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Isoscalar giant monopole in a macroscopic-microscopic approach
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We present an approach to study the interplay between the surface and volume vibrations of nu-
clei with application to the isoscalar giant monopole resonance. The main ingredients are the well-

known properties of the mean field and the curvatures of the liquid-drop energy surface. No specif-
ic form of a two-body force is assumed. The single-particle continuum is treated exactly. First re-
sults, obtained using a local Woods-Saxon potential, are discussed.

Within the last decade a significant amount of work
has been devoted to the study of the nuclear response
function in the region of 10—40 MeV of excitation ener-
gy. ' The random phase approximation (RPA) with ef-
fective two-body interactions is quite successful in repro-
ducing the experimental results, providing a better under-
standing of properties of nuclei. In particular, the
discovery of the isoscalar giant monopole resonance
(ISGMR) in medium and heavy nuclei provided useful
information regarding nuclear incompressibility. Using
the RPA and considering various forms of effective two-
body interactions, it has been concluded ' that the experi-
mental results imply a compressibility coefficient
L =200 MeV for the nuclear matter. It has been point-
ed out, however, that this conclusion may be due to the
limited forms of the effective two-body interactions used
in the calculation. Since the nuclear surface plays an
important role in determining the properties of nuclei, a
study of the interplay between the volume and surface vi-
brations can provide a better insight on the relationship
between the properties of the ISGMR and K

In this work we describe a macroscopic-microscopic ap-
proach to study the interplay between the volume and sur-
face vibrations in a way directly related to the curvatures
of the liquid drop (LD) energy surface, i.e., the volume
and surface compressibility coefficients. No specific form
of the two-body interaction is assumed. In fact, one can
vary the volume and surface compressibility coefficients
independently. This is equivalent to considering various
forms of two-body interactions which generate the same
mean field. We also obtain simple expressions for the
transition density and transition potential of the states.
We note that a classical model using a specific form for
the effective two-body interaction was employed recently
to study the effect of the surface vibration on the ISGMR.

The present method is based on the collective coupling
approximation of Bohr and Mottelson, ' extended in the
collective transport theory of Hofmann and Siemens"'
to include several collective degrees of freedom. The main
elements of the theory are the following. We first identify
the relevant collective degrees of freedom I Q„I and ap-
proximate the Hamiltonian of the system in terms of the
mean field HMF(r, p, I Q„)), assumed to depend on I Q~I.
We make use of the Strutinsky renormalization pro-

with

BELD(Q) ELD(Q) /~M (Firp' Igy I )
smooth

(2)

so that

E(Q)=(H(Q)) =ELD(Q)+E,h,o(Q) .

Here ELD(Q) is the LD energy and E,hd~(Q) is the Stru-
tinsky shell correction term. We require that the mean
field give a reasonable single particle spectrum and a one-
body density matrix. We then use the linear response
theory to derive equations of motion for the collective de-
grees of freedom, obtaining the RPA equations'2

&„,""(co)= g k„[k X'v(to)]—q'Xsv(to),
a5

where

I„'~,(to) =Tr(F&G (to)F, )

is the free particle-hole Green's function in the space of
collective coordinates. The form factor I' and the cou-
pling constant k&„are given by

aa
~g. (t.„')

'

a'8
k —X'v„(co=0) .P~ gg gg ggOggO P~

We point out that the RPA equations (4) can be obtained
in the usual way (avoiding collective coordinates) assum-
ing a separable two-body interaction of the form

v(1,2)= QFp(1)k„„'F,(2) .

It is clear from Eqs. (1)—(7) that the input in the
present approach is the mean field and the curvatures

cedure' to ensure that the approximated Hamiltonian
reproduces the constrained energy surface E(Q). We
therefore have

H(Q) QHMF(r' p' tgp I)+FIELD(Q)
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g (r ),r2, cp) =(HMF —E)—1

8 E(Q)/BQ&BQ„of the LD energy surface. Following
Shlomo and Bertsch, ' the single particle continuum is
treated exactly using the complete representation

u(r()U(r) )/IV (9)
g2

for the single particle propagator. Here u and v are the
regular and irregular solutions of the Schrodinger equa-
tion and W is the Wronskian. The free p-h Green's func-
tion G is then evaluated from

G'(r&, r2, ~p) = —g Nt, (ri)[g(ri, r2, et, +to)+g(ri r2, et —t0)]A(r2»
h

(10)

where Pt, (r) is the wave function of the occupied orbit h.
Using Eqs. (9), (10), and (6) we find P''(to) from Eq. (5)
and substitute the result in Eq. (4). The RPA response
function of the system to the scattering operator Fi is
given by

S„(tp)=—1m'„(co)
1

so that the ground state values are Q; =1. The corre-
sponding form factors

F; =

are

= g ~
(O~F ~n) ~25(E„Ep tp) —. —

aV aVFi—-—R, F2=(R r), —F3 ——V(r) ~

Br Br ' (15)

Using Eq. (8), the transition potential F„p to the collective
state

~

n ) is found as a linear combination of F&,

F„p gg k„„'T——r(F„p„p) Fz ——g a&F&, (12)
I Y P

where Tr(F p„p) is easily obtained from XR in the vi-
cinity of the resonance. The corresponding transition
density p„p(r) is then given by Xa~&, in obvious notation.

We now simply apply the method to study the interplay
between volume and surface vibrations in the ISGMR.
For the purpose of demonstration we assume a local mean
field of Woods-Saxon form which includes central, spin-
orbit, symmetry, and Coulomb potential:

It is possible to investigate the properties of the ISGMR
treating the quantities 8 (H)/BQ;BQJ as parameters.
However, these six parameters have no simple physical
meaning. It is more transparent to relate them to the
volume and surface vibrations of the matter density.

We relate the mean field vibrations to those of the
matter density

by fitting the adiabatic density calculated in the mean
field p(r) to a Fermi distribution pF,

pF [r qic q2a q3po] =q3po/I I+exp[(r —qic)/(q2a)] J .

(16)

X —ZVM„(r)= 1 0 65r, —.
The values of I q; j are obtained from the conditions

(r")= I r"p(r)dr= I r"pF(r)dr, (17)

X V(r)+ VI, roo" I
1 d
r dr

1+ 2 (1—&.) Vc.Ui

for n =0, 2, and 4. The ground state values q; = 1 corre-
spond to QJ

——1. Due to the constraint (r ) =A, we have
only two independent coordinates, taken to be q2 (surface)
and q3 (volume) ~ Considering small oscillations, we
evaluate

where

V(r) = Vpf (r) = Vp/[1+e "], (14)

~9'i

g=i

with R =roA', ro ——1.2 fm, Vo ———57 MeV, a, =0.65
fm, and VI, ——8.5 MeV. The Coulomb potential is that of'
a uniform charge distribution with the empirical rms ra-
dius. Clearly R, a„and Vp provide a natural choice for
the collective coordinates describing the oscillations of the
mean field. We define the renormalized collective coordi-
nates [ Q; I by writing

V(r IQ ])=V[r QiR Q2a Q3vp],

by varying QJ and solve the linear equations (q —1)
=D(Q —1) to find Q; in te™sof q2 and q3 ~ We there-
fore have, in our model calculations, the two form factors

F, = =gC('F. , Fp ——
av . av
Bq2 Bq3

= QCf'F;, (18)

where F; are given in Eq. (15), and C and CP are ob-
tained numerically. The corresponding transition densi-
ties are of the form
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FIG. 2. Response function of 'Pb to Fp using K« ——150
MeV Kpp 120 MeV, and K,p =40 MeV (solid line) and
K,p= —40 MeV (dashed line).

FIG. 1. Energy Ez of the isoscalar giant monopole resonance
as a function of K,p, using K„=150MeV and Kpp 60 MeV
(solid line) and 120 MeV (dashed line).

3c BPF 1 BpF
p&= xpF +c

x Br
(19)

9 BE
pp po 2

Bpo

9 BE"=A'p'a. a,

(20)

We study the ISGMR by varying these parameters.
Figure 1 shows a plot of the resonance energy E~ of the

ISGMR, for ' 0, Ca, and Pb, as a function of the
coupling K z. In Fig. 2 the RPA response function of

Pb for 'Fz is shown for K« ——150 MeV, Kq&=120
MeV, and K,z ———40 MeV (dashed line) and K,z ——40
MeV (solid line). For Pb, the ground state density pa-
rameters Eq. (16) are the following: c =6.48 fm, a =0.50
fm, and po

——0. 17 fm . The form factors (18)
afe F 0 30F]+ 1 18F2 1 30F3 and Fp 0 41F]
—0.10F2+0.22F3. From this preliminary investigation
we arrive at the following conclusions: (i) Ez is quite sen-
sitive to K«, the coupling between volu~e and surface vi-
brations. In the range

~
K,z~ (60 MeV, Ez is changed

where x =(3+y)/(1+y) with y =(ma/c) . The surface,
X„, volume, K&&, and coupling, K,&, compressibility
coefficients used in the present evaluation of Eq. (4) are
defined by

9 BEK„——a
Ba

by 2—4 MeV, leading to a significant change in K
(ii) The width of the ISGMR increases by more than a
factor of 2 compared to the uncoupled case (with only po).
(iii) Varying K„, K,z, and K&& within a reasonable
range, we find that the surface mode is not very collec-
tive. This may be due to the fact that at high excitation
energy the particle decay width is very large. (iv) The
form factor has a large component of Fz (az/a, ~2).
(v) Even though there are two collective degrees of free-
dom, there are many eigenmodes, only one of which
shows collective structure (contrast Ref. 9 and other
methods cited therein).

In summary, we have demonstrated that the present
method, based on the collective coordinates RPA, for
studying the ISGMR provides new insight into nuclear vi-
bration. This is due to the fact that the volume and sur-
face compressibility coefficients can be varied indepen-
dently. The method can be easily applied to studying gi-
ant resonances of other multipolarities, ' and it is numeri-
cally fast. However, in order to arrive at a firm con-
clusion concerning the compressibility of nuclear matter,
the following improvements are needed: (i) To reproduce
the empirical values of Ez, the nucleon effective mass
should be included. (ii) To extract the LD compressibility
coefficients, the contribution of the shell correction term
(K'""') should be evaluated. This may be particularly im-

portant in K„. (iii) Investigate the sensitivity of the re-
sults to the parameters of the mean field and the explicit
form for the fitted LD mass density distribution.
(iv) Carry out a systematic study for A &40. Work on
these points is now in progress and the results will be pub-
lished elsewhere.
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