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We evaluate the angular distributions and the orientation asymmetry variable As(0) in the
description of pion scattering from oriented, deformed nuclei. The results show a strong, selective
sensitivity of A~(8) to the neutron and proton deformation Pz and /3z. We also evaluate the energy
dependence of As(6) and conclude that single charge exchange from ' Ho at T = 160 MeV would
be an interesting case to study experimentally. Results of deformed Hartree-Fock calculations indi-

cate As(8) =6/o for this nucleus.

I. INTRODUCTION

In a previous paper' we found that pion charge ex-
change scattering is sensitive to a poorly known quantity
characterizing deformed nuclei, namely the deformation
of the excess neutron density, P2. The important quantity
for determining 82 is the orientation asymmetry variable
A, (8),

is its projection on the body-fixed axis. Atomic ' Ho has
a net magnetic moment and can be aligned in a magnetic
field; this alignment has been accomplished in experi-
ments at LAMPF for the purpose of measuring pion total
cross sections. Studies with p -atom techniques have
determined the parameters of the charge density in the
ground state of ' Ho. A Woods-Saxon shape for the
charge distribution was used in the analysis
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where da /dQ and der~'/dA are the cross sections for
scattering from deformed nuclei oriented perpendicular
and parallel, respectively, to the direction of the incident
pions. The main result in Ref. 1 was that a —10% to
+ 10% variation of P2/13& about the value 82 ——132

would give rise to a change of A, (0) from roughly 0 to 0.3
in a measurement of single or double charge exchange.
Here Pz is the quadrupole deformation of the protons. In
this paper we want to explore in greater detail the sensi-
tivity of the predictions to various assumptions of the
model.

As in our previous work, we use the semiclassical
eikonal theory to describe the scattering. In a sequence of
theoretical and experimental investigations, the eikonal
approach has been shown to reflect the sensitivity of more
exact solutions of the scattering equations and also to
reproduce the trends of charge-exchange experimental
data. We therefore continue to use this theory to antici-
pate features of the experimental results which we expect
to be forthcoming. " We are hopeful that these measure-
ments can lead to an empirical verification of predictions
of models such as the deformed Hartree-Fock (DHF)
theory or macroscopic-microscopic models. It has been
difficult to obtain unambiguous experimental information
about the shape of the neutron distribution in highly de-
formed nuclei from other measurements. '

II. NUCLEAR MODEL

We are interested in the specific case of ' Ho (X=98,
Z =67). This nucleus is known to be highly deformed.
The spin quantum number of the ground state of ' Ho is
I= —, =K, where I is the total angular momentum and E

with the half-density radius R mapped onto an ellipsoidal
surface

R =RO[1+/32 Y2o(8)], (3)

whose major axis lies along the z' axis of the body-fixed
coordinate system. The results of the analysis give
p2 ——0.32 with

Ro ——6. 15, a =0.49 . (4)

A general representation of the density for nonspherical
nuclei may be made in terms of the components p(l, r) of
an expansion in spherical harmonics

I /2
2l +1 f d A p(r, 8)YIo(A ), (5)p(l, r) =

p(r, R0,13)=p(r, RO)+RoP2 Y2o(8)p'(r, RD) .

The DHF densities p(l, r) for l =0 and l =2 have shapes
very similar to the corresponding terms in Eq. (7), and we
therefore adopt this form for neutron and proton densities
with p(r, Ro) the Woods-Saxon shape in Eqs. (2) and (3).
Choosing the parameters of Eq. (4) for the protons, we ob-
tain the results in the upper part of Table I for the root

and each p(l, r) is characterized by its multipole moment
Qi,

Qi
—— f p(l, r)r + dr .2l+1

Assuming that P2 is small, a Taylor expansion of Eq. (2)
permits an approximate identification of the first two
multipole components for ' Ho,
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TABLE I. Values of root-mean-square radii ( r, , ) and quad-

rupole moment Q2.
Suppose we now have a scattering from state I,M, K to

I',M', K'. The desired amplitude is

Ro
(fm)

Protons
6.15
6.25

Expt.

Neutrons
6.15
6.50

a
(fm)

0.49
0.49

0.49
0.49

0.32
0.366

0.32
0.336

~rms

5.10
5.19
5.19

5.10
5.35

Q2
(fm )

744
765
744

949
1106

&I'M'K'
~

F(q, n)
~

IMK& =f dn pl,M.r, .(n)

XF(q&Q)QIMx(q&Q), (10)

where F(q, n) is the scattering from the intrinsic state
whose orientation is 0 relative to the laboratory coordi-
nate system. If the scattering to levels I',M', K' of the fi-
nal nucleus is not resolved, then the cross section from the
initial state IME is

= g ~

(I'M'K ~F(q, n) ~IMK& ~'

mean square radius r~, and moment Q2. The first row
corresponds to the parameters given in Ref. 5. The r, is
slightly smaller than the experimental value, presumably
occurring as a result of the expansion in going from Eqs.
(2) and (3) to Eq. (7). In the second row the values of Rp
and Pz have been adjusted to give the r, and Q2 ob-
tained from solving the DHF equations of Ref. 5. We
show the same quantities for the neutron distribution in
the lower part of Table I. The first row is calculated with
the same parameters that describe the protons in Ref. 7.
These values of Rp and a give smaller r, that the DHF
calculations; the second row shows an adjustment of Rp
and pz which gives the theoretical values of r, and pq.

For highly-deformed nuclei there exist a large number
of low-lying rotational levels that are easily excited by a
medium-energy projectile. These states must be summed
in both the intermediate states of the amplitude and the
final states for the evaluation of the cross section for a
low resolution measurement. To accomplish this we use
the closure approximation, which implies that the orienta-
tion of the nucleus is not changed during the scattering
process. The scattering amplitude depends, therefore, on
the orientation Q of the body-fixed system in the labora-
tory. We characterize this orientation by the Euler an-
gles (a,P, y )

—=Q.
In order to calculate the cross section we must know

the wave function of the nuclear ground state. We as-
sume that this is the product of the intrinsic wave func-
tion in the body-fixed system and the eigenstate QIMx(Q)
of the collective variable Q describing the orientation of
the nucleus. For the state tt we make the usual assump-
tion; that is, g is an eigenstate of the rigid rotator Hamil-
tonian. These wave functions are just the rotation ma-
trices DMx(a, p, y). Two specific cases will be useful
later. These are as follows: (1) The nucleus is polarized
along the z axis. In this case the projection M of the total
angular momentum on the laboratory z axis is M =I and

(2) The nucleus is polarized along the x axis. In this case
we rotate Eq. (8) by w/2 about the y axis and find

' 1/2
~(J) (Q) 2I+1

8m M

= (IMK
~
[F(q, n)]

~

IMK &,

where closure has been used. We have found that for the
small p& and pc that we use, the off-'diagonal elements
are small and that

=(IMK
i [F(q,n)]

~

IMK&

= 1(IMK
I
F(q, n)

I
IMK & (12)

So we use the following expressions,

F~'(q) = f sin8d8
~
de(8)

~ f F(q, n) (13)

and

q( )
2I+1 ~ f sin8d8

~
de(8)

~

+qQ

(14)

III. SCATTERING THEORY

The semiclassical results are an approximation to the
solution of the Klein-Gordon equation with an optical po-
tential U,

U=up+u)(Q. T~)+up(P T~) (15)

where up, u&, and uz are referred to, respectively, as the
isoscalar, isovector, and isotensor components of the opti-
cal potential. Here P is the pion and T~ the nuclear iso-
topic spin operator. In the case of interest, U is the opti-
cal potential for the nucleus in its intrinsic state and de-
pends on the orientation Q of the body-fixed axis relative
to the laboratory system.

Our procedure will be to calculate first the amplitude
F, for elastic and inelastic scattering from the initial state
to a given final state, which is a member of the rotational
band built on the ground state. We generate the charge-
exchange amplitude to the analogs of the final state from
this result by applying isospin invariance. The elastic and
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inelastic scattering is evaluated in channels of total isospin
7

r=P+T~ .

These channels are not those measured in the laboratory
(which are eigenstates of P, P„T~, and Tz ) but are of
advantage in the theory because U and the scattering T
matrix are diagonal in this basis. The relationship be-
tween the amplitude F and the physical amplitude F' '

for elastic scattering [(ij)=(++) and ( ——) for m+ and

respectively], single charge exchange (SCX)
[(i,j)=(0,+)], and double charge exchange. (DCX)
[(i,j)= ( —,+ )] may be expressed formally as

(17)

where r= T, T+1, and T —1 and where the set 2'~'(r)
are Clebsch-Gordan coefficients and are given explicitly
in Ref. 2. The cross section for a transition from a given
initial to a given final state is then given by Eqs. (10)—(14)
with the E there identified with the I"' '.

We will calculate I' in the eikonal theory. The result

tial waves. They are small because of the proximity to the
(3,3) resonance.

The parameters k,'." are given explicitly in terms of the
free pion-nucleon scattering amplitude in Ref. 2. Howev-
er, in the region of the 633 resonance these parameters are
renormalized by higher order terms in U. The relation-
ship between these renormalizations and the explicit
forms of the higher-order optical potential was studied in
Ref. 2. In the present work we take A,o" and A,I" from the
free pion-nucleon scattering amplitude in the usual way,
without an energy shift. The cross sections for charge ex-
change evaluated in this fashion are generally too small
and require a substantial renormalization. However, as
we shall verify in Sec. IV, the asymmetry As(8) is insensi-
tive to these corrections.

That As(8) is a useful measure of Pz can easily be seen
in a schematic model of diffractive scattering for which
the charge-exchange scattering occurs only at the edge of
the nucleus and the amplitude is proportional to the, cir-
cumference of the excess neutron distribution. Assuming
that this distribution is an ellipsoid with semimajor axis b
and semiminor axis a, then the cross section for parallel
orientation is

1s

F,(q, O) =ik J b db Jo(qb)[1 G, (b, 8)]—

G,(b8) = I dP'e

d 0-ll

dn
and for perpendicular orientation

do-' a'+b'
dQ 2

(25)

(26)

where

X,(b, O)= I dz U, (b,z, Q), (19)
IO

and U, is the projection of U onto the state of total iso-
spin rM,
U, (b,z, fl) = (r

~
uo+u, P T~+up(P T~)

~
r) .

We use a local form for the optical potential, so that

U, =k'g, + —,
' V'g, , (21)

where g, depends on the nuclear densities p(r) and b,p(r),
which are the core and excess neutron densities. If we ig-
nore the effect of the Coulomb interaction on nuclear
structure, then the excess neutron density is the difference
between the neutron density p„and proton density p~,

lO

Xl
E

C$

b

'Io

p(r)=Np (r)+Zp, (r),

Ap(r) =Np„(r) Zp~(r) . —

(22)

(23)

g,(r, Q) =Ao"p(r, Q)+y'"(r)A, ,'"bp(r, Q), (24)

The quantities g, also depend on the free ion-nucleon
scatterin~ amplitude through an isoscalar A,o' and an iso-
vector A, '&

' coefficient. We may write -3
lO 0

I

lo 20

l

1 I

I r

I ir
30

8 (deg)

I

40
I

50

where y~ ~(r) are fixed by the isospin geometry (see Ref. 2)
and where we have now displayed the explicit depen-
dences of p and hp on the nuclear orientation A. The La-
placian term in Eq. (21) arises from the p-wave character
of the pion-nucleon interaction. We omit all other par-

FICx. 1. Importance of virtual excitations of rotational levels
in calculating the cross section do. ~ ~/d 0 for the reactions

Ho(~+, m. )' Er at 200 MeV. The solid curve includes virtual
excitations, the dashed curve assumes that the nucleus remains
in its ground state. We assume Pz ——Pz —0.32, So=6.15 fm.
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Vo= —,~a b
4 2

so that the ratio 5b/5a remains fixed at

5b/5a =—2b
a

We then easily find, for b=a,
do-ll

5 ~a5a

(27)

(28)

and

do a5a
dQ 2

(30)

so that the result of a change 5a is opposite in the parallel
and perpendicular orientations. This is just the sensitivity
we need to make As(8) an efficient measure of the defor-
mation of the neutrons,

If we now change a and b by an amount 5a and 5b, we
must hold the volume fixed at Vo,

F(0+) 1 1 1 g(0+) d+
(g R )v T 2T+1 T+1 (33)

where

S' +'=(2T —1)(RT—Rr ) )+T(2RT+) RT R—T )) —~—

coefficient can be calculated analytically. I.et us assume
that the nucleus remains in its ground state during a11 in-
termediate scatterings in I'". We sha11 ca11 this the
coherent approximation. Such an assumption was made,
for example, by Hoodboy in Ref. 10 for calculation of to-
tal pion cross sections from ' Ho. The result is obtained
by replacing X in Eq. (19) by (P ~

X
~
P), which is

equivalent to replacing P2 by P2,

[3M I(I—+ 1))[3E —I(I + 1))
I(2I —1)(I+1)(2I+3)

We then make an analytical approximation following Ref.
2. Making a Taylor-series expansion of I' about some ra-
dius R and keeping terms up to second derivatives, one
finds

5As/0') ~5a . (31)
(34)

The coefficient of proportionality depends on details, and
one of the objectives for investigations is to determine it
carefully.

There is a limiting form of the theory in which the

R = —,(RT+Rr ) )

T [Rz RT+)(RT+,——RT )))
2T —1 Rr —Rr —i

(35)

TABLE II. Sensitivity of forward cross section and asymmetry to model.

Effect of changing P. Ro ——6. 15 fm. Ao" ——0.75+8.89i

Reaction pc

0.32
0.32
0.32

0.32
0.32
0.32

0.32
0.32
0.29

0.32
0.35
0.29

do-ll/dn
(mb/sr)

0.207
0.121
0.309

0.89 X 10-4
0.69 X 10
0.122X 10

do-'/dn
(mb/sr)

0.262
0.212
0.307

0.11X 10-'
0.11X 10-'
0.12X 10-'

11.5
27

—0.3

10.1
22

—1.4

Reaction

Effect of changing R~~. p2=((12=0.32. A,
"' as in upper part of Table II.

z(~) R() d o.ll /d 0
(fm) (fm) (mb/sr)

do'/d Q
{mb/sr) s {

(m+, ~') 6.15
6.15

6.15
6.15

6.15
6.75

6.15
6.75

0.207
2.05

0.89 X 10-4
0.29 X 10

0.262
2.52

0.11X 10-'
0.34 X 10-'

11.5
10.5

10.1
7.2

Reaction

Effect of changing A.'". Ro ——R~ ——6. 15 fm.
0

(fm3)

p2 ——pz —0.32.
g(1)

(fm )

do-ll/

(mb/sr)
do'/do
{mb/sr)

0.75+8.9i
0.64+ 7.6i
0.86+ 10.Oi

1.2+ 8.9i
1.33+10.Oi
0.98+7.5i

0.207
0.45
0.100

0.262
0.56
0.13

11.5
11.4
11.9

0.75+8.9i
0.64+ 7.6i
0.86+ 10.0i

1.2+ 8.9i
1.3+10.0i
0.98+7.5i

0.89 X 10-'
0.35 X 10-'
7.23 X 10

0.11X 10-'
0.44 X 10-'
0.28 X 10

10.1
10.9
9.8
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and RJ are the black-disk radii in channels of total isospin
These radii can be calculated analytically in terms of U

as in Ref. 2. We then find

(36)

Ws(0)=7% . (37)

This result is confirmed by explicit evaluation of the in-
tegrals of the eikonal approximation in the coherent ap-
proximation.

However, based on the studies of inelastic proton
scattering, "virtual excitations of the nucleus are expected
to be important. These excitations may be included in the
closure approximation, which fixes the orientation Q of
the nucleus and averages over Q only after the scattering
has occurred. In this case we cannot easily make analyti-
cal approximations, but it is possible to do the integral
over the P direction in Eq. (18). Making the dependence
on P explicit in Eq. (19),

where we have assumed P2 ——Pq. One sees explicitly by
following the derivation that the geometrical factors that
fix the size of the individual cross sections, as well as the
dynamical factors A, ,"', drop out of As(8), making it
uniquely sensitive to 13&. If we take as an example ' Ho,
then

see that the cross sections and especially As(0) are sensi-
tive to changes in IBz /P2. This is true for both SCX and
DCX and is in accord with the results of Ref. 1. In the
middle part of Table II we change Ro keeping all other
parameters of the model fixed. The As(0 ) is remarkably
insensitive to Ro, even for changes that give rise to more
than an order of magnitude variation in the individual
cross sections. In the lower part of Table II we show ef-
fects of 10% changes in the values of I,'". Again we see
that the results for As(0') are much more stable than the
cross sections. The results of Table II are in accord with
the expectations based on our derivation of Eq. (36) and
demonstrate the selective sensitivity to Pz, which measures
the relative strength of the l =0 and I =1 components of
the density. The main result. of our work is this strong,
selective sensitivity to Pz and 13z.

Figure 2 displays the cross sections and orientation
asymmetry for SCX plotted as a function of angle at
T = 180 MeV. The most favorable angle for observing a
large asymmetry is 0', because the cross section is largest
here. For this calculation we have used the values of Ro,
and a in Eq. (4), but if we fix the parameters according to
the DHF solution the zero-degree cross sections become
do'~/dQ(0 ) =0.88 mb/sr and do /dQ=0. 98 mb/sr.
This demonstrates, once again, the sensitivity of SCX
cross sections to the neutron and proton density. We ex-

X,(b, 8,$)=X',"(b,o)+X,' '(b, O)cos P,
we find

16 (b g) — gy &
x(ban—), ,

27T O

(38)
IO

= [exp[ X"'(b—,8) —,'X' —'(b, 0)]I IIo[ —,'X' '(b, 8)]I, lo

(39)

where Io(X) is a Bessel function of imaginary argument
of order zero.

A comparison of the closure and coherent approxima-
tions is made in Fig. 1 for I3& ——13c ——0.32. The size of the
correction is consistent with the findings of Ref. 11. The
asymmetry increases from 7% to 11%, which implies a
difference of 22% in the cross sections for the parallel
and perpendicular alignments.

We conclude that it is important to retain the virtual
inelastic excitations in order to achieve numerical accura-
cy. In obtaining the results in the next section we there™
fore use the closure approximation.

Ol

Xl
E

C.'IO
U

b

IO

IO--

//
/i/I'

I I,

I ll

IV. RESULTS
Ol—

In this section we show results that utilize the full
eikonal model in Eqs. (17)—(20). We show in Table II the
results of calculations for different values of RO„P2, and
k' " to demonstrate the sensitivity of the cross sections
der /dQ and der'~/dQ and the asymmetry A~ to these
quantities. We give results for SCX and DCX at
T = 180 MeV.

In the upper part of Table II we show the effect of
changing the deformation of neutrons and protons. We

-Oj

-0.2
0

l

lo

8(deg)

I

20

FKx. 2. Cross sections and asymmetry for ' Hoc,'~+, ~ )' Er
at 180 MeV for Pz =Pz ——0.32 and Ro ——6. 15 ftn. The long
dashes are do. /dQ and the short dashes der~~/dA.
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cal value for the proton deformation, we calculate
As(0')=11%, or a 22% difference in cross sections. If
we take the values in Table I corresponding to the DHF
(Ref. 5) calculation, we find As(0') =6%.

V. CONCLUSION

The results of this investigation substantiate the con-
clusion of Ref. 1, that the asymmetry As(8) for single
charge exchange from oriented, deformed nuclei is sensi-
tive to the deformation of the excess neutrons. ' We have
further demonstrated that As(0) is insensitive to other
less well-known aspects of the problem, such as higher or-
der terms in U, which can affect the size of do /d Q.

Extensions of these calculations into several directions
would be useful. We have assumed a special form for the
neutron and proton densities [see Eq. (7)], in which p(l, r)
for l =2 is proportional to the derivative of the l =0
term, which is taken to be a Woods-Saxon shape. Al-
though the DHF theory resembles this, there are differ-
ences in detail which must be carefully taken into account
when comparing theory to experiment. The multipoles
I ~ 2 also should be included. As a second extension, we
believe that it would be useful to solve numerically the
coupled channel equations including second order effects

explicitly. Parameters of the second order optical poten-
tial have recently' been obtained empirically for T = 165
MeV. This extension would permit a reliable theoretical
prediction of the magnitudes and shapes of the individual
cross sections der~'/d0 and do /dQ.

Although both SCX and DCX show a strong sensitivity
to Pq, we would prefer measurements of SCX, because theN

cross sections are larger than those of DCX and because
they depend on the second order optical potential in a
more straightforward way. We have further seen that the
SCX cross sections are more slowly varying with energy,
which makes the connection between As(0) and the densi-
ties more stable against effects which are not included in
our calculation, especially dynamical modifications of 633
propagation in the nucleus.
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