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Hypertriton and hyperspherical harmonics
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We study the hypertriton using the formalism of hyperspherical harmonics, for spin-independent NN and
NA two-body potentials of Gaussian shape. We use up to 19 Simonov harmonics for the Verma-Sural po-
tential, and obtain a ground state energy 240 keV below their value of —2.35 MeV found for 9 Simonov
harmonics. The partial waves are used to calculate various expectation values for the hypertriton. We
readjust the strength of the AN potential to obtain agreement between the calculated energy and the experi-
mental value.

The hypertriton, AH, has been studied using variational
techniques' and Faddeev calculations. 3 Verma and Sural
(VS) used hyperspherical harmonics (HH) to study 3»H for
both mode14 and realistic potentials. 5 They solve a truncated
set of coupled integral equations for the energy. We sum-
marize the HH formalism for AH giving a set of coupled dif-
ferential equations (CDE). We also derive some expecta-
tion values relating to the shape and kinetic energy of AH.

The CDE can be solved by searching for the eigenenergy
and the ratios of the partial waves at the starting points of
integration, or by using various approximate techniques. ~

We summarize Gordon's integration strategy which reduces
the solution of the CDE to a one-dimensional eigenvalue
search. We also review Johnson's renormalized Numerov
method, ' which is combined with Gordon's procedure. We
also present the means of computing the partial waves.

We present our results of solving M CDE, for M=1-20,
using central spin-independent two-body Gaussian poten-
tials. We compare our results with those of VS and com-
ment on the convergence of the HH formalism for this +H
problem. We also discuss some results we obtain with the
partial waves.

The neutron and proton have position vectors r~ and r2
and mass m. The lambda particle's position vector is r3 and
its mass is taken to be Tm. We choose Jacobi coordinates

g =—n(rt —r2),

g —= P (r[+ r2 —2r2),

where n =2 ' 2 and P = [mn/(»m~+ 2m)]' 2. (VS use
another set. ) We introduce six-space hyperspherical coordi-

I

nates p and p where

p2 —~2+ g2 (2)

[I],+ [Q(p)) u(p) =0, (s)

where [I] is the unit matrix and the column vector u(p)
contains the partial waves uP(p) as its components. The
matrix [Q(p)] is defined by

[Q(p) ] = [E[I]—[ V,ff(p) ]](2m/&'),

~here the components of. the effective potential matrix are
given by

and p is a unit vector uniquely defined by five appropriately
chosen angles.

The kinetic energy operator is
t

T = —(it 2/2m) — p' + K
JL 1 (j Q 1 (3)

p Bp Bp p

The eigenfunctions of E are the Simonov hyperspherical
harmonics (HH), " Y»„(A, A. ), which obey the eigenvalue
equation

[K +K(E+4)]Y»„(A, X) =0; K=0, 1, 2, . . ., (4)

v goes from —K/2 to + K/2 in steps of two. The HH with
v ( 0 are not used for ~H since they are not invariant for a
permutation of the identical nucleons. Furthermore, the
even parity of the system considered restricts K to even
values.

The Schrodinger equation can be written in the matrix-
vector form:

r

V ii il(p)K
K =0, 2, ...

II I I
V —V —V, V+V

f.

where the (iml'm'~ l"m") are Clebsch-Gordan coefficients and the constants C"" i are
r ' 1/2

Cvv —( 1)[»+» —2(v+v )/4 (K + 2) (K + 2)
KK (1+g„c)(1+8, )

[

[ Veff(p)]»»„" ———(Kv( V[23)K'v') + (lt /2m)[K(K+4) + 15/4]p 8 8

VS solve a set of coupled integral equations equivalent to a truncated form of Eq. (7). We find'2 '4

Ev E'v' E" y"

(Kv I V[231K'v& = c""', gx ( —1)» l2

(7)

(9)
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The hypermultipoles have the form

V~, „(p)= V~2(p)+ 2cos(v7 Vtii3(ap), (10)

where a = (11/12)' 2 and the angle 7 =2.043 rad. We use
pair potentiais with Gaussian shape, so the terms Vrii2(p)

and VjP(ap) can be written" in analytical form.
We use'~ the first two terms in the HH expansion of the

wave function to calculate some expectation values. The
average interparticle separations are

(r$~) =2(q'),

Beiner and Fabre de la Ripelle'6 use the optimal subset
and find for triton calculations with the Gaussian Baker po-
tential' that it was necessary to include terms up to K=16
to attain eigenvalue convergence. For zH, where VS use
similar potentials, we would expect to require even more
grand orbitals.

To study convergence, the M CDE are solved for
M = 1, 2, . . . ,M,„. Each time the Hilbert space is en-
larged by one term in the HH expansion, the corresponding
decrease in the energy eigenvalue is noted. For the NN
pair, we used Gaussian potentials with the VS strength and
range parameters,

Vo= —72.5 MeV, P=1.47 fm . (18)

&~'& = ~((uolp'luo) + &u2lp'lu, &+ &uolp'lu, ) ),

&4 &
= T(&uolp luo&+ &u2lp lu2) &uolp lu2&) .

(12)

Here the abbreviations uo (p) = uo and u2' (p) = u2 are used.
We calculate the average kinetic energy of the system from
the formula

& T&
= E —( & uo I Vl I uo& +

& u21 VA' I u2& + & uo I Voo I » & ) .

(13)

We use Johnson's renormalized Numerov method' '~'
to solve MCDE (5) for u(r). We define

and

[ T„]= [h /12] [Q (nh) ]

u(r) = [ U(r) ] b,

(14)

(15)

where b is a constant column vector and the M columns of
[ U(r) ] are linearly independent solutions of Eq. (5). The
recurrence relation giving the "matrix wave function"
[U„+i] is

For the AN pairs, VS use a spin-dependent Gaussian form
where the intrinsic range for both the singlet and triplet in-
teraction is taken to be b=1.484 fm (corresponding to the
two-pion exchange mechanism). VS then solve nine cou-
pled integral equations and use the hypertriton's measured
binding energy, E= —2.355 MeV, to adjust the volume in-
tegral' yielding V2= 719 MeV fm, for the lambda-nucleon
potential. In this work, we first use spin-independent
Gaussian shapes for the AN pairs with parameters

Vo = —58.4 MeV, P'= 1.034 . (19)

Using these potentials, we solve Eq. (5) by the renormal-
ized Numerov method for M=1—19. The eigenvalues are
presented in the third column of Table I. Comparing with
the VS result of —2.355 MeV at M=9, we note a 20 keV
discrepancy which is not unreasonable considering the
differences in the calculational methods. However, we
disagree with the VS inference that eigenvalue convergence
is attained at M = 9 (E = 8) since Table I shows that E de-
creases by 240 keV with the addition of ten more terms in
the HH expansion. Another reason to doubt that VS had

TABLE I. Energy E(M) of hypertriton vs number M of CDE
used in Eq. (5). Vo is the assumed coefficient of the AN Gaussian
potential.

([I]—[T„ i]) [U„ i] —(2[I]+10[T„])[U„]

+ ([I]—[T. l) [U. ]= [0] . (16) K, v

E~ (MeV)
Vo = —58.4 Vo = —55.9

D(E) =—I[&~]—[&~+i]I . (17)

If we have the right energy we get a match, i.e.,
D(E) =0. After finding E, we can then findto'4 i5 the
eigenfunction.

Here n = 0, 1, . . . N, N is the end point of integration, and
h is the step size. We integrate the coupled Schrodinger
equation (5) for the initial two guesses of the energy from
the origin outward and from a large value r =Nb inward to
a matching point rM. Take

[F„]—= ( [I]—[ T„]) [ U„] .

Define

N. ] = [F,+i][F. '],
and

[&.] = [F. , ]F„-'] .

Evaluate the determinant

0,0
2, 1

4,0
4,2
6, 1

6,3
8,0
8,2
8,4

10,1
10,3
10,5
12,0
12,2
12,4
12,6
14,1

14,3
14,5
14,7

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Infinite

—0.523
—1.072
—1.641
—1.780
—1.857
—2.216
—2.289
—2.321
—2.376
—2.411
—2.479
—2.499
—2.515
—2.526
—2.543
—2.577
—2.585
—2.609
—2.617

( —2.71)

—0.692

—1 ~ 398

-1.850

—2.029

—2.171

—2.263

—2.326
( —2.44)
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FIG. l. Three partial waves up(p) plotted as ordinate vs hyperradius p in fm. The solid curve is uoe(p), the dashed curve is u2'(p), and
the dash-dot curve is u4e (p). u2t and u$ agree to the accuracy of drawing for p ) 6 fm.

achieved convergence is the magnitude of the VS volume
integral, V2= 719 MeVfm . In contrast, Dalitz gives the
limits' 615~ V2~ 685 MeVfm'.

We made a rough extrapolation of our E(M) values of
the third column of Table I to infinite M, using the tech-
nique of Beiner and Fabre de la Ripelle. ' %e find
E(~) = =2.71 MeV with an estimated error of some 50
keV. Since our extrapolated value is 360 keV below the ex-
perimental hypertriton energy, we readjust the strength Vo

of the AN potential from the value —58.4 MeV of Eq. (19)
to Vo = —55.9 MeV. This readjustment gives the values of
E(M) in the right hand column of Table I. The extrapolat-
ed value of about —2.44 MeV is only a little below the ex-
perimental value, —2.335 MeV. This new value of the
strength Vo decreases the VS volume integral from their
value of 719-688 MeVfm3, barely outside Dalitz's limits.

In light of the convergence problems presented here, we
stress the importance. of presenting one's eigenvalue results

I

in the form of Table I when utilizing the hyperspherical for-
malism.

Although eigenvalue convergence is slow in the HH for-
malism, the wave function converges rapidly because the ef-
fective centrifugal term in [V,ff(p)l of Eq. (7) suppresses
higher order partial waves. For the model potential with
Vo = —58.4 MeV we found from the solution of four CDE
that the lowest partial wave dominates with a norm of
97.1%.

Figure 1 shows that the lowest partial wave, usa(p) is
nodeless. This nodeless property is a general feature for the
lowest partial wave of the ground state solution of an infi-
nite set of CDE corresponding to a local but noncentral po-
tential. "'9 The figure thus provides a useful check on the
accuracy of our numerical work.

Retaining two terms in the wave function expansion, we
compute the expectation values discussed above. The hy-
perradial integrals have values

&uelp'luo) =14.89 fm', &u2lp'I»& =o 3o2 fm', &uolp'lu2& = —1.908 fm'.

&ue( VH(p) [ue) = —21.38 MeV, &us[ V2t (p) (u2) = —0.568 MeV, &u2[ V22t' (p) (u2) = —0.346 MeV .

(20)

& T) = 19.9 MeV . (23)

Equations (11), (12), (20), and (21) give interparticle
separations

& rt2 ) = 13.3 fm,
& r/3 ) =

& re ) = 14.7 fm2,

(22)r + —r =11.4 fm
2

%e see that it is incorrect to view ~H as a A particle spend-
ing much of its time far from the deuteron core since the
squared NN distance &rf2) is almost as large as &rt'3). We
also calculate the average kinetic energy of the system using
Eqs. (13) and (21), giving

l

Compare the same quantity calculated for the trinucleon
using a Volkov potential: & T) = 22.2 MeV.

To conclude, we comment on methods of solving CDE.
The renormalized Numerov method is nearly as easy to em-
ploy as adiabatic approximation techniques. ~ The Simonov
HH expansion gives useful results for hypertriton properties
with our simple model potentials, but convergence is slow.
It would be desirable to develop Fabre's optimal subset for
the hypertriton, so convergence could be obtained for more
complicated potentials.

Part of this work was done by R.B.C. as part of his Doc-
toral Thesis, Rensselaer Polytechnic Institute, August 1983.
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