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The energies of highly deformed "four-particle —four-hole" states of He are calculated using
Skyrme-like interactions. The J=O, 2, and 4 projected states are then considered. Deformed har-
monic oscillator wave functions are used in which two osci11ator lengths, b„and bo, are allowed to
vary. Both the energies and the stability of the states are studied as a function of the amount of fi-
nite range energy in the interaction. Then a less restricted Hartree-Fock calculation is performed
for the intrinsic state energies of both "four-particle —four-ho1e" states and "two-particle —two-hole"
states. A11 the states considered come low enough in energy so as to be associated with the excited
states of He in the 20 to 35 MeV range.

INTRODUCTION THE PREVIOUS MODEL

In a previous work' we considered the possibility of a
"four-particle —four-hole" excitation in He, in which four
nucleons are excited from the ls level with %=1 into the
lowest deformed %=2 level. The ls wave function was
of the form exp( r l2b )—and the deformed wave func-
tion was

z exp( x'/2b„—y'/2b» —z2/2b, )—.
In that work we constrained the product b p ——bx by b,

to have the same value in the deformed state as in the
ground state.

The interaction used was a combination of an attractive
Gaussian interaction and a repulsive density dependent
zero range interaction

3 3'E(b)=—
4 mb'

—6VIIa +64TI/O

where a is equal to

(1+a2/2b2) —I /2

~Zb

The intrinsic energy of the deformed state was

E(b by b )= 4(Iri /m)(1/b +1/by+3/b )

——,
' Voa„aya, (9—6a, +9a, )

+35.5555T3/b

The energy of the ground state (ls) with the original
interaction was

,2, 2
V— Voe

—"~' +—P(R)5(rI —r2) .
6

In this work several modifications will be made. Most
importantly, we will allow bo to be different in the excited
state from what it is in the ground state. We will seek a
minimum for the energy of the deformed state in which
we vary both b p and b, .

A second change is to use an interaction which is of the
Skyrme type. To do this, we simply take the expressions
for the energy from the original model with the Gaussian

&2y+ 2
attraction ( Voe ' ~'

) and we keep terms up to order a .
This truncation should not be thought of as an approxi-
mation, but rather as a way of getting the results for a dif-
ferent interaction, i.e., we replace —Voe " '

hy

—to5(r)+ —[k25(r)+5(r)k ],
2

where k is equal to —i (V I
—V )/22.

The qualitative points that we make in this work do not
depend very much on this change of interaction. The pre-
viously mentioned change, of allowing bp to vary, will
turn out to be much more important.

In the limit that a —+0 Vpo. approaches

Va
3(1—,'a Ib ). —

2 2b

&2y+ 2
In this limit Voe " ~' approaches a Vox. ~ 5(r)=to5(r).
One can also show that the Skyrme parameter t& is given
by tI ——toa /2. We should add that the parameters To
and T3 were introduced for convenience with

3 tp

161/2 ~' ' ' ' 48vz~'

THE CURRENT MODEL

%'e now change the interaction by keeping terms to or-
der a (again, this is not an approximation, but is rather
the correct expression for a different interaction).

In this new model the ground state energy is

E(b)=— — (1—,'a Ib )+64T3/b—3 3g 16To 3

4 mb~ b'

(The factor of —, in the kinetic energy term comes from
removal of the center of mass contribution. ) We must re-
fit the values of To and T2 so that the ground state ener-
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gy becomes E= —28 MeV and at e
h b' l o14f . Th

bBE(b

e equilibriumum condition is

Bb

tp

(MeVfm )

t3
(MeV fm6)

a
(fm)

TABLE II. The values of m*
range a.

o m, tp, and t3 as a fs a unction of the

Hence

3 6A' 48 To
1 —,'a /—b )+384T /b =0

We th us have two equations in th wn

W th th

wns o and

m h of ht e deformed state. Th
in rinsic states becomes

e expres-

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

1.000
0.990
0.963
0.919
0.864
0.800
0.733
0.664
0.598

855.371
856.463
859.757
865.304
873.191
883.545
896.538
912.395
931.404

13 249.78
13 157.78
12 880.38
12413.28
11 749.12
10877.21
9 783.03
8 447.69
6 847.00

E;„,=— 1 1 3

4 m b2 b2 2
y b,

I

—12T /b 1 —a 2+ 2+b„by 12bz

+35 55555T /b'

FURTHER CALCU LATIONS

We let x=1/bo. We s0 x
h th e structure

gy

E(bo, bz)=A (b, )x +B(b,, )x+C(b, )

with

A (b, =6a, =6a b, Tp+35. 5555T3,

B(b,)=— b-g
—12TO+Toa /b

(We set fi /m =41):

C(b, ) = —', A' /(mb, )

The condition BE/B
Hence

x=O leads to x=-o x = —B(b, )/2A(b, .

E= B(b, )/4A(b, +—C b, +Cb,
The ener gy now is written ex sp

z'
s o only one

In Table I we lotwe p ot the values of t an
es o a, as obtained b

o and t3 for several
'

e y the condition that h g

m.
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TABLE II. The values of b, and bo for the minimum energy

of the deformed state, as well as the relative maximum.

a
(fm)

b,
(fm)

bo
(fm)

+min

(MeVj
&max

(MeV)

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

2.13
2.13
2.15
2.19
2.25
2.35
2.49
2.77

30.74
30.87
31.24
31.81
32.52
33.27
33.97
34.48

No minimum

1.48
1.48
1.50
1.53
1.57
1.64
1.74
1.94

34.39
34.39
34.40
34.40
34.41
34.42
34.44
34.52

becomes indefinitely large as we approach C from below,
and beyond C it becomes negative, approaching minus in-
finite from above. Clearly a negative bp is unphysical so
that the curve has no meaning beyond C. Note that as we
approach the point C from the left the nucleus changes its
slope from prolate to oblate, i.e., bo &&b2.

In Table II we present, for various values of a, the
value of bp and b, at which a minimum energy occurs, as
well as the value of the minimum energy. We also list the
value of the relative minimum energy which occurs for
larger b, .

For a =0 there is a well-defined minimum at b, =2.13
fm and bp ——1.48 fm. The minimum energy is 30.74 MeV
which is 3.65 MeV lower than the relative maximum ener-

gy at higher b, . As we increase a the minimum energy
rises and approaches E,„, which is nearly constant as a
function of the range parameter a, varying only between
34.39 and 34.52 MeV between a =0 and a &0.8 fm. For

a =0.8 fm and beyond there is no minimum anymore. In
Fig. 2 for a =0.7 fm the minimum is just barely there but
the curve is fairly flat for large b,

Presumably, then the 4p-4h intrinsic state cannot be
metastable for a =0.8 fm. For lower values of a it is not
clear if the minimum is deep enough to hold the four nu-

cleons sufficiently long so that one has a clean cut reso-
nance. However in addressing the problem of stability, we
should be considering not the intrinsic state but rather the
states of good angular momentum which are projected
from the intrinsic state.

PROJECTION

The variational solution of H' is N. One adjusts the value
of A, so that we obtain the right angular momentum on the
average.

(4J'4) =J(J+1) .

In our particular example the variational wave function is

gr ——cosy
~

001)+i siny 010) .

The expectation value of the Hamiltonian becomes
r

(H) =(H),„,„,„„,+ —', X'/m 1 1
sin gb2 b2

+ 4Tp/bp 1 —a 2 + 2+1 1 1

4b 2b b,

—21.3333T3/bo -sin 2y .

We use the same method as we used previously to per-
form the projection of the J=O+, 2+, and 4+ states, the
Elliot-Evans method. We introduce a Lagrange multi-
plier and define

H'=H

The expectation value of J is

bo
5

(fm) g

C
o. I I I I I I I I I I II

2.0 2.4 2.8 3.2 5.6 4.0
bz (fm)

FICx. 2. The value of bo which minimizes the energy of the
deformed state for a given b, .

( J ) =J(J+1)=(3sin 2y+2)(b, /bz+bz/b, +2) .

If p =sin 2y, then sin y= —,
' (1—v'1 —p ).

We vary the energy of each state ( J =0, 2, and 4) after
projection. The results are shown in Table III. For each
J we give the minimum energy, the ratio t=b, /bp and
also bp. This is done for several values of a.

The results are quite interesting. We find that we get a
minimum for the J =0 state for all values of a (or at least
in the range we have looked at, from a =0 to 2.1 fm); for
J=2 we get a minimum for some values of a (a & 0.7),
but for the J =4 state we do not get a minimum for any
value of a. This suggests that only the low spin members
of the rotational band might exist as metastable states.

When the nucleus does become unstable it appears to be
due to the fact that bp becomes very large, not the ratio
t=b, /bp. To gain insight into what might be happening
we draw a picture of the intrinsic state in Fig. 3. We see
that the system breaks up into two sets of two nucleons
connected only at a point at the center. Such a system
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TABLE III. The energies of projected states.

J=0 E (MeV)
t'

bo (fm)

Qo ibl
rms' {fm)

15.62
1.55
1.40
0.386
2.164

0.1

15.87
1.55
1.40
0.386
2.164

0.3

17.89
1.55
1.40
0.386
2.164

0.5

20.87
1.50
1.50
0.443
2.318

0.7

24.48
1.50
1.60
0.467
2.412

1.0

28.63
1.50
1.90
0.658
2.864

1.3

30.13
1.50
2.5
1.14
3.769

E (MeV)

bo

Qo
rms

22.72
1.70
1.40
0.475
2.329

22.96
1.70
1.40
0.475
2.329

24.47
1.65
1.50
0.510
2.436

27.05
1.65
1.60
0.581
2.598

29.63
1.60
1.70
0.612
2.694

No minimum

J—4

't =b, /bo.
"Intrinsic mass quadrupole moment.
'Root mean square radius.

No min&mum anywhere

might easily break apart into two pieces. Under the pro-
jection the J=0 state looks more like Fig. 3(b)—a sphere
with a hole in the middle. Such a system will be more
stable to such a "fission. "

HARTREE-POCK CALCULATIONS
WITH THE SKYRME INTERACTIONS

We have performed some Hartree-Pock calculations of
the ground state, two-particle —two-hole and four-
particle —four-hole states of "He. The interactions used
were SI, SIII, and SII. We have, however, not as yet car-
ried out the projections. The results, in which seven major
shells were included, are shown in Table IV.

We note from these results that the four-particle —four-
hole intrinsic states are very close in energy to the two-
particle —two-hole intrinsic states. For example, for SIII
the four-particle —four-hole energy is 26.95 Me V, the ener-

gy of the 2p-2h state in which two neutrons have been ex-
cited from the s to the p shell is 26.52 Me V, and the ener-

gy of the 2p-2h state in which a neutron and proton have
been excited is 26.1'5 Me V.

We next compare these less restricted calculations with
the deformed oscillator calculations for 4p-4h states. We
find that in the larger space calculation the energies are a
few MeV lower than in the deformed oscillator calcula-
tion. For example, with SIII using six major shells the
absolute energy of 4p-4h is 0.62 MeV, whereas the energy

TABLE IV. The energies, intrinsic mass quadrupole moments, and rms radii of states in He ob-

tained in Hartree-Pock calculations, using seven major shells.

Ground state E (MeV)

Qo (b)
rms (fm)

SI

—28.75
0

1.822

SIII

—26.33
0

1.901

SII

—26.07
0

1.873

4p-4h

2p-2h nn

pp

Qo
rrns

Qo
rms

27.67
1.026
4.017(4.019)'

27.23
0.585
3.217(3.335)

26.95
1.054
4.119(4.122)

26.52
0.555
3.203( 3.400)

29.43
1.032
4.111(4.114)

27.25
0.274
2.742(2. 751)

2p-2h np
np

'Neutron (proton).

Qo
rms

24.38
0.138
2.215{2.224)

26.15
0.216
2.508(2.517)

27.26
0.269
2.730(2.738 )
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TABLE V. The energy intrinsic mass quadrupole moment,
and rms radius of the 4p-4h state in He, using the SIII interac-
tion versus the number of major shells.

(b)

FIG. 3. (a) The shape of the deformed intrinsic state in which
the four nucleons are placed in the lp shell. (b) The projected
J=0 state.

Np'

E (MeV)
Qo(bl
rms (fm)

3.84
0.843
3.849

0.67
1.107
4.183

'The number of shells included is Np+1.

—0.04
1.355
4.578

12

—0.11
1.364
4.594

in the deformed oscillator case (see Table II) for a=0.6
(which corresponds to I*=0.733, close to that of SIII) is
5.97 MeV. The lower energy in the better calculation
makes the case for 4p-4h states in the 20—30 MeV region
more convincing.

What is perhaps most surprising in this comparison is
the fact that the rms radius is much larger in the unre-
stricted calculation. For the cases mentioned in the
preceding paragraph the value of rms is 4.1 fm for SIII
with seven major shells, but is only 2.4 fm in the de-
formed oscillator model.

One may worry though that as the calculation gets
better and better (more major shells), the radius will be-
come larger and larger, indicating a radial instability. We
have therefore obtained the results for SIII for a number
of different shells. We designate the number of shells "
No+1 (so that No ——0 corresponds to the Is shell). In
Table V we list the results for SIII for No ——1, 6, 9, and
12.

For No ——1 (two major shells), which is the least num-
ber of shells possible, the absolute energy is 3.84 MeV,
which is closer to the value of our deformed oscillator
model (5.97 MeV) than are the results for larger No. By
the time we get to Xo ——12 the energy has decreased to
—0.11 MeV.

The rms radius does increase as we increase Xo. It
changes from 3.849 fm for Np 1 to 4.59 f——m for No ——12.
Although we cannot be absolutely sure, the results do

seem to be converging. For No ——9 the value of rms is
4.578, very close to that for No ——12.

CONCLUSIONS

What we have shown in this work is that by using in-
teractions which have given reasonable results in heavier
nuclei, we have no difficulty in obtaining the energy of
the "four-particle —four-hole" intrinsic state in He at a
sufficiently low energy so that the projected J=0 state
could be associated with low lying excited 0+ states in
4He.

We further addressed the problem of stability in a solu-
ble model. We found that the projected J=0 state was
always stable, the J=4 state was never stable, and the
J =2 state was stable provided the range a was not too
large, or alternatively, the effective mass parameter
m'/m was not too low.

The less restricted Hartree-Fock program yielded 2p-2h
intrinsic states very close in energy, perhaps even slightly
lower, to the 4p-4h state. Thus these states should also be
important components of the low lying states of He be-
tween 20 and 35 MeV excitation. The problem of stability
cannot be addresssed with complete satisfaction with this
Hartree-Fock program. That is why the soluble model
was important.
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