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Recent work involving virtual excitation of a spin 2 baryon resonance is seen to contain two distinct

problems. The Feynman propagator for spin 2 from the Rarita-Schwinger formalism has often been mis-

taken for its on-mass-shell limit. In nonrelativistic work the direct channel exchange of a b resonance is

normally included, but with the exclusion of a term for the intermediate anti-A. It is shown that both of
these terms are of equal importance in the resonance region for the case of nucleon Compton scattering.

Two errors relating to calculations treating a spin T parti-'

cle in an intermediate state are presently propagating
through the literature. One relates to a mistaken form of
the Rarita-Schwinger spin 2 propagator, which can be found
in textbooks'2 and in journal articles. The second con-
cerns the form usually adopted for the yNA vertex in a
two-component (Pauli spinor) treatment for the nu-
cleons. ~ ~ This paper is an effort towards eliminating the
errors.

The Rarita-Schwinger formalism allows one to treat
higher spin particles (for present purposes, spin ~) in the

language and techniques of the four-component Dirac
theory for spin 2. In particular, the relativistic propagator

for spin ~ particles, P", is a collection of 4&4 matrices
which are most conveniently expressed in terms of the fam-
iliar y matrices of the Dirac theory. The indices p, and v

are to be contracted with vector indices from the vertex
functions which create and destroy the propagating particle;
they are necessary to allow the number of degrees of free-
dom appropriate for particles of spin 2. References 1-4 all

present the following form for this propagator:

p~v DM+P g~v & ~ ~ 2P"P" + P"yv —P"y"
2M 3y y 3M2 3M

where M is the mass of the propagating particle and
p" ( = W, p) is its four momentum:

From this form it is apparent that if the particle is on the
mass shell, (p2= M2)P'~" reduces to P~", but this is not an
appropriate limit for a relativistic propagator. The deriva-
tion of P'I'" is valid both on and off the mass shell. A gen-
eral form for the indexed terms (+"— ) in the rest
frame is generated, the constraints of various invariance
properties are invoked, and the result is written in covariant
form. This last step depends upon the identity in the rest
frame
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This is valid regardless of the value of p2, but the substitu-
tion p =M makes it valid only on shell. Since the denom-
inator p in Eq. (3) is generated in this way, the substitution
required to make P'"v take the form P&" is one which
causes the form P"" to be invalid as a propagator (except on
shell). There is a well-documented ambiguity (point contact
ambiguity) related to off-mass-shell extrapolations. The ef-
fect of this ambiguity in the Lagrangian upon the propagator
is to add nonresonant terms. The difference between PI'"
and P'~" are terms with the resonant factor D, and thus can-
not be point contact terms. P'I'" is correct, but not unique;
P&" is not correct. In practice, P'I'" typically leads to simpler
expressions than the often used P"". Its center-of-
momentum form is

g =1 g"=g =g = —1 gpv 0 if p&

D = 1/(p2 —M2)

In contrast, Behrends and Fronsdal7 present a simple deriva-
tion of this propagator, and show its form to be
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To compare (1) and (2), use the relation
y"y" +y"y"=2g~" to commute the last p'in (2) left of y",
and then use pp =p to arrive at the form

where i, j = 1, 2, or 3, and S is the transition operator from
spin 2 to spin 2, normalized such that S S = 2. The3 ~ 1

representation of the y~ assumed is that of Bjorken and
Drell, which produces free field solutions for spin Y which

have the lower two components smaller than the upper two
by —p/m.

To illustrate the use of P'I"", I will present amplitudes for
scattering, m photoproduction, and y N scattering

through an intermediate s channel 6 resonance [spin

isospin ~, + parity, Af = 1232 MeV, I' = 110 MeV;
D= 1/(p2 M2+ IMI')]. The vertex functions are as fol-

31 2297 1985 The American Physical Society



BRIEF REPORTS

lows:
gk„ PN ek„—PN ke„

~N 5:G g, yN 5:—iG~ I e„— "
ys —iG„2m+ M " (m+ M)2

0
( —W+M)q' SS q

)

where PN„, q„, and k„are the nucleon, pion, and photon 4-momenta; e„=(0, —e) is the photon po]arizatior
nucleon mass. Of the two gauge invariant electromagnetic couplings, the G 2 term is of higher order in p /m than th G'y PN m

and will be omitted in the following formulas. The scattering matrix elements are

G2D (W+M)q' SS q
mN ~N 6M f 0

(5)
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uI, uf are the initial and adjoint final state nucleon spinors.

In the spirit of Ref. 4, these same amplitudes can be

evaluated in the higher spin formalism of Hayward, 9 using

the vertex functions of Danos, Gillet, and Cauvin. 'o Since

Ref. 4 used the incorrect propagator PI'", the Rarita-

Schwinger results presented there [Eqs. (12), (15), and

(18)] are incorrect. The Hayward results were calculated

correctly. The Hayward mN scattering results agree identi-

cally with Eq. (5) above. To lowest nonvanishing order in

p/M, Hayward results can be made to agree with Eqs. (6)

and (7), if both the current and anomalous moment contri-

butions to the DNA vertex are kept, ' and the ratio of the

anomalous moment coupling constant to that for the current

is ~(M+ m). Higher order terms (in k/m) which appear in

the Hayward results correspond to the G~2 Rarita-Schwinger

coupling.
There is often a need to treat spin 2 (5) degrees of free-

dom in the context of a two component nucleon, particular-

ly in traditional nuclear physics. In this case the propagator

becomes simply a spin projection sum (=1 through clo-

sure) and an energy difference denominator. The terms in

the electromagnetic interaction Hamiltonian which excite

the 6 are chosen to satisfy gauge invariance, parity, and an-

gular momentum conservation, and normally only the

lowest order in k/m (k=photon momentum) is retained.

The term usually chosen to represent the yN 5 excitation

1S

Hg= a)S exk

The e & k dependence reveals this to be an M1 excitation, in

agreement with experiment, which has shown the E2 part

of the photoexcited 5 peak to be small, and with the quark

model which predicts the E2 contribution to vanish. In ad-

dition, a gauge invariant E2 addition to the Hamiltonian

would be of higher order in k/M than H. Weber and

I

Arenhovel exhibit a contribution corresponding to an E2
term, first order in k/M,

H2 = a2[ [S'o.]'[ek]']',
but gauge invariance of this term can only be sho~n in the

static limit ko=M —m (the notation [AB]2 represents two

tensors, rank 1, coupled to rank 2 via signer coeffi-
cients"). An El term,

03 = a3MS e (10)

is of the wrong parity to couple to the A. This term does,

however, represent the coupling of yah, ~here all are in-

coming particles, since the antiparticle is of the opposite par-

ity as the 6 itself. This interaction contributes to nucleon

Compton scattering to the same order in k/m as Ht. Con-

sider two time ordered diagrams (Fig. 1): Fig. 1(a), the

"direct term, " represents the creation and propagation of a

real /b, ; Fig. 1(b), the "Z graph,
*' represents the creation of

an anti-6 at the vertex with the outgoing particles, and its

absorption at the incoming vertex. The corresponding

scattering amplitudes are

2
e'& k' SS e && k

W —M+ il'/2

I

Ttb~ a/M2 8'+ M
(12)

The denominator of T~, in the region of the resonance
peak, is like a kinetic energy term, and thus of order k2/M;
the amplitude is of order M TIb has a nonresonant denom-
inator of order M, so this amplitude is also of order M
Calculations show that both these terms are necessary to
match Compton data in the 5 region, and that they are of
the same order of magnitude.

The relative strengths (af,aj) with which these contri-
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FIG. 1. Contributions to nucleon Compton scattering with inter-
mediate 5; (a) direct term; (b) Z graph; (c) crossed photon term;
(d) crossed Z graph.

bute to 6 excitation, can be determined from a relativistic
calculation, since the time ordered graphs of Figs. 1(a) and
1(b) are both contained in the Feynman graph for s.channel
5 exchange. A second Z graph, Fig. 1(d), comes from the
antiparticles part of the Feynman graph for u-channel 5 ex-
change (crossed photon diagram). The process of Fig. 1(d)
gives an e' SS e contribution which, in the nonrelativistic
limit, is identical in sign and size to that of Fig. 1(b). Other
contributions from Fig. 1(d) are of different multipolarities.
Contributions from Fig. 1(c), the real t5, crossed photon
graph, are ignored, since the 5 is excited by the interaction
H] and is roughly 500 MeV off the mass shell in the reso-
nance region. A relativistic evaluation of terms correspond-
ing to Figs. 1(a), 1(c), and 1(d) leads to the conclusion
(a3/at)2= 0.062.

A term with the same spin and polarization dependence
as Tta is treated in Ref. 12 [Eq. (108)]. This term, in dis-
tinction to T~b, has a coefficient proportional to k'k. Such a

form comes from a nonrelativistic reduction of the two Z
graph diagrams [Figs. 1(b) and 1(d)] which includes the
limit ko=M —m and the eventual neglect of the baryon
mass difference, M —m. Such a procedure produces a term
which obeys the low energy theorem (at threshold, the cross
section must exactly equal the Thompson cross section), but
which is not valid near resonance. By inspection of the
1 —1 element of Eq. (7), Tta comes from the cancellation
of W —M terms in numerator and denominator, and it is
these terms which are treated approximately and unsymme-
trically in the nonrelativistic limit. T» does not satisfy the
low energy theorem, a fact related to the truncation of Hil-
bert space, and which can be compensated for by use of en-
ergy dependent vertex functions which vanish near thresh-
old (see Ref. 4).

%hen developing a nonrelativistic yNA interaction, ordi-
nary practice has been to include a term like Ht [Eq. (8)]
and refer to it as 5 production, and either to ignore H3 [Eq.
(10)] or to include it as a necessary term of unspecified ori-
gin. Reference 6 develops a four component yNA interac-
tion current which includes only Ht and H2 [Eq. (9)], and
then argues to the smallness of the quadrupole contribution
H2. A recent treatment of photon scattering on the nucleon
in the resonance region can be found in Ref. 5. Therein it
is shown that to adequately fit the data, terms such as both
T~, and T]b must be included; the above shows the dynam-
ic origin of the two and their relationship. Furthermore,
Ref. 5 shows that reasonable data fits obtain only when both
such terms take on additional energy dependence: T~, from
an energy dependent resonance width, and T» from a mul-
tiplicative energy dependent term. These corrections partial-
ly account for other resonance and t channel exchange
processes, and are necessary to ensure unitarity. A forth-
coming calculation by the present author using relativistic
dynamics and a diagrammatic approach will explore to what
degree these corrections can be accounted for in a less
phenomenological way.

Because of the particular form of the DNA vertex, the Z
graphs contribute only to higher order in k/m relative to the
direct term in pion nucleon scattering and in pion photopro-
duction. The situation described above for Compton
scattering, however, should apply to photoproduction of
vector mesons (p, to, e.g.), a process particularly interesting
in photon processes in nuclei.
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