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The "Li nucleus is studied in a cluster picture with elementary alpha and triton particles as con-
stituents. The relation of this elementary cluster model to the microscopic resonating group model
is investigated. Within this cluster model various measurable quantities such as root mean square
radii, transition probabilities, electromagnetic moments, and form factors are calculated and com-
pared with the experiment. While the agreement for the electric quantities is surprisingly good,

there are deviations for the magnetic ones.

I. INTRODUCTION

In physics there is no unique choice which particles
should be treated as elementary ones in a model for
describing and understanding the structure of matter.
The choice of whether these particles are atoms, nuclei,
nucleons, or quarks depends on the specific properties we
want to describe. Consider the elastic form factor F(q)
for electron scattering. Clearly, in order to understand the
diffraction pattern of electrons scattered from a crystal,
one will treat nuclei as elementary particles. For
g~0.1—1 fm~! the appropriate level is the level of nu-
cleons, for higher ¢’s the structure of nucleons has to be
taken into account (including mesons or constructing a
model with quarks as constituents).

The more fundamental or microscopic picture does not
render the more macroscopic one obsolete or useless.
Even if the most microscopic model can describe all prop-
erties the whole hierarchy of different levels is needed for
understanding the structure of matter. To work with nu-
cleons when describing electron scattering from a crystal
obscures the physical understanding. Equally, no one will
dismiss the n-p picture of the deuteron because he can
handle the system on the quark level.

Nuclear physics has a tradition of treating nucleons as

the elementary particles and this is certainly the appropri-
ate level for a large domain of properties. But our under-
standing of nuclear structure has to be completed by
embedding this level between the neighboring ones, the
more and the less microscopic levels. For example, to
understand the nucleon-nucleon interaction used as an in-
gredient for calculations on the nucleon level, we have to
learn about the internal structure of the nucleons. On the
other hand, collective modes in nuclei are not only
described and understood on the nucleon level [e.g., by
random-phase approximation (RPA) amplitudes] but also
on the more macroscopic level of fluid dynamics. Again
the point is that there is not only one exclusive microscop-
ic level. Rather, the appropriate level depends on the
properties considered and a full understanding is found in
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the hierarchy of different levels.

In this paper we want to investigate the possibility of a
cluster picture for light nuclei as an intermediate level be-
tween the nucleus and the nucleon level. Instead of nu-
cleons we consider stable configurations such as the a
particle and the triton as constituents of the nucleus. In
this context, we mean by cluster picture, a model treating
the clusters as elementary (however not necessarily point-
like) particles, in a very similar way, as it is done for the
nucleons in the nucleon picture of the deuteron.

A first indication about the possibility of such a cluster
picture is given by the comparison of the mean distance
(R?)!72 between the clusters and the sum of the cluster
radii. The mean distance is deduced from the experimen-
tal root-mean-square (rms) radii of the two clusters (con-
sisting of 4 and B nucleons) and that of the whole nu-
cleus,
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+—_—__
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(r2>A+B=
(R?) . (1)

The rms matter radii are estimated from the experimental
rms charge radii of Barrett and Jackson! by correcting for
the charge distributions of protons and neutrons. The
geometrical situation is illustrated in Fig. 1 for some typi-
cal two-cluster systems.

There is a class of light nuclei, like "Li, "Be, SLi, *Be,
and so on, in which the clusters forming these nuclei (a-t,
a-*He, a-d, a-a) are reasonably well separated. The
difference between the nucleon picture for the deuteron
and the cluster picture for these nuclei is not fundamental,
only the exchange contributions are expected to be some-
what more important in the latter case because the clus-
ters are closer to each other. With increasing mass num-
ber the two clusters begin to overlap and, in addition to
larger exchange contributions, other channels will become
more and more important. Then we can no longer expect
one specific cluster configuration to be the dominant one.
For the last example in Fig. 1, %S, even the microscopic
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FIG. 1. Illustration of the size and mean separation of two
clusters forming various nuclei. The cluster sizes are taken
from Ref. 1. The intercluster distance is calculated with Eq. (1).
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two-cluster picture’ (including Pauli distortions) cannot
describe the ground state. _

The pictures in Fig. 1 are, however, only a first indica-
tion about the validity of a cluster picture: A large (R?)
in Eq. (1) does not necessarily imply that the system
behaves like a two cluster system. Furthermore, even if
the system may be described in this way there might exist
substantial polarization effects also for well-separated
clusters. Contrarily, for overlapping clusters there might
still be a domain of properties not altered much by the
mutual distortion.

For a more profound discussion we choose "Li as an ex-
ample, which according to Fig. 1 might be a good candi-
date for an elementary cluster picture. 'Li has the advan-
tage that many experimental data are available. Further-
more, there are a number of successful microscopic (nu-
cleon level) calculations. We investigate the following
questions for "Li:

(i) Is the elementary cluster picture adequate for this
system? More specifically we determine the domain of
properties which may be explained and thus understood
on this level. The question is then: Is this domain suffi-
ciently large to justify the introduction of this level
(maybe with a similar degree of.justification as the n-p
description of the deuteron)?

(ii) What is the connection to the next more fundamen-
tal level, the nucleon picture? In view of existing calcula-
tions®>~> which successfully describe many properties of
"Li this might seem trivial because we have only to go
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from the more microscopic level to the less microscopic
one. The unique answer to the question posed is, howev-
er, nontrivial.

The ultimate check of the validity of any specific model

, lies in its ability to reproduce the experimental data.

Therefore the validity of the cluster model for "Li will be
examined by the investigation of question (i). For this
step the availability of a microscopic resonating group
method (RGM) calculation is not required. However, the
investigation of (ii) is useful because it completes the
physical understanding by embedding the cluster picture
into the more fundamental level.

II. DEFINITION
OF THE CLUSTER PICTURE

We define now the model in which "Li is treated as a
system composed by an elementary a particle plus an ele-
mentary triton (t). For this purpose we have to specify
the wave function and the operators from which the ob-
servables may be calculated.

The relative motion of the clusters in the ground state
will be described by a bound state wave function ¥(R)
with

J dR|¥(R)|?>=1, R=R,—R,, )

where R, and R, denote the position of the clusters. This
wave function may be determined by one of the following
possibilities:

(i) ¥ is considered as a quantity to be determined by the
experiment. In particular, the form factor for elastic elec-
tron Zscattering yields basically the Fourier transform of

]~

(i) ¢ is calculated as the solution of a one-body
Schrodinger equation with an effective a-t potential.

(iii) ¢ is derived from a microscopic wave function
W(ry, ..., ry) describing the system on the nucleon level.

All these possibilities require to some extent the validity
of the elementary cluster picture. Our investigation will
show to which extent the resulting picture is a consistent
one.

In this paper we will discuss only the possibilities (i)
and (iii). The possibility (ii) was, for example, successfully
applied to the description of the *He(a,y)Be and
’H(a,y)®Li capture reactions.® In this direct capture
model the bound state wave function ¢ (and similarly the
continuum wave functions) is calculated from an effective
potential fitted to the low energy scattering data. This
procedure is well known for the deuteron where the effec-
tive nucleon-nucleon interaction deduced from the scatter-
ing data can be profitably employed to other systems as
well. In our case however, the detour about an effective
potential is not too much of an advantage.

As stated above we treat the a and t as elementary par-
ticles, that means we do not allow for distortions of the
clusters. Without leaving the elementary cluster picture
we will, however, take into account the finite size of the
clusters. We remember here that the finite size of the nu-
cleons is introduced in calculations on the nucleon level
simply by folding the operators in question with the pro-
ton and neutron internal densities. As an example let us
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consider the charge form factor operator
4 :
(r;—Rg )
=L 3 Fen(qle™ i Rem) 3)
Z J
j=1

The finite sizes of the nucleons enter simply via the pro-
ton and neutron charge form factors

Fu(@)= [ drpi(Dexpliqr)

f,f‘,, are the internal charge densities of the proton and the
neutron, respectively).

Using the analogous procedure in the elementary clus-
ter picture, we have to fold over the internal cluster densi-
ties given by the undisturbed internal wave functions ¢,
and ¢,:

mR)= [ d|¢a|?| 4|2 ,

‘ =‘§‘F;h(q)e(3/7)iqR+ %Filh(q)e—(4/7)iqR . (4)

The integration d& runs over the internal coordinates of «
and t. Here, we restricted the operator .# to be local, re-
sulting in a local cluster operator m(R). As in the nu-
cleon case, the finite sizes of the clusters enter for our ex-
ample simply via the a and t charge form factors F'(q)
and F(q).

In general, the operator .# may contain derivatives
(specifically angular momentum operators). For this case
the folding procedure (4) is generalized defining the clus-
ter operator / by

<R ' ﬁ\l | RI) = <8(R_Rat)¢a¢t I M | S(RI_Rat)¢a¢t> ’
=8(R—R) [ dEprbt b, ,
=m(R,Vg)8(R—R’') . (5

The definition (5) is a unique prescription for the con-
sideration of the finite size effects. In the elementary
cluster picture the microscopic wave functions ¢, and ¢,
are not needed. As in Eq. (4), they are replaced by the ex-
perimental form factors and rms radii. Thus the cluster
model is handled in a consistent way without reference to
the internal wave functions.

Note that the cluster operator 7 is not defined as the
effective (in general complicated) operator yielding the
same expectation values as .#, but simply as the operator
that one would naively use for elementary but extended
particles.

III. RELATION BETWEEN THE ELEMENTARY
AND THE MICROSCOPIC CLUSTER PICTURE

In order to connect the cluster and the nucleon level we
have to establish the relation between the corresponding
wave functions and the operators or, more specifically, the
expectation values of the operators.

The elementary cluster picture is strongly motivated by
the success of the microscopic cluster model.>~> The mi-
croscopic cluster model wave function W depends on all
nucleon coordinates and is for "Li of the form

W(Li) =/ u(Ry)dod, - ©)

Here 7 denotes the antisymmetrization operator and R,
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the relative coordinate of a and t. For clarity in represen-
tation we omit all angular momentum indices, knowing
that the spin + of the triton may couple with the orbital
angular momentum 1 of the relative motion function u, to
the total angular momenta (5 )~ for the "Li ground state,
and to ()~ for the first excited state "Li*. This first ex-
cited state at 0.478 MeV can be described by the same an-
satz (6). In particular, we refer to the single channel
resonating group method (RGM) calculation of Kanada
et al.,’ where the internal wave functions ¢, and ¢, were
represented by simple (1s)* and (1s)? configurations in
harmonic oscillator wells whose widths, a=0.514 fm—?2
and $=0.378 fm 2, were chosen differently. The RGM
function u(R) is variationally determined by minimizing
the expectation value of the many-body Hamiltonian with
a realistic nucleon-nucleon force, including a spin-orbit
part.

In contrast to the elementary cluster picture, the ansatz
(6) is a description on the nucleon level. Although undis-
turbed wave functions (¢4,¢;) for the clusters are used,
distortions due to the antisymmetrization are taken into
account (Pauli distortions). The success of the microscop-
ic cluster model in explaining the properties of “Li implies
that Eq. (6) is a good approximation for the microscopic
wave function (ground state and first excited state).
Therefore, we take Eq. (6) as the appropriate description
of "Li on the nucleon level and investigate its relation to
the elementary cluster picture. The first step is the reduc-
tion of the many-body wave function ¥ to the cluster
wave function ¥ of Eq. (2). For this purpose we rewrite
Eq. (6) in the following equivalent forms:

|WOL)) = [ dRu(R)| Z8R—Ryu)dad)
= [ dRo(R)| &N ~28(R—Ry)dab:) ,
= [ dRy(R)| ZN"'S(R—Rudod) - (1)

The norm of the basis states of #(R) defines the nonlocal
norm kernel N (often denoted by 1—K ),

N(R,R)=(1—K)g g ,
=(Z8R—Ru)bap; | Z8(R'—Ry)dotp) .  (8)

In Eq. (7) there are three candidates (u, w, or y) for the
intercluster wave function ¢ of Eq. (2). Since 1 is a wave
function in the elementary cluster picture it has the mean-
ing of a probability amplitude. The functions u, w, and y
in Eq. (6) are weight functions of basis states normalized
to N(R,R’), 8R—R’), and N~ YR,R’), respectively.
Therefore, only @(R) has a possible interpretation as a
probability amplitude,” namely the probability of finding
the antisymmetrized and normalized cluster state with pa-
rameter R in W. Therefore, among the three functions
u, o, or y, the only possible and consistent identification
is

$(R)=w(R) . 9)

The radial parts of the functions u, w, and y are shown
in Fig. 2 for the "Li ground state (those for the first excit-
ed state look quite similar). The strange behavior of u(R)
in the interior is due to the existence of a small eigenvalue



31 CLUSTER PICTURE OF 'Li

2245

T T T T T TABLE I. Normalization and intercluster rms radii calculat-
ed for various a amplitudes. The calculated rms radii have to
0 o be compared to the exact RGM value (R2)rgm=13.98 fm?2.
5
Intercluster
mean square
Normalization radius
Il
S D T
éE \ (u|u)=3.76 (u|R*|u)=17.13 fm?
= (o|w)=1 (0|R*|w)=13.86 fm?
& o5k \\\ (yly)=111 (y |R?|y)=15.22 fm?
3 \ / — wgs; (u|y)=1 {(u|R?|y)=10.89 fm?
= \ ,l —_—— u 2
g \\ / w yI(R) Lu_lR_lu_> =4.56 fm?
IS} \ I,’ (u | u)
- - \ / - 2
s -10 SPIR*1Y) _ 1397 2
\ J yly)
\\\ II’
-151 \ / .
T ! \ , leads to Eq. (1) with a value (R?)ggm for the left-hand
0 10 20 30 40 50 60

R (fm)

FIG. 2. Radial part of the a-amplitudes w, u, and y for the
"Li ground state.

of the norm kernel (almost forbidden state). The relative
smallness of the difference between w and y is a special
feature of the a-t system where the eigenvalues of the
norm kernel do not deviate much from 1 (apart from the
almost forbidden state). For physical quantities (in partic-
ular the rms radius, see below) y and o lead, however, to
distinctly different results. Compared to w the amplitude
y overestimates the amount of a clustering in the surface.

For large R = |R |, where the clusters do not overlap
and the antisymmetrization in Eq. (6) does not lead to dis-
tortions, the interpretation of w(R) and ¢¥(R) is obvious,
namely the probability amplitude of finding the clusters at
distance R. The crucial region is the interior (R <4 fm)
where the two clusters may have some overlap and their
structures may be distorted by antisymmetrization. Here
o(R) is not a quantity which can be measured directly.
There are, however, a number of physical quantities
which depend strongly on the interior (R <4 fm) of the
wave function. Then the identification (9) is valid to the
degree to which these quantities can be calculated in the
elementary cluster picture with ¢. For an arbitrary ob-
servable with the operator .# this means that we have to
investigate the approximation

(WOLI) | 4 | WOLD) ) 0 | i | ) (10)

with the corresponding cluster operator (5). We will find
that this approximation holds for a number of physical
properties. Within the range of these properties the ele-
mentary cluster model is then of the same validity as the
underlying microscopic model (6).

The first candidate for testing Eq. (10) is the matter ra-
dius. The expectation value of the operator,

1 A
= 7 2 (ri _Rc.m‘ )2

i=1

(11)

side (lhs) of Eq. (10) and (R?)=(w|R?|w) for the
right-hand side (rhs) of Eq. (10) (the contributions of the
clusters themselves are the same on both sides). The re-
sulting values are (see Table I) 13.98 and 13.86 fm?,
respectively. ‘

At this point we repeated the calculation for the incon-
sistent identifications ¥=u and ¥=yp. The results are
shown in Table I. Even after an overall normalization
(W=u/Cu|u)”? and ¢Y=y/(y|y)'/» the (consistent)
identification (9) is favored.

It may be mentioned that Eq. (10) becomes exact in an
analytical model® with the following three characteristics:

(i) o, are oscillator functions with the same oscillator
width (a=p).

(ii) @(R) is an oscillator function corresponding to the
same frequency.

(iii) .# is the kinetic energy operator, the operator (11),
or the quadrupole operator.

For matrix elements between oscillator states of different
energy the lhs of Eq. (10) can be exactly reduced to
(u|m|y) in this analytical model. This form has been
proposed in Ref. 9 also for more general operators. In the
present case this expression yields, however, a consider-
ably worse result (Table I). The reason for this is that the
derivations in the analytical model refer to the equal fre-
quency (a=p3) case. In the present calculation (a=%f3) it
is just the contribution of the state which is forbidden for
a=f3 which leads to the strange behavior of u (Fig. 1).

We restrict now the discussion to ¥y=w. Then the clus-
ter picture results [rhs of Eq. (10)] are compared in Table
II to the exact RGM results [Ihs of Eq. (10)]. The ap-
proximation (10) is excellent for pure matter quantities
and becomes little worse for quantities involving the
charges. Exchanges of protons and neutrons affect the
latter quantities more sensitively. Still, from Table IT we
conclude: The reduction of the microscopic cluster model
to the elementary cluster model is a good approximation
provided that the wave function of the relative motion of
the clusters is identified with w.

For the elastic form factor of "Li this elementary clus-
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TABLE II. Comparison between the results of the elementa-
ry cluster model and the microscopic cluster model (RGM,
Refs. 3 and 5) for various properties of 'Li. The finite size ef-

fects of the individual elementary clusters is calculated with the

undisturbed wave functions ¢, and ¢,.

Elementary

Physical quantity cluster model RGM
(p2)ymatier 172 (fpy) 2.40 2.41
Qmater (fm?) —4.07 —4.11
(r2)h 172 (fm) 2.47 2.44
Q= (fm?) —3.85 —3.70
L") 3.20 3.15
BM1;3—+) (ud) 2.13 2.17
B(C2%;3 1) (e¥fm?) 8.04 7.55

ter model has already been used by Liu et al.'® They
found satisfactory agreement with the exact RGM results
in the low ¢ region. In the squared form factor the error
is less than 4% for g2 <4 fm~2 The higher g2 are more
sensitive to the region where the clusters overlap more
strongly and the approximation becomes less accurate.

Altogether, the comparison with the microscopic calcu-
lations indicates that the elementary cluster model for "Li
is quite reasonable.

IV. PHYSICAL PROPERTIES
IN THE CLUSTER PICTURE

A. Model input

In this section we will calculate various properties of
"Li in the elementary cluster picture and compare the re-
sults with experimentally determined values. For this
purpose we need the cluster wave function ¥ and the
operators i corresponding to the considered observables.

The form factors and rms radii of the individual clus-
ters enter into the expressions for the operators /# [com-
pare Eq. (4)]. These quantities are taken from the experi-
ment!! as an input for the model. In this way the finite
size of the otherwise elementary clusters is taken into ac-
count.

The intercluster wave function ¥ may be determined in
principle from the elastic form factor. In this way we can
treat 'Li consistently on the level of the elementary cluster
picture without reference to microscopic quantities. As
discussed below in Sec. IV C, the determination of 1 from
the elastic form factor will yield a function which is very
similar to the o function of a RGM calculation. In view
of the availability of these & functions we fixed the cluster
wave function 3 for the ground state [(3)~] and for the
first excited state [(+)~] by

¢3/2(R)=603/2(R), ¢1/2(R)=0)|/2(R) . (12)

We emphasize once more that we use the results of exist-
ing RGM calculations for i only for convenience; the ele-
mentary cluster model itself does not require such a calcu-
lation.
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B. Longitudinal form factor
The longitudinal form factor for "Li
| Fr(@)|?= | Fcol@) | *+ | Fcalq) | >+ | Fealg) | 2 (13)

contains the CO and C2 contributions from elastic
scattering and the C2’ contribution from scattering to the
first excited state 'Li*. The individual form factors

Vi q*
Forl@)=—— 91— (J,| |«

AND="3" G (Ji|[.#(CAq)||Tf) (14)
are expressed by the reduced matrix elements of the mul-
tipole operators .#(CA,u,q), given explicitly by Willey.!2
In the elementary cluster model the form factors are ap-
proximated by one-body matrix elements,

VT
Feld) >~ o Wy llm(Crllgy,) , (15
with the cluster operators
20+ 11
m(Chops,g)=e X 2penig) s (2 4r)

+ 3F™Mq)jn(+qR)]Y,,(R)

(16)
corresponding to the multipole operators .#(CA,u,q).
This is just the example given in Egs. (3) and (4) for a de-
finite multipole A (j, is a spherical Bessel function, Y
are spherical harmonics). The form factors (15),

Feol@)=3F(q)Fo(3q)+1F(q)Fy(2q) ,
Feoolg)=—FFQ)Fy(3q)— +FM(q)F (1), (17)
Fea(q)=3FMNQFy () + LFM(q)Fy (4q) ,

'

are then expressed very simply by the “form factors”
Fy, F,, and F) of the intercluster wave functions:

F@ =3 |jr|302) »

, ~ ~ (18)
Fy@) =1 |jr V1) .
Here we introduced the radial part ¥ of 1,
PYR)=Y,,(R)R)/R . (19)

Equations (17) and (18) are the final expressions for the
longitudinal form factors in the elementary cluster pic-
ture. The calculated CO, C2, and C2’ contributions are
shown in Fig. 3. Their sum is compared to the experi-
mental longitudinal form factor of Suelzle er al.,!’ ex-
tracted from their measured total cross section by sub-
tracting a best fit to the magnetic scattering data of Rand
et al.'* There is excellent agreement between the calcu-
lated and experimental values over the whole g? region
plotted in Fig. 3. For the longitudinal form factor the ele-
mentary cluster picture is thus a surprisingly accurate
model. :
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FIG. 3. Longitudinal form factor for "Li (solid line) contain-
ing the elastic CO and C2 contributions (dashed lines) and the
inelastic C2' transition to the first excited 'Li* state at 0.478
MeV (dotted line), calculated in the elementary cluster model.
The experimental data are from Ref. 13.

C. Determination
of the cluster wave function
from experiment

As mentioned in Sec. IV A the intercluster wave func-
tion ¥ should in principle be determined by the experi-
ment in order to treat the model consistently on the clus-
ter level. We discuss now this determination in some de-
tail for the "Li ground state. To simplify the situation we
start with the experimental elastic charge form factor for
Li of Suelzle et al.,'?

orA+D |7 gt
Fypnlg)= l 4

101 (2A+ 1)l mas

Xty | Im[M(E),A.q]l¢s,)

(J;|| A TM(E)A,q]||[J )~
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| Fan(q) | 2= | Fcol@) | *+ | Fealg) | 2 (20)

containing the CO and C2 contribution only (the C2’ con-
tribution is substracted in a slightly model dependent
way). From this experimental information (20), we obtain
the wanted function |3,(R)|? by unfolding Egs. (17)
and (18).

There is one practical difficulty in this procedure. The
reproduction of Eq. (18) also for high ¢’s (¢ >>kp, where
kp is the Fermiv momentum) forces the Fourier transform
of |#3,(R)|? to simulate effects which are completely
outside the scope of the considered model. Dependmg on
the high ¢ behavior of F,(q), F&(g), and F* (q) this
might lead to an unphysical result for | ¥ /Z(R)| espe-
cially to a violation of the condition |3 ,,(R)|2>0.

The proper remedy to this difficulty is the restriction to
low g values (g <kp, for example ¢ <2 fm~!). In prac-
tice this can be achieved by expanding 3/, into a number
of suitable basis states. The expansion coefficients can
then be determined by fitting the form factor in the low g
region. A successful fit requires, naturally, a sensible
choice of the basis states.

There will exist a family of wave functions ¥ which ful-
fill the criteria stated above but which may show small
deviations stemming from the high g components. The
function @3/, of the microscopic RGM calculation is also

. a member of this family because it fits the experimental

charge form factor quite accurately for g <2 fm~!. Thus
we may alternatively regard this w;,, as the function ¥
deduced from the experiment. It should be noted that the
calculated physical quantities considered here depend only

‘weakly on the uncertainty in the high g components of .

D. Transverse form factor

The transverse form factor includes the elastic M1 and
M3 contributions and the inelastic M1’ and E2' contribu-
tions

| Far1(@) | 2+ | Fu3(q) | >+ | Fag1(@) |
+ | Fa(@)|* . @1)

The individual form factors related to the multipole
operators #(MA,u,q) and #(EA,u,q) (Ref. 12)

| Fr(g)|*=

172 a1
Im(A+1) q
10A (2A+ 1) ™28

(22)

are again approximated by one-body matrix elements involving the corresponding cluster operators

2uN QA1)
AMp,g)= —F—F7—7—
m(MA,u,q) P
K—}—l 1/2
X I%F;h(q) A1 j;,“(%qR)YM_,_m(ﬁ)-}- [

172
i ] Ja-1(3gR)Yar_1u(R) |L
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Al 172 Iy 1/2
+2;‘1th(q) A1 jh+1(%qR)YAx+1M(R)+ Y ] jk_l(éqR)Y)“)h__m(R) L
P 172 Py 172
8t pmag + (4 R)— A+ | =2~ | i i(qR)Y i 1u(R) [S
_ZFt (g) A A+ 1 ]A+1(7qR)Y;LA+1”(R) (A+1) 2A+1 11_1(7q ) AA—I;L( )

(23)
24N QA+ 8

m(EAu,q)= i+l gt 2

FP8(g)V A+ Dja(+qR) Y, (R)S .

In Eq. (23) F{"® is the triton magnetic form factor, g, is the triton g factor, and uy=e#/2mc is the nuclear magneton.
Equation (23) involves, further, the vector spherical harmonics Y, the orbital angular momentum L of the a-t relative
motion, and the spin S of the triton. The magnetic moment u™ of "Li appearing in Eq. (22) is also calculated in the a-t
cluster model (see below). For the calculation of m(EA,u,q) two less important terms in #(EA,u,q) leading to only

small corrections were omitted. From Egs. (22) and (23) we obtain

FM1(q)= £

m;

Fyi(gq)=— Ex iL 3/2gtF?lag(q)F2(—‘;—q) »

umE 5

, .

FM1(Q)~#mag Vs

' UN 3‘/—‘ mag 14
FEz(q)="‘ - 3/5gtFt (q)F2(7q)

'umag 4

Together with Eq. (18) for the relative motion form fac-
tors, Eq. (24) is the result for the transverse form factor in
the elementary cluster model. The experimental form fac-
tors for the individual clusters (consistent with a value
g:=>5.958 for the triton g factor) are again used as an in-
put of the calculation.

The calculated M1, M3, M1’, and E2' contributions
are depicted in Fig. 4. Their sum is compared with the
experimental data of Rand e al.'* As is seen from Fig. 4
the calculated form factor comes out much too low in the
higher g2 region. Especially, the diffraction minimum in
the M1 contribution at g?~2 fm~—2 obtained in exact
RGM or generator coordinate method calculations,* is not
seen in the cluster model (the same is also true for a dif-
fraction minimum in the electric CO contribution, which
appears, however, in a g2 region, ¢?~6—7 fm~2, of not
much importance).

Due to the missing diffraction minima in the dominant
M1 and M1’ contributions around g*~2 fm~?2, the trans-
verse form factor is not well described by the elementary
cluster model in the higher g2 region. In this model only
the triton carries a spin and the a particle does not at all
contribute to the dominant spin-dependent parts of mag-
netic multipole operators. This seems to be a very rough
picture considering that from the microscopic point of
view all seven nucleons carry a spin and contribute to the
spin parts of the magnetic form factors.

With concern to the diffraction minimum, a similar
phenomenon is observed in the *He charge form factor.

There the diffraction minima around g?~11 and 70 fm—2

are not understood on the nucleon level. To get their ex-

g ma, /
~ s | WFS@IF(3+FG)+ FFP (@ Fo(79) +Fa( 301+ 5 I (@[ Fo(39)~ $Fa(59)] |

(24)

{ = FMNQIFo(39)+F3 (3@ =4 FM@Fo(5q)+F3(59)1+8 FM8(q)[Fo(2q)++F3 (391} ,

F\ ~

\ transverse

1072

1073 .
0 1 2 3 4
q? (fm2)
FIG. 4. Transverse form factor for "Li (solid line) containing
the elastic M1 and M3 contributions (dashed) and the inelastic
M1 and E2’ contributions (dotted), calculated in the elementa-

ry cluster picture. The experimental data are taken from Ref.
14.
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TABLE III. Comparison between calculated (elementary cluster model) and experimental values for
various properties of 'Li. The finite size effects of the individual elementary clusters are taken from the
experiment via the corresponding rms radii of the single clusters.
Elementary
Physical cluster
quantity model Experiment
(r2)n 172 (fm) 2.46 2.55+0.07 (Ref. 15)
2.39+0.03 (Ref. 18)
Qmatter (fm?) —4.07 —4.1 0.6 (Ref. 17)
Qe (fm?) —3.85 —3.8 1.1 (Ref. 15)
—3.4 0.6 (Refs. 16 and 19)
—3.7 +£0.08 (Ref. 20)
(r?)mee 172 (fm) 2.73 2.98+0.05 (Ref. 15)
" () 3.38 3.256 (Ref. 16)
Qm (fm?) 2.39 2.8 +0.5 (Refs. 14 and 15)
BM1;3—1) (k) 2.45 2.50+0.12 (Ref. 16)
B(C2%3 — 1) (e*fm*) 8.04 8.3 0.6 (Ref. 16)
8.3 £0.5 (Ref. 20)
act positions the structure of the nucleons has to be taken  for the « and t mean square radii (r2)<h, (r2)¢h

into account.

E. Further properties of "Li

Here we discuss quantities of "Li related to the form
factors. The rms charge and magnetic radii,

(r2yh=2 ()b L(p2) (R, (25)
(r2>mag= ":'nr:g 1_34<r2>;h ( 2>ch ( 2>mag
+ 35 (8g¢+ 55 )(R?) (26)

the matter and electric quadrupole moments,

Qmatter: . 245 (R 2) (27)

Qelect= _ 245 <R2> (28)
the magnetic dipole and octupole moments,

pm= %L + _ll UN > (29)

Qmei= 2 245 gt<R2>.U'N > (30

and the M1 and C2 transition probabilities to the first
excited "Li* state,

B(M1;5—%)= 41 2V bnldip) |2, GD
B(Ci;%—*%)_j}‘ [ {P3 | R* P10 [)*. (32)

According to Sec. IV A we use the experimental values!

(r?)P28 as an input of the elementary cluster model
Then all quantities (25)—(32) are determined by the inter-
cluster wave functions 5., and ¥, . This cluster wave
function ¥ enters into most of these quantltles only in the
form of the expectation value (R*)=(43,,|R? |1,[13/2)
which is given in Table I for the choice (12). The transi-
tion probabilities depend of course on the "Li* state via
the matrix element (3., | R?| ¥, ,,) =14.49 fm? and via
the overlap (93,5 |¥1,,)=0.998. The overlap is almost
equal to 1 because the spin orbit interaction has only a
minor effect on the relative motion wave function.

In Table III the experimental values are compared to
the ones calculated in the elementary cluster picture. The
magnetic quantities show some deviations (up to about
10% for the magnetic rms radius), all other calculated
quantities agree well with the experiment. Considering
the simplicity of the model and of the resulting expres-
sions (25)—(32), this agreement is quite satisfactory.

V. CONCLUSIONS

Most of the properties belonging to the domain of nu-
clear physics can be successfully described and understood
in a simple cluster picture for 'Li. In this sense we may
conclude that the elementary cluster picture of 'Li is a
valid and useful model which has a similar degree of justi-
fication as the nucleon picture of the deuteron.

The elementary and the microscopic cluster picture
(RGM) can be connected by identifying the intercluster
wave function 3 with the RGM wave function o (ampli-
tude of the normalized basis states). This unique identifi-
cation is enforced by the well-known formal requirements
(probability amplitude) and, from the present discussion,
by overwhelming evidence of calculated physical quanti-
ties.
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