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Three-nucleon bound-state collapse with Tabakin potentials
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The collapse of the three-nucleon ground state with separable two-body interactions of a Tabakin
type is investigated. A simple scaling property of this phenomenon is derived. Moreover, an inter-
pretation of the collapse is given in terms of the local equivalent of the Tabakin potential.

I. INTRODUCTION

Searching for interactions that can describe satisfactori-
ly the nucleon-nucleon scattering data and at the same
time allow a relatively simple evaluation of three-nucleon
observables, one is led to use separable potentials, prefer-
ably of low rank. In Ref. 1 Tabakin constructed a separ-
able potential of rank one with both attraction and repul-
sion, which is capable of reproducing accurately the S-
wave NN phase shifts up to moderately high energies. In
particular, the sign change of the phases, in the 3S; as
well as the 'S, partial waves, can be accounted for with
no need to introduce higher-rank interactions. Shortly
after Tabakin’s proposal, however, application to the 3N
system by different authors®* produced an unphysically
large value for the triton binding energy, in spite of a
proper description of the two-body data. In Ref. 2 Beam
ascribed this phenomenon, without explaining it, to the
existence of a zero-width resonance, alias continuum
bound state (CBS), in the Tabakin potential. In a series of
papers, about a decade later, Sofianos et al.* and Pantis
et al.’ studied in great detail this dramatic overbinding of
the triton (and of *He), calling it few-body bound-state
collapse (BSC). They used nonlocal potentials of higher
(2) rank, either purely separable or with local parts, to in-
vestigate the connection between the occurrence and loca-
tion of a CBS or a genuine resonance in the two-particle T
matrix. To that end the potential parameters were varied,
keeping the deuteron properties fixed as much as possible.
Their observations implied a generalization of Beam’s
conclusion, namely that the BSC can occur (but not.inev-
itably) when the two-body resonance pole lies close
enough to the real axis. Furthermore, the extent of col-
lapse surprisingly turned out to grow for the CBS (or res-
onance) moving to higher energies. Nevertheless, neither
of these phenomena could be explained satisfactorily, al-
though abundantly many numerical results gave some in-
sight into what was going on.

In this paper we study certain aspects of the BSC for
the Tabakin potential to shed more light on the character
of the collapse phenomenon. The interaction has a slight-
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ly different form than in Ref. 1, allowing for a relativisti-
cally covariant extension, which is used to study relativis-
tic effects in the three-nucleon system within the frame-
work of the Bethe-Salpeter equation.® In Sec. II the pa-
rameters of the form factors are given together with the
results for the trinucleon binding energies. Using simple
scaling arguments we show in Sec. III that the three-body
binding energy grows when the CBS moves to higher en-
ergies. Another way to look at the collapse phenomenon
is to introduce an effective local two-body potential. In
terms of such a local interaction we find in the region
where the collapse takes place a qualitatively very dif-
ferent behavior. This is discussed in Sec. IV.

II. TRITON BOUND STATES
FROM THE TABAKIN POTENTIAL

Throughout this paper we use a separable potential of
the form

Vip,p')=Ag(p)g(p’), (1)
with
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where A, a, B, ¥, and p, are parameters, to be adjusted
separately to the 38, and 'S, proton-neutron scattering
data. The factor v'my/E, is included in order to have
the same form factor as used in Ref. 6, where the square
root in the nonrelativistic case makes the Lippmann-
Schwinger  (LS) equation equivalent to  the
Blankenbeckler-Sugar (BSLT) (Ref. 7) equation. The ef-
fect of this factor is very small, both in the two-body and
three-body calculations. The original form factor of Ta-
bakin reads
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With the above potential the equal-mass LS equation for
the T matrix can be solved in closed form, yielding

T(p,p;E)=Ag(p)T(E)g(p’), (4)
with

2
f dk g“(k)
2_p2_ije)’

=V mNE N (5)
Ek=\/k2+m%1 .

The integral in Eq. (5), as for its principal value, is
evaluated numerically with high precision, after a suitable
subtraction. The parameters are not fitted to the experi-
mental phase shifts, but fixed by the S-wave scattering
lengths a, effective ranges ry, zeros of phases, and the
deuteron binding energy E4 (3S;) (see Ref. 6 for the re-
sulting phase shifts). The triplet and singlet parameters
are given.in Table I. With this two-body input we can
solve the triton binding energy E, and wave function

N E)=1+
87Tm

", d ’ j
¢(q,q"E)= Zf q 1 yilq,q;E)r | —E,—

3
j=r 4 m

with the driving term

)‘gi(p)gj(P’)

g
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TABLE 1. Tabakin potential parameters and low-energy
neutron-proton scattering quantities.
3S1 ISO

A —1835.6 GeV* —1539.3 GeV*
B 1.0152 GeV 1.0 GeV
a 0.16576 GeV 0.22525 GeV
Y 0.148 68 GeV 0.17887 GeV
De 0.41843 GeV 0.33479 GeV
a 5.424 fm —23.748 fm
ro 1.759 fm 2.75 fm
E, 2.2246 MeV

from coupled homogeneous Faddeev equations, restricting
ourselves to the 3S; and 'S, channels. For the case of
three identical fermions interacting through pairwise, se-
parable S-wave potentials of rank one, they read, after
partial-wave decomposition,

.y .. 1
Vig,qE)=CY [ _,dx

where the

are recoupling coefficients for spin and isospin, and where

the relative momenta p and p’ are given by
(a)
: 3S, Component
1
1.5 : 7S, Component
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2 2 ’ y X =
E,—(q°+q"*+qq9'x)/my

¢(q',q";E,) , (6)
‘Z’q“, , %)

=—q'—(q/2) and p’'=q+(q’'/2). Equation (6) is a
homogeneous integral equation in one continuous vari-
able. As a result it can be solved with high accuracy in
the bound-state region by straightforward discretization
procedures. With our Tabakin interaction the model tri-
ton supports two bound states with energies E,=858
MeV and E=5.83 MeV, to be compared with the experi-
mental triton bound-state energy of 8.48 MeV. With the
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.
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FIG. 1. Triton wave function with Tabakin potential. (a) Collapsed ground state; (b) first excited state.
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original Tabakin potential we obtain the values E,=333
MeV and E;=3.03 MeV, which is in rough agreement
with the old results.>® The latter numbers are consider-
ably different from ours, which is partly due to the fact
that Tabakin’s original triplet interaction has its CBS at a
lower energy, partly to the somewhat different 8 depen-
dence. Our ensuing triton wave functions are depicted in
Fig. 1. The ground state clearly manifests a collapsed
condition, its spatial extension being about one order of
magnitude too small. The excited state has its primary
peak at roughly the same place as the ground state, but on
the other hand exhibits a huge secondary bump, making it
a much more extended object. Interpreting this radial ex-
citation as the “physical” triton, as sometimes suggested,
is rather arbitrary, since the deep-lying ground state is in
no way spurious. It is a proper solution of the Faddeev
equation and does not violate any bound (see also below).
In the next two sections we study, on the basis of a slight-
ly simplified, three-boson system, the occurrence and
behavior of a collapsed triton, and try to give an interpre-
tation.

ITII. SCALING OF TRITON BINDING ENERGY

Henceforth we will consider, for the sake of simplicity,
a system of three identical bosons interacting pairwise
through the 3S; Tabakin potential given in the preceding
section. The corresponding Faddeev equation is
equivalent to Eq. (6), but without the summation and the
recoupling coefficients. For the fixed parameters above
we again obtain two bound states with energies E, =860
MeV and E.=13.1 MeV. Let us now examine how E,
changes if we vary the parameter 3, while at the same
time we keep the deuteron binding energy fixed and do
not allow the CBS to become a genuine resonance. There-
to, the coupling A and the zero of the phases p, have to be
adjusted accordingly. Fulfilling these constraints, E; and
p. are calculated as a function of B and plotted in Fig. 2.
Also, the lower bound on E, from Ref. 8,

E g=2E43M\), (8)

is shown.

From Fig. 2 we see that E, decreases roughly quadrati-
cally and p, linearly with 8. In other words, E; grows
when the CBS moves to higher energies. This is precisely
the phenomenon which was observed in Ref. 5, but could
not be explained. In our simple rank-one model it turns
out to be an inherent scaling property of the two- and
three-particle equations. First we look at the two-body T
matrix of Egs. (4) and (5). Let us forget for the moment
the factor V'my/E;. The condition on A to get the
deuteron pole reads

q”’g(p)g(p’)
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FIG. 2. Scaling in f3 of three-boson triton binding energy for
38| Tabakin potential with CBS.
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If we change B to B’ and simultaneously p, to p.
=(B'/B)p., the structure of the integrand in Eq. (10) does
not alter. After the change of variables k—(fB'/B)k, we
get for the new coupling A,

3 " 2—-—k2 2
Lo L B pegleemk)
A 8mmy B Y0 (kP 4BR)

(1n

So if we take A’ ~(B'/B)*A and p. ~(B'/B)p. the deuteron
binding energy can be kept fixed. Moreover, analogously
it follows that with this choice for A’ and p; the condition
for a CBS at an energy E =p2/my,

k*—p?

1 ©
dk k?————— |
fo (kZ B2)4

T e 2
81'rmN

1

n = (12)
does not change. Taking into account the factor
V' 'my/E; will not influence the scaling of p.. As for A,
significant deviations only occur for very large values of
B, as has been checked numerically. Turning to the
three-body system we have the integral equation

2

., A’ *® ’ 1
Haq"E)=5"5 [ dg' [ dx—

2 ”?2 ’ T
E,—(q°+q""+qq9'x)/my

¢(q’.q"";E,) (13)
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—E,—=
t 4 myN

with p=—q'—(q/2) and p’=q+(q'/2). If we now change f3 to 3, p. to (B /B)p., and the variables g and g’ to
(B/B')q and (B/B')q’, respectively, the different factors in the integrand alter as follows:
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4 , 3
g(plg(p')— —'B— gpgp’), r— B |y ,
B B
(14)
a'Q'q'z _ﬁ_'- dqlqlz

—E,—(g*+q"*+4q'x)/my

As 7 does not change and all the factors '/ drop out,
we regain the original equation provided that
E} =(8'/B)*E,, and indeed we see that E, grows quadrat-
ically with 3.

1V. BOUND-STATE COLLAPSE OF THE TRITON

An alternative way to study the BSC is allowing the
CBS to become a resonance. This can be accomplished by
varying 8 and adjusting only A to the deuteron binding
energy. Figure 3 shows how this resonance pole moves
into the lower half of the complex k plane (k =v'myE ),
together with its counterpart at — k*. The effect on E, is
depicted in Fig. 4, being clearly much more dramatic than
in the scaling case. We see that E, increases by almost a
factor of 20, while B changes only 10%, which can indeed
be called a collapse. This qualification becomes even
more appropriate if we see what happens with the triton
wave function, which is plotted in Fig. 5 for three values
of B. B=1.0 GeV obviously corresponds to a collapsed
state, 3=0.6 GeV to a noncollapsed one, whereas for
B=0.8 GeV we are apparently in an intermediate situa-
tion.

From Figs. 3—5 it seems safe to conclude that the
three-body collapse, at least for the interaction we use,

occurs when the two-body resonance pole is close enough-

-—6]00 -5]00 —4i00 -3[00 —2[00 -1100 0

B —(B/BVE, —(q°+q"+aq'x)/mn

f

to the real axis, and will be raised if the pole moves far-
ther into the complex plane. The latter conjecture, how-
ever, gets invalidated if we go to higher values of 8. With
a B of 2.0 GeV, for example, E; becomes as big as 4250
MeV, although in that case the pole has a larger imagi-
nary part than in the noncollapsed one of B=0.7 GeV
(E;=17.8 MeV). In order to get at least an idea of what
might give rise to the collapse after all, we will try to
make the (nonlocal) Tabakin potential more transparent.
A way to do this is by constructing a local potential in
coordinate space, that, at some fixed energy E, produces
exactly the same two-body wave function. For an S-wave
bound state (deuteron), this potential is given by

2 2

Vir— d*¢(r)/dr _E, Ey>0. (15)
mno(r)

¢(r) in Eq. (15) is just the Fourier transform of
g (PN Eq+(p?/my)]~"', where g(p) is the Tabakin form
factor. For calculational reasons we again drop the factor
V'my/E, from g. This does not change the qualitative
properties of ¥ and ¢. Taking for E, the deuteron bind-
ing energy, we compute ¥ (r) and ¢(r) for the same values
of B as above. The results for V are plotted in Fig. 6, the
deuteron wave function in Fig. 7. For comparison these
quantities are also calculated for the Graz-II (Ref. 9) po-
tential, which is a realistic separable potential of rank

Im(k) (MeV)
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FIG. 3. Pole trajectories in the complex k plane of the two-body T matrix for the 3§, Tabakin potential with fixed a,,p,, as a

function of .
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FIG. 4. Collapse of the three-boson triton binding energy for
the 3§, Tabakin potential with fixed a,,p., as a function of .

three (3S;) with reasonable  off-shell properties. From
Fig. 6 we see that at intermediate and long distances the
Tabakin potential with 8=0.6 GeV qualitatively behaves
in the same way as Graz-II, due to the location of the
zeros of ¢(r) and ¢''(r). In that region both interactions
exhibit a repulsive core and an attractive tail. At short
distances (r<0.3 fm for Tabakin and r<0.1 fm for
Graz-II) there is a deep negative part with a local max-
imum, whereby Graz-II has an additional structure for
r <0.05 fm. Nevertheless, the core repulsion is apparently
strong enough to largely screen this inner region. Close to
B=0.8 GeV, however, a crossover of these zeros takes
place, thereby changing drastically the properties of the
equivalent local potential. For $>0.8 GeV, V suddenly
becomes attractive everywhere, in two more or less
separated regions, however. Remarkably close to this
crossover point the triton binding energy starts to rise
steeply. For values of 8 larger than 1 GeV the potential
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FIG. 5. Triton three-boson wave function with the 3S; Taba-
kin potential for varying S and fixed a,y,p..
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FIG. 6. Equivalent local potentials of 3S; Tabakin (fixed
a,y,p.) and Graz-1II interactions at deuteron binding energy. (a)
Inner region; (b) intermediate and outer region.
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FIG. 7. Radial S-wave deuteron wave functions for *S; Ta-
bakin (fixed a,v,p.) and Graz-II potentials.
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does not change its character anymore, there is no second
crossover. This might indicate why in this region the col-
lapse steadily proceeds. If the BCS is interpreted in this
way, also the systematically large triton binding energy in
the case with a CBS becomes plausible, since then there is
no crossover at all, the local potential being attractive al-
ways. On the level of the deuteron wave function the ef-
fect of the crossover can be seen in Fig. 7. For f=1.0
GeV there is an unrealistic, huge negative peak at short
distances. This bump, however, shrinks rapidly for de-
creasing f3, a manifestation of the mentioned screening ef-
fect.

Of course one should beware of drawing too rigorous
conclusions from such an incomplete picture. After all,
the local equivalent constructed above merely provides a
single-energy snapshot of the Tabakin potential. On the
other hand, it may emphasize once more the importance
of getting the deuteron properties right when looking for a
realistic description of the triton.

V. CONCLUDING REMARKS

The study of the Tabakin potential in this paper has
been motivated by the wish to understand how such a
simple separable potential can exhibit so totally different
* aspects when incorporated in two- or three-body calcula-
tions. In the nucleon-nucleon system it allows a surpris-
ingly accurate reproduction of the S-wave scattering data
up to moderately high energies. When applied to the tri-
ton, however, with unaltered parameters, it produces a
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dramatic overbinding. From simple scaling considera-
tions the puzzling dependence of the three-body binding
energy on the position of the continuum bound state can
be explained. Moreover, in terms of the effective local
two-body potential, the Tabakin interaction leads to a
strong attraction at short distances, which, in combination
with the absence of a hard-core repulsion at intermediate
distances, allows the collapse of the three-body wave func-
tion to take place.

It is true this collapse can be circumvented by modify-
ing the parameters, but not without spoiling the nice two-
particle results. Hammel et al.!® have used Tabakin-type
potentials in relativistic three-nucleon calculations based
on a quasipotential approach. Their chosen triplet in-
teraction, however, gave a rather poor description of the
NN phase shifts, even at low energies. So, although it is
interesting to see that the three-body BSC can be avoided
by changing the potential parameters in only one of the
channels, in actual three-nucleon model studies more con-
clusive results may be obtained by replacing in that chan-
nel the Tabakin potential by one that at least properly fits
the low-energy scattering data, like, for instance, the
Yamaguchi interaction. This is actually what is done in
Ref. 6, where the effect of relativity in the triton is inves-
tigated employing the full three-body Bethe-Salpeter equa-
tion.
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