, but should be reasonable- as only the sim-
plest diagram contribution has been taken into considera-
tion. The ratio I'A(lsOd)/I N(Os) (0.03 —0.07 may be of
more significance. If the harmonic oscillator wave functions
used above for A are replaced by more realistic ones per-
tinently to their loose bindings, the resulting widths
I'A(lsOd) should be further reduced. For example, the use
of the %ood-Saxon wave functions leads to about 20%
reduction of I'q. Note that the nucleon wave functions
relevant to the present discussion are quite well described
by the harmonic oscillator's.

A similar situation will remain in heavier hypernuclei. In
lighter hypernuclei, say in A 0, level densities of nuclear ex-
citations which are responsible to I ~ are much lower and
therefore give further smaller widths for A single-particle
states.

An analogous discussion can be applied to the spreading
width I"x for the X particle. The XN interaction is strongly
spin-isospin dependent and we have

g([S][T]/[sx] [rx]) I
Y'xNI'- T I y XNI.'. ,

-10 — 1SOC 0
ST

which implies the magnitude of I x intermediate between I A

and 1N. However, the observed X single-particle states are
located above its escaping threshold and so the wave func-
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FIG. 2. Illustrative comparison between A particle and N hole.
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FIG. 3. Second-order diagrams which give rise to widths of A

particle and N hole.
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tion effect should largely reduce their I'x. For "narrow
I x,

" a mechanism to suppress the escaping width I q would
be necessary, which is not required for the bound A single-
particle states.

It is interesting that kinematical and dynamical charac-
teristics of A particle and AN interactions simply lead to

very narrow highly excited A single-particle states, which
sound quite drastic when compared with the case of nucleon
deep hole states.

%e are thankful to Mr. T. Yamada and Professor K. Ike-
da for useful discussion.
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