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Convergence of Faddeev partial-wave series for triton ground state
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An iterative technique was used to solve the Faddeev equations, which determine the bound state
of the triton, for the Reid soft core, Argonne vl4, super soft core (C), and de Tourreil-Rouben-

Sprung (B) potential models. Separate solutions for each model were generated for 5, 9, 18, 26, and
34 three-body channels, the latter corresponding to all two-nucleon partial waves with J (4. The
results indicate that the odd partial waves do not contribute substantially to the energy, and that the
J&4 partial waves probably contribute less than 10 keV. Coulomb energies, radii, and probability
percentages of various wave function components were also calculated.

I. INTRODUCTION

Many techniques have been used to solve the
Schrodinger equation for three nucleons. The august
Rayleigh-Ritz variational method was the first technique
applied to "realistic" potentials, ' which include the com-
plexities of spin and isospin as well as a strong tensor
force. The additional complication of a strong short-
range repulsion between two nucleons substantially slows
the convergence of the variational upper bound to the ex-
act eigenvalue as the trial wave function becomes exact.
Modern applications also have some difficulty handling
the strong tensor force.

Other methods are not free of this problem, and,
indeed, introduce new ones. Various discretization pro-
cedures map the original "exact" Schrodinger equation
into a truncated problem which can be solved exactly in a
numerical sense. In the hyperspherical technique one ex-
pands the wave function as an infinite series of general-
ized partial waves, obtaining a finite set of coupled ordi-
nary differential equations to be solved after truncating
the series. Conversely, in the Faddeev method one ex-
pands the (local) two-nucleon potential as a sum of nonlo-
cal potentials, each of which acts in a single two-nucleon
partial wave, a problem that can be solved exactly in the
numerical sense. The Green's function Monte Carlo
method, which holds great promise for nuclear physics,
has not yet been applied quantitatively to this problem be-
cause of difficulties with fermion degrees of freedom.
Brute force attempts to solve the Schrodinger equation
directly have not proven particularly successful.

The Tower of Babel situation with disparate approxi-
mations has been distracting, since no benchmark solu-
tions exist for physically realistic problems. Accurate cal-
culations are also necessary if one wishes to assess the im-
portance of three-body forces, since first-order perturba-
tion theory may not be adequate. In this study we present
calculations within the Faddeev framework, which in-
clude up to 34 three-nucleon partial waves, and variation-
al upper bounds based on these wave functions. The Fad-

deev partial-wave series converges rapidly. For our larg-
est calculations, possibly the largest ever attempted, we
believe that the binding energy is converged to within 10
keV of the solution for the complete Schrodinger problem,
and therefore provides a benchmark for other calculation-
al techniques. An interesting subsidiary result is that the
odd nucleon-nucleon partial waves contribute minimally
to the trinucleon binding energy.

Traditionally, Faddeev calculations are categorized by
numbers of channels, with each channel specifying the an-
gular momentum quantum numbers of an interacting pair
of nucleons, and the corresponding quantum numbers of
the remaining spectator nucleon with respect to the center
of mass of the pair. There are, therefore, two such chan-
nels for each nucleon-nucleon partial wave, except for to-
tal two-nucleon angular momentum J equal to zero,
which is restricted to one. Typically, one solves for 5 or
18 channels, the former including only the ('So, S~ D~)-
pair partial waves (all even parity waves with J& 1) and
the latter including all pair partial waves with J&2. We
report in Sec. III calculations corresponding to 9 channels
(even waves only for J & 2), 26 channels (J& 4 with no
odd waves for J=3 and 4), and 34 channels (all waves
with J & 4), as well as the standard 5 and 18 channel cal-
culations. These solutions were obtained for the Reid soft
core, Argonne V~4, super soft core (C), ' and de
Tourreil-Rouben-Sprung (B) (Ref. 11) potential models.

Our best results have a defect of 0.8—1.1 MeV in the
theoretical binding energies of H compared with the ex-
perimental value. This may indicate the presence of a sig-
nificant contribution from three-nucleon forces. We also
demonstrate that perturbation theory for the J (2 odd
partial waves is not particularly successful.

II. NUMERICAL METHODS

Following the procedures used in our previous
configuration-space Faddeev calculations, we write the
total wave function for three identical nucleons as the
sum of the three Faddeev amplitudes:
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q'=0(xi, yi)+4(x2 y2)+Wx3 y3)

=0i+4+A
where we use the Jacobi variables

X =I' —I'kl J

1y;= T(rl+rk) —r; .

(2a)

(2b)

The Schrodinger equation can be separated into three cou-
pled Faddeev equations:

[T+V(x ) E—]P = —V(x )(g +Pk) .

For identical particles the Faddeev amplitudes g; all have
the same functional form, and it is only necessary to solve
one of these Faddeev equations. We use the j-J coupling
scheme for the partial wave representation of the Faddeev
amplitudes and write g; in the form:

(x;,y;)
1[(l.~.il'.;(L,S )J jgM;(t T )aM ), ,

&i3'i
(4)

where l~ is the relative orbital angular momentum of particles j and k; s~ is the spin angular momentum of particles j
and k; l. is the total angular momentum of particles j and k; L. is the orbital angular momentum of particle i relative
to the center of mass of particles j and k; S~ is the spin of particle i (S~ = —,); J is the total angular momentum of par-
ticle i; g is the total angular momentum of the three-body system; t is the total isospin of particles j and k; T is the
isospin of particle i (T = —,); u is the total isospin of the three-body system

Following Noyes' we introduce the hyperspherical variables defined by

x; =p cosO

and

y; = —,
' 3/3p sin0 . (5b)

Now the Faddeev equation for g can be written in the form

1 8 1
2+ +2

Bp p ~p p BO

l (l +1) L (L +1)
pcos0 psinO

11 (p, 0)—g U t3(pcos0)11'(p, 0)

= QU &(pcos0) f K&t3(0, 0')ft3(p, 0')d0', (6)

where ~ = mE/fi and —U~p(pcos0) is m/fi times the partial wave projection of V(x;). The Kz (tt, 00)can be evaluat-
ed by standard angular momentum recoupling techniques, ' and 0+ and 0 are defined in Ref. 7.

The numerical calculations are facilitated by defining a smoother function F~(p, 0) by

—KP

(l (p, 0)=F (p, 0) p'"

Equation (6) then has the form

1 1+ + —ZK'

Bp 4p p B0 &p

l (l +1)
pcos 8

L (L +1) F (p, 0) gu &(pcos0)Ft—3(p, 0)
p sin 0

= gu~z(p cos0) J K&t3(0, 0')Fit(p, 0')d 0', (7)

with the boundary conditions

F (p, 0) =0 for p=0,

F (p, 0)=0 for 0=0 and n/2, .

BF (p, 0)

Bp
=0 for p=p, „.

(8b)

(8c)
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To solve Eq. (7) we use the orthogonal collocation technique. ' First the F (p, 8) are expanded in bicubic Hermite
splines on a rectangular grid in the p-0 coordinates:

F (p, 8)= Q Q a „s (p)s„(8) . (9)
m=1 n=l

The orthogonal collocation procedure requires that one determine the values of a „ for which the functions Fa(p, 8)
satisfy Eq. (7) at M distinct values of p; and N distinct values of 8J (the orthogonal collocation points). Thus we require
that

M N

s "(p;)s„(8,)+
m =1 n =1 Pt

l (l +1)
cos OJ

L (L +1)
s (p; )sn (8j ) + ~ sm (p; )s„"(81)

M N—2as' (p;)s„(8J) .a „—g g g [u ji(p;cos8J)s (p;)s (8j)]a „
m=ln=l P

M N g+

g u (p;cos8. ) f IC p(8, 8')s„(8')d8' s (p;) a „.
m=1 n=l P y j

(10)

P g P Aaijpmnamn , g g g Baij,pmnamn
P m n P m n

which can be written as the matrix equation

Aa=Ba . (12)

However, the A«~ pmn depend parametrically upon the
unknown x. In order to solve the equation we introduce a
new parameter A, and rewrite Eq. (12) in the form

In our previous calculations we wrote this equation as
a matrix eigenvalue problem for ~ and then used the
power technique' to solve for v and the a „. This re-
quires the solution of very large matrix equations and the
numerical calculations become prohibitive for more than
five channels. Consequently, for our present calculations
we adopt a different technique. Equation (10) is of the
form

(15)

To solve this by the power method we assume an initial
eigenvector a' ' and generate the sequence a' n', where

a(n) ~ (n —1) (16)

(H+oI)a =(A+o)a . (17)

This sequence wi11 converge to the eigenvector with the
largest (magnitude) eigenvalue A. However, it has been
shown' that for realistic potentials there may exist a neg-
ative eigenvalue A, whose absolute value is less than unity.
Since we want to find the eigenvalue A= I/A. = 1.0 as the
largest eigenvalue of H, we cannot use the sequence gen-
erated by Eq. (16) in that case. In order to generate a se-
quence which does converge to the desired eigenvalue, we
shift the spectrum of H; i.e., we rewrite Eq. (15) in the
form

Ha=A, Ba . (13) With the proper choice of o, the sequence

For a fixed value of n, this becomes a generalized eigen-
value problem with eigenvalue A, . Thus, to find the bound
state energy we search for the value of v for which the
eigenvalue A, has the value unity. The advantage of using
Eq. (13) is that the matrix A can be written in a block di-
agonal form. From Eq. (10) one can see that the only
term which couples the different channels on the left-
hand side is the uais term. Since the tensor force couples
at most two channels, the inverse of A can be calculated
for either one or two channels at a time depending on
whether a tensor force is present or not. This consider-
ably reduces both the computer time and memory require-
ments of the numerical algorithm described below.

Equation (13) can be solved by a variation of the power
method. Because the power method yields the largest
eigenvalue, we first rewrite the equation in the form

a'"'=(H+ oI)a'" (18)

b(n) ~ (n —1)

which can be rewritten (H =A 'B ) in the form

gg(n) B ( —1)

After solving Eq. (20) for b'"', one can use

a (n) b (n) +Oa (n —1)

(19)

(20)

(21)

to find the next vector in the sequence. This algorithm is
identical in practice to solving Eq. (16) rewritten as

wi11 converge to the eigenvector corresponding to A=1.0,
when we choose the correct value for n..

The actual numerical calculations were performed by
first solving the equation

Ba=—a .1

Thus we now have a standard eigenvalue problem of the
form

(n) ~rr-(n —1)

and then using

a 'n'=a'n' ~~a '

(22)

(23)
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This procedure is similar to the averaging of eigenvector
iterates used previously' to eliminate undesired oscilla-
tions in the sequence generated by the power method
when a matrix has positive and negative eigenvalues with
approximately the same absolute value.

III. RESULTS AND CONCLUSIONS

For each of the four potentials listed in the Introduc-
tion, Reid soft core (RSC), Argonne U~q (AV14), super
soft core (SSC) ( C), and de Tourreil-Rouben-Sprung
(TRS) (8), the Faddeev equations were solved retaining 5,
9, 18, 26, and 34 channels. For purposes of comparison
with previous results, RSC and AV14 results were also
obtained for three channels (s-wave spectator with
'So, S& D~ force-s). We note that our SSC (C) potential,
generously provided by Sprung, has slightly different
singlet-odd forces than the published version. These par-
tial waves typically contribute in toto less than 20 keV of
the binding, and only 12 keV for the SSC ( C) potential, so
the difference is quite negligible. The RSC partial-wave
potentials for J& 2 were taken from Day. s

Two different sets of meshes were used. ~ For the small-
er number of channels we used 20 break points in both p
and 8, extending to 24 fm in p, scaled by 1.3, and using a
(12,5,3) distribution in 8. The p scaling means that the
break points were not equally spaced:

p. +i p-. =&,(p. p—. i)

The 8 splines were distributed uniformly in each of three
equally spaced intervals between 0 and m/2; the interval
nearest m/2, where the two-body potential is largest, con-
tained the most splines. For the large number of channels
we reduced the number of splines to 14, the maximum
value of p being 20 fm, and the 8 distribution being
(9,3,2). As stated earlier, we solved for a strength parame-
ter A, , rather than the eigenenergy ~, and extrapolated to
A, =1. We subsequently found that in the vicinity of
A, =1.0, a small change of b.A, =10 corresponded to a
change of approximately 1.7 keV in the binding energy,
E~. Results were checked using the Rayleigh-Ritz' vari-
ational procedure. In addition to calculating (H&, we
have also calculated the point Coulomb energy, Ec, the
Coulomb energy, Ec (corresponding to a dipole nucleon
form factor), the hyperspherical approximation to EC,EC,
the point nucleon rms charge radii, (r &H, and (r &H

(for He and H, respectively), and the probability percen-
tage of S', P, and D states. These results are shown in
Table I. We have also calculated, but not tabulated, the
percentage of S" state, which arises solely from the odd-
parity nucleon-nucleon partial waves; typically, this num-
ber is of order 3—5&& 10, except for the RSC potential,
where the value of 2&10 reflects the unusual p waves
of that potential. The P-state percentage can be further

TABLE I. Results of trinucleon Faddeev calculations for 3, 5, 9, 18, 26, and 34 channels for four different potential models, as
well as calculated Coulomb energies, charge radii, and percentages of S',P, and D states.

Model

RSC 3'
Sa

98

18'
18
26
34

E,
(MeV)

6.384
7.023
7.210
7.231
7.225
7.342
7.346

—&0&
(MeV)

6.385
7.023
7.211
7.231
7.225
7.342
7.345

Ec
(keV)

613
. 635

642
643
647
647
648

Ec
(keV)

589
609
615
616
620
620
620

EH

(keV)

597
616
622
624
628
628
628

( 2&1/2

(fm)

1.99
1.89
1.87
1.87
1.86
1.85
1.85

2 &'|/2

(fm}

1.77
1.70
1.68
1.68
1.68
1.67
1.67

ps
(%)

1.91
1.67
1.60
1.46
1.44
1.41
1.40

pp
(%)

0
0.08
0.09
0.08
0.08
0.08
0.08

PD
(%)

8.01
9.34
9.43
9.42
9.43
9.50
9.50

AV14 3
Sa

98

18'
26
34

6.803
7.441
7.569
7.573
7.667
7.670

6.803
7.441
7.S69
7.S73
7.667
7.669

628
647
651
653
656
656

601
619
623
624
627
627

609
626
630
632
634
634

1.94
1.86
1.84
1.84
1.83
1.83

1.75
1.68
1.67
1.67
1.67
1.67

1.53
1.36
1.32
1 ~ 14
1.12
1.12

0
0.08
0.08
0.08
0.08
0.08

7.55
8.86
8.91
8.90
8.96
8.96

SSC (C) 5'
9a

18'
18
26
34

7.457
7.521
7.490
7.490
7.535
7.534

7.457
7.521
7.490
7.490
7.535
7.534

653
654
654
654
655
655

620
622
622
622
623
623

626
628
628
628
629
629

1.86
1.85
1.85
1.85
1.85
1.85

1.68
1.68
1.69
1.68
1.68
1.68

1.40 0.06
1.38 0.06
1.25 0.06
1.25 0.06
1.24 0.06
1.24 0.06

7.96
8.00
7.95
7.95
7.98
7.98

TRS (B) 5'
5
9

18
26
34

7.470
7.493
7.555
7.516.
7.569
7.565

7.431
7.443

654
654
655
656
657
657

622
621
623
623
624
624

628
628
630
630
631
631

1.85
1.85
1.85
1.85
1.84
1.84

1.67
1.67
1.66
1.67
1.67
1.67

1.52
1.53
1.51
1.34
1.32
1 ~ 32

0.06
0.06
0.06
0.06
0.06
0.06

8.57
8.57
8.60
8.56
8.60
8.60

'Calculated with 20 p and 8 break points.
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broken down into that for the P and three separate P
states (P,P', P") if desired.

Our triton binding energies compare favorably with
several recent Faddeev calculations. Five-channel calcula-
tions for the RSC potential by Bomelburg' yielded
—7.04 MeV, by Ishikawa et al. yielded —7.03 MeV,
and by Hajduk and Sauer' yielded —7.023 MeV. The
large 18 channel calculations by Ishikawa et al. gave
—7.24 MeV and those of Hajduk and Sauer yielded
—7.232 MeV. Chauvin et al. ' found —7.50 and —7.51
MeV for the five channel SSC (C) and TRS (B) poten-
tials. Variational calculations have typically yielded
upper bounds of —6.7—& —7.0 MeV and extrapolate to a
larger binding energy.

All of our results can be qualitatively understood in
simple terms. The Coulomb energies scale roughly as
I/(r )'~; more precisely they scale as ( I/r ), which is
the hyperspherical approximation to the Coulomb energy.
The latter is between l%%uo and 1.5% too high, which
nevertheless is an excellent approximation. The difference
of the He and H charge radii reflects the difference be-
tween the nn and np forces; the former is the weaker and
allows the two like nucleons to be further from the center
of mass than the odd nucleon. Thus the charge radius of
He is larger than the mass radius, while the converse

holds for H. The difference varies from 0.17 to 0.22 fm
for the potential models studied. The radii decrease with
increasing binding roughly as Ez ', if the wave func-
tion tails dominate. The percentage of S' state, Pz,
roughly reflects the difference of np and nn forces. It de-
creases as the number of channels increases (i.e., the force
becomes more complete). This decrease may simply re-
flect the stiffening of the "effective spring constant" as
the binding increases, thereby leading to a decrease in the
size of the S' state, which is but a mixture of excited
states in a shell-model description. The trinucleon P
states arise only from a subset of the non-s waves for both
interacting pair and spectator, which typically contribute
only 2—3%%uo of the potential energy; their percentage is
correspondingly miniscule. The complete D-state percen-
tage for each case is very close (within 3') to 1.5 times
the corresponding D-state percentage of the deuteron.
This result can be understood approximately if one per-
forms a perturbation theory analysis, as is demonstrated
in the Appendix. The higher partial waves (beyond
Si- Di) generate small tensor force contributions.

Table II breaks down the contributions to (H ) for the
RSC 34 channel case into kinetic energy, ( T), and poten-
tial energy, ( V), while the latter is further decomposed
according the nucleon-nucleon (partial wave) total angular
momentum and parity. The bulk of the binding arises
from the Si Di (J =1+) com-ponent of the force. The
higher partial waves (J=2, 3, and 4) are much smaller
and decrease rapidly in importance because of the angular
momentum barrier. We believe the contribution to the
binding energy of partial waves with J&4 to be only a
few keV. Also of interest is the very small contribution of
negative parity waves ( —0.2 MeV) in going from 9 chan-
nels (positive parity J&2) to 18 channels (all J&2). In
each case in Table I, the transition from 9 to 18 channels,
or 26 to 34 channels involves minimal accrual of binding.

TABLE II. Decomposition of the RSC 34 channel binding
energy into kinetic and potential energy parts, and the further
breakdown of the latter by nucleon-nucleon (partial-wave) total
angular momentum and parity. All energies are in MeV.

Total

0+.
0
0:
I+:

2+
2

20

3+ ~

3
3 ~

4+.

—13.553
—0.176

—43.874
+0.227

—0.188
—0.247

—0.117
+0.002

—0.014
—0.006

—13.729

—43.647

—0.435

—0.115

—0.020
—57.746

0.200
—57.946
+50.600
—7.345

The last figure quoted for the various energies present-
ed in Tables I and II is not necessarily significant. We
have chosen to quote at the keV level so that differences
of energies can be easily assessed. The latter should be re-
liable under variation of quadrature meshes, even though
the minuend or subtrahend is not.

The results for the TRS (8) potential are only partially
complete. The variational bounds are rather considerably
at variance (-50 keV) with the Faddeev eigenvalues. We
have traced at least part of the problem to the unusual
structure of this potential, which is very smooth for small
distances but then abruptly changes. This change in the
region from 0.5 to 1.0 fm necessitates a rather severe
redistribution of spline break points. The scaling algo-
rithm that we have used was designed to handle the strong
short-range repulsion, and not abrupt midrange varia-
tions. Nevertheless, because our results are reasonably sa-
tisfactory (though less so than for the other potentials),
because we are interested primarily in convergence with
respect to J, and because the TRS (8) potential is quite
similar to SSC (C), we have chosen not to redesign our
spline mesh to accomodate this particular model.

Finally, we address the question of whether the effect
of the higher-order partial waves can be determined accu-
rately using first-order perturbation theory. In Ref. 22 we
developed a simple trick to decompose the Coulomb ener-

gy into first- and second-order contributions (in a, the
fine structure constant), assuming that third order is
negligible. This technique has been extended by Hajduk
to the next order. Writing a Hamiltonian H as IIp+AH,
where b,H is a (presumably) small pertu'rbation and where
H

~

%') =E
~

0'& and Ho
I

'Po& =Eo
I
4'o) we can calculate

four independent quantities, in addition to
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TABLE III. Decomposition of RSC binding differences (by channel) according to their perturbation
theory content using Hajduk s relations. Here, the E; represent powers of A, , where A, AH is the differ-
ence of the Hamiltonians for n and m channels. All energies are in MeV.

Channels

5—9
9—18
18—26
26—34

—7.210
—7.231
—7.342
—7.345

—7.023
—7.210
—7.225
—7.342

—0.174
+0.511
—0.099
—0.003

—0.014
—0.891
—0.020

0.0001

0.001
0.359
0.003

—0.0003

(0 iHi%)=E:

(e, i Hp i e, ) =E, ,

(e, iaHie, )—=E, ,

(+~AH ~e)—=SE,
(4 iHp i%') =Ep .

(24)

(25)

(26)

E=Ep+E& +E2+E3,
E,=(+, ~Hp ~e, ),
Ei ——(4p

i
bH

i
0'p),

(28)

(29)

(30)

E2 =25E+3Ep —3Ep —2E& =3(E—Ep )—2E] —AE

(31)

Further assuming that E4, the contribution to E from
fourth order in hH , is neglig'ible, we can use the standard
perturbation theory expressions and solve for Ez and
E3 in addition to the trivially obtained Ep and E

&
~

Hajduk's relations are

IV. SUMMARY

In conclusion, we have calculated Faddeev eigenvalues
and variational bounds, Coulomb energies, radii, and com-
ponent probability percentages of states for 5, 9, 18, 26,
and 34 channel approximations in the solution of the tri-
ton ground state for four different potential models.
Variational bounds and Faddeev eigenvalues are in excel-
lent agreement, except for the slightly less satisfactory
TRS (B) potential results. Convergence with increasing J
is evident and we estimate less than 10 keV for the omit-
ted J&4 higher partial waves. Negative parity nucleon-
nucleon partial waves play only a small role in the binding
energies, although they modify the small wave function
components (S' and P states) non-negligibly. A perturba-
tion theory analysis indicates that first-order perturbation
theory works quite well for the positive parity nucleon-
nucleon partial waves, but not at all for the J & 2 negative
parity waves. Coulomb energies and radii vary predict-
ably with binding energy; the S'-state probability general-
ly decreases with increasing binding energy (although not
universally), while the D-state probability seems deter-
mined by the corresponding probability for the deuteron.

E3 —— hE 2Ep+—2Ep+—E) ———2(E Ep)+E)+h—E .

%'e apply these relations to the RSC potential and the
5—9, 9—18, 18—26, and 26—34 channel eigenvalue differ-
ences, which are given in Table III. As an example, the
necessary energies for the 5—9 channel differences are
E—Ep = —0.1873 E& = —0. 1737 and AE = —0.2004
leading to the results shown in the first line of Table III.
This 5—9 channel energy difference is accurately given by
perturbation theory; conversely, the 9—18 channel differ-
ence is not even closely approximated by first-order per-
turbation theory. The reason is that the odd nucleon-
nucleon partial waves couple strongly to the small com-
ponents of the wave function which are substantially
modified, as evinced by Table I. Large fractional changes
in these components couple back to the potential and pro-
duce large second-order (and higher) energy shifts. In fact
the 5—18 channel shift in perturbation theory is roughly
260 keV repulsive, while the complete result is roughly
210 keV attractive. The positive parity 18—26 channel
shift and the negative parity 26—34 channel shift are
dominated by the first-order result. Qualitatively similar
conclusions hold for the other potentials. This result ap-
pears to contradict the results of Ref. 27.
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APPENDIX: D-STATE PROBABILITY
RELATIONS

In order to relate the D-state probability percentage for
deuteron (d), triton (t), and alpha (a) particles, we make
six specific assumptions. Although the accuracy of these
Ansiitze is difficult to access, they are all reasonable. We
also note that calculating percentages of various wave
function components is a theorist's game; it is possible to
prove using general arguments that such quantities are
not measurable. They are nevertheless useful theoretical
constructs.

We assume that (1) perturbation theory can reproduce
the D state of each system; (2) we can neglect mixed sym-
metry S states and all P states, le"ving only spatially sym-
metric S states as our basis; (3) high-momentum com-
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ponents dominate the tensor force, and create virtual
states of high energy; (4) the energy of these virtual states
is roughly independent of system; (5) in the t and a the
three- and four-body contributions to PD are negligible;
(6) the correlation functions for the d, t, and a particles
are the same.

Given our s-wave basis functions 0'o, the D-wave com-
ponent is given perturbatively by

/
X ) (N

/

Vz-
i ufo)

(Al)
Eo —E

'pD= 6'«o) VTq'o= g
%&0

(0/ V, /X)(X/ V, (0)
Pg) ——

x~o (Eo Ex)'— (A2)

The quasideuteron approximation, assessed in Refs.
29—31, presumes that E is large and thus independent of
the system, because only the interacting two-body pair is
important. Moreover, since VT is a two-body operator,
VT generates two-, three-, and four-body terms. Because2

of the high momentum components involved, which are
lacking in %0, the three- and four-body terms should be
considerably suppressed. Because our basis is space sym-
metric, we can factor the spin-isospin function from the
matrix element in Eq. (A3):

(A4)

where VT is the radial part of the two-body tensor force,
and A,z is the spin-isospin matrix element for A =2,3,4.
Performing this latter algebra we find that all PD's are
simply proportional if the radial matrix elements and E
(term in parentheses above) are independent of A. In par-
ticular, we obtain

and

P(D) = , PD (triton)— (A5)

where VT is the tensor potential. Following Riska and
Brown, Hadjimichael, Yang, and Brown, and Jackson
and Riska, ' we approximate E~-Eo by E, use the closure
approximation, and write

(A3)

P(D) =3PD (a particle),

where PD is the deuteron D-state percentage.
The key ingredient is the use of perturbation theory

based on a symmetric spatial state. This corresponds to
s-wave pairs and since the tensor operator S~q annihilates
spin-singlet pairs, the tensor-force interacting pairs have
isospin zero (T=0). This guarantees that in the two-body
parts of VT only the T=0 part contributes, rendering this
independent of the detailed isospin structure of VT itself.
Moreover, the deuteron has one such triplet; the triton
and a have. three and six interacting pairs which are half
triplet and half singlet. This gives directly the ratio
1:3/2:3. The other key ingredient is neglecting the three-
and four-body terms and assuming that radial matrix ele-
ments (correlation functions) are identical. Within that
framework the closure approximation is not actually
necessary. We note that triton correlation functions look
very much like the corresponding deuteron wave func-
tions.

We have seen that P(D)/PD=1. 5 is a very good ap-
proximation for local two-body potentials in the triton.
The linear relationship appears to hold equally well for
separable potentials, although for rank-one spin-triplet
forces with no short-range repulsion the ratio is only 1.3.
We note that Eq. (A5) was asserted without proof in Ref.
33.

In the a particle there is some theoretical evidence
that P(D) is 50—100%%uo greater than P(D) for the triton,
although this has been contested by Goldhammer. The
experimental evidence for a D wave compo-nent in the a
particle centers on the asymptotic D-wave normalization,
as it does in the triton. The ratio of the asymptotic D-
and S-wave normalizations for the deuteron, triton,
and a particle ' are given roughly by 0.027, 0.05, and
0.3—0.5, which reAects increasing binding and, presum-
ably, an increasing D-wave component. We note that in
the o. particle there are two separate asymptotic normali-
zations, corresponding to pulling it apart as He+n, and
as d+ d. The former clearly has no D-wave asymptotic
component, although it is the dominant part of the com-
plete wave function. The deuteron and a-particle correla-
tion functions are similar.
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