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Alpha transfer mechanism in heavy-ion reactions
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In some heavy-ion reactions, such as *Mg('%0,'2C)?*Si oscillatory structure often appears in the
whole angle region in the differential cross section. This anomalous phenomenon, unexpected from
ordinary distorted-wave Born approximation theory, is explained by an alpha transfer process be-
tween two unidentical nuclear cores. Nuclear molecular-orbit theory has been formulated, and the
coupled system of wave equations describing both the elastic scattering and transfer reaction chan-
nels are obtained. An independent a particle model is assumed in the evaluation of nuclear wave
functions. The differential cross sections of both channels have been calculated simultaneously for
two cases: 2*Mg('%0,'%0)**Mg and 2*Mg('°0,"2C)?*Si as well as 28Si('%0,%0)?%Si and 28Si(1¢0,12C)*?S.
Agreement with the experimental data can be reached in the whole angle region for both of these

cases.

I. INTRODUCTION

In the elastic scattering between 4 N nuclei, such as the
%Mg('%0,'%0)**Mg case, an uprising oscillatory structure
often appears in the differential cross section at the back-
ward angle region as shown in Fig. 1. The conventional
optical model calculation generally could not describe this
oscillatory structure as the dashed curve shown in the fig-
ure.!

This anomalous phenomenon has been studied by an
a-transfer mechanism.? ?*Mg was treated as a system
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FIG. 1. Differential cross section of the elastic scattering be-
tween '°0 and **Mg (Ref. 1). A conventional optical model cal-
culation cannot interpret the uprising oscillatory structure at the
large angle region. The solid curve is the result of the LCNO
theory calculation based on the a transfer mechanism.

with two a particles revolving about a nuclear core '°O.
In the scattering process of °0+2*Mg the two valence «
particles will move around the two identical '°O cores in
some molecular orbits. The nuclear molecular-orbit
theory or the linear combination of nuclear orbits (LCNO)
(Ref. 3) was used for this « transfer process. The oscilla-
tory structure did appear and agreement with the experi-
mental data was reached naturally for the whole angle re-
gion as shown by the solid curve in Fig. 1.

However, in the collision between °O and 24Mg, beside
the elastic scattering, the nuclear reaction channel
24Mg(1%0,'2C)?8si also plays a significant role, as shown in
Fig. 2.' In this reaction oscillatory structure appears in
the differential cross section throughout the whole angle
region. Paul and his collaborators have made a calcula-
tion using the distorted wave Born approximation
(DWBA). Wide discrepancy with the experimental data
appeared in the backward angle region as shown by the
dashed curve in the lower part of Fig. 2.!

It seems worthwhile to study both the elastic scattering
and reaction channels simultaneously for this case with
the a transfer mechanism. So far in the treatment of elas-
tic transfer scattering only the cases with the transferred
nucleon or alpha moving around two identical nuclear
cores are considered.® In the heavy ion collision process
the a particle may also move around two unidentical
cores in molecular orbits. In this particular case of the
Mg+ %0 system 'O may be considered as a system
composed of one a particle revolving around a '2C core.
In the collision process this valence a particle moves
around these two unidentical cores '2C and **Mg.

A nuclear molecular orbital theory can be formulated
for these two-channel a transfer mechanisms. A channel
coupling wave equation system has been obtained and ap-
plied to two cases: '°0+2*Mg and '°0+2%Si. The
theoretical calculations agree with the experimental data
well for both cases as shown by the solid curves in Figs. 2
and 4.
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FIG. 2. Differential cross sections for the **Mg(°0,!°0)**Mg
scattering channel and the 2*Mg(!0,"?C)**Si reaction channel
(Refs. 1 and 7). The dotted curves are the conventional optical
model and DWBA calculations, respectively. The solid curves
are the results of the LCNO coupled channel theory calcula-
tions.

II. LCNO THEORY FOR THE a TRANSFER
MECHANISM BETWEEN UNIDENTICAL CORES

Let us consider a system with an alpha cluster a revolv-
ing about two unidentical cores as shown in Fig. 3.

(a+C)+C,—Cy+(a+C;) (a channel),
(a+C;)+C,—(Cy+a)+C; (B channel),

where C; and C, are two unidentical nuclear cores with
zero spin and a is the a cluster transferred between these
two cores.

Originally the a cluster is attached to core C; to form
nucleus 4 (A4 =C;+a). During the collision process ei-
ther a may stay with core C;, and the elastic scattering
channel takes place, or a may be transferred to C, to
form nucleus B (B =C,+a) and the system takes a nu-
clear reaction channel.

The total Hamiltonian of the system for the scattering
channel is

HazTa(Kl)+Vopt(R1)+ha(I_{1’F2) ’ (1)

where the first two terms are the relative kinetic energy
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FIG. 3. Coordinate system for the molecular state with a
valence alpha particle a revolving around two unidentical core
nuclei C; and C,.

and optical potential between nucleus A and core C,.
The last term is the residual Hamiltonian for the
transferred a cluster.*

ha(§1,72)=’(71)+vac,(71)+Uacz(72) . 2

The total Hamiltonian of the system may also be written
as

HBZTB(RZ)"}‘Vopt(R2)+hB(E277l) s (3)
where
hg(ﬁz,?l )=_t(72)+Uac2(72)+vacl(71 ). (4)

According to the LCNO theory the total wave function
for the system can be expressed as

V=3 [Catim(R ) (F)+Chih (Ry)$5(F)],  (5)

where ¢%(F;) and ¢2 (F,) are the wave functions for the
valence particle a@ bound to nuclear cores C; and C,,
respectively.

If the recoil effect of the cores is neglected, R; and R,
can be replaced by R. All of this of course means that the
Born-Oppenheimer (BO) approximation is adopted. It has
been shown that even for a small mass ratio of core to the
valence particle, the BO approximation still holds.’

We also assume that the probability of the valence par-
ticle staying in an excited state is negligible. Only contri-
butions of the ground states are considered. The system
wave function then becomes

W =C%*R)$™F,)+ CPYA(R $P(7,) . (6)
Now we perform the following operations:

(¢%(7y) |H,—E |¥) =0,
@)
(¢P(F,) |Hg—E |¥)=0,

and consider ¢*(7,) and ¢#(7,) to be orthogonal to each
other. As is known, the overlapping integral

(¢%(F) | $P(F,) ) =5

is a small quantity.* It gives only higher order modifica-
tion. A system of differential equations is obtained from
Eq. (7) describing the coupling between a and 8 channels

[THR)+V{(R)+K(R)+€—EW*R)+CJ(RWAR)
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[T3(R)+V(R)+K,(R)+€,—EIYAR)+CoJ,(RY*R)

where
VAR)=VPR)+VS{(R), i=1,2. )

The Wood-Saxon potential is used for the nuclear poten-
tial

VoP'= _V{1+4exp[(R —Ry)/a,]1}~
—iW{1+4exp[(R —Ry)/ay]} ! (10)
and the Coulomb potential ¥ “(R) is taken to be
Z,Z,e*3—R*/R2%)/2Rc, R <Rc¢

C, —
VAR)=12,2,e2/R, R>Rc , (an
K (R)={¢%F,) | v(ry) | ¢%F))) , (12)
K>(R)={(AF,) |v(r)) | $P(7,)) , (13)

=(¢%7F)) | h(F)) | $%(F1)) ,
| h(F)=tF)+o(r),  (14)
e,={¢A(F,) | h(7,) | $P(7,)
h(7)=t(F)+v(ry), (15)
J1(R)={¢%F,) | v(ry)) | $5(72)) , (16)

JL(R)={(AF,) | v(ry) | d%F))) . 17)

The interaction between the a particle and the nuclear
core v in the above integrals is taken to be the Gaussian
potential

Uc,.a("i)= VR1 exp( —-r,-z/a,zzi)

+ V4, exp( —riz/af‘i ), (i=12), (18)
which contains a repulsive term with Vz >0 and an at-
tractive term with VAi <0. For the bound state wave

function of the valence particle ¢, an independent particle
model has been used.® In this model the wave function
for the valence a particle can be expressed simply as a
combination of harmonic oscillator functions,

¢(r,)—-—(ﬂaz)‘3/4[(2——\/3)+\/8/_3(r,-/a,-)2]
V'8

xexp(—r?/2a?), i=1,2, (19)
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where q; is the oscillator length parameter.

The LCNO matrix elements of Eqs (12), (13), (16) and
(17) can then be easily integrated in closed forms and the
results are listed in the Appendix. The values of the in-
tegrals of Egs. (14) and (15) are taken directly to be the
experimental energies of the ground states.

Finally the coupled differential equation system Eq. (8)
is solved numerically and the phase shifts determined.
From the approaching behavior of the wave functions one
gets the scattering amplitudes for the two channels as fol-
lows:

foaa=Fat 5= SVEOIFT)
a |
iSa i aC
(& 1) y,00),  (20)

foa= 2lk ’ S VaGeITDe 2Oy 0, @D
BT
where
fc _ Na e2i(8€—nalnsin0/2) (22)
“ 2k, §in%0/2

is the Coulomb scattering amplitude. 87 and 86FC are
Coulomb phase shifts. The differential cross sections for
scattering and reaction channels will be

daaa/dﬂ= lfaa/fgalzs (23)

doge/d0=|fpa |’

B#a . (24)

III. CHOICE OF PARAMETER VALUES
AND RESULTS

The formulation of the LCNO theory for the two-
channel transfer mechanism has been applied to calculate
the angular distribution of two cases: **Mg('°0,'°0)**Mg
and 2'Mg(1%0,'12C)?8si; 283i(1%0,1%0)*8si and
285i(10,'2C)32S. Experimental data of these cases are
available.""’~° The optical model parameters in Egs. (10)
and (11) are kept the same as those used by previous au-
thors.!10 (See Table I.) The parameters of the Gaussian
potential between the valence a particle and the nuclear
core in Eqgs. (18) and (19) are listed in Table II.

TABLE 1. Wood-Saxon optical potential and Coulomb potential parameters taken from Refs. 1 and

10 without adjustment.

14 Ry” ay /4 Rop® aw Roc?

System (MeV) (fm) (fm) (MeV) (fm) (fm) (fm)
160+ Mg 37.0 1.37 0.394 78.0 1.32 0.208 1.2
160 4283 10.0 1.35 0.618 23.4 1.23 0.552 1.0

*This is the value of the root mean square radius with R; =R(417 +4}3), i=V,w,C.



TABLE II. Gaussian potential parameters in Eq. (18) for the
interaction between a and nuclear cores and the harmonic oscil-
lator length parameters in the wave function for the a particie
in Eq. (19).

Vr ar Va4 a4 ayo
Core (MeV) (fm) (MeV) (fm) (fm)
e 55.0 0.95 —30.2 1.7 1.22
Mg 310.0 0.93 —285.0 2.5 1.55
28i 250.0 1.0 —212.0 2.1 1.5

*This value is determined from spectroscopic data (Ref. 2).

The harmonic oscillator length for '?C is taken to be
apo=1.2 as determined from spectroscopic data.? The
rest of the parameters in Table II are considered to be ad-
justable. Their values may give some information about
how an a particle interacts with some 4N nuclei of dif-
ferent mass numbers.
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FIG. 4. Differential cross sections for the !Si('°0,'0)!Si
scattering channel and the 2%Si('0,!2C)32S reaction channel (Ref.
9). The solid curves are the results of the LCNO coupled chan-
nel theory calculations.
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The calculated results of the angular distributions for
both scattering channel **Mg('%0,'°0)**Mg and reaction
channel 2*Mg('%0,'?C)*Si are plotted as the solid curves
shown in Fig. 2. The experimental points are the mea-
surements made by Paul et al."” While for the elastic
scattering channel the oscillatory structure appears only in
the large angle region, the oscillatory structure covers the
whole angle region for the reaction channel. The dotted
curves are the results of their calculation based on conven-
tional optical model and DWBA theory, and oscillatory
structures do not show up in the backward angle region.
These oscillatory structures do appear in the a transfer
LCNO theory calculations. The number of peaks and
their magnitudes agree with the experimental data except
in the 90° region.

For the other example, similar oscillatory structures
also appear in the angular distribution of both scattering
channel 28Si('°0,'°0)?%Si and the reaction channel
283i(10,12C)*?8 as shown in Fig. 4.° Agreements can also
be reached for the LCNO theory calculations as the solid
curves show in the figure. It is interesting to note that for
both cases the positions of crest and valley in the scatter-
ing channel nearly coincide with those in the reaction
channel.

IV. DISCUSSION

The nucleon or a cluster of nucleons transfer mecha-
nism, which has been used so successfully in interpreting
the elastic transfer scattering between two identical nu-
clear cores, can be extended to apply to some heavy ion
nuclear reactions between two unidentical cores. This
way the appearance of oscillatory structure in the dif-
ferential cross section in certain heavy ion reactions be-
tween 4N nuclei may be also interpreted. An a particle is
supposed to move in some molecular orbits around the
two unidentical cores. The LCNO theory works well to
describe these a transfer mechanisms in coupled scatter-
ing and reaction channels.

It seems to be profitable to apply the independent «
particle model to get simple expressions for the bound
state wave function of the a particle. This way one can
integrate out the LCNO matrix elements and get the ex-
change potential in closed form. This makes it easier to
analyze the behavior of these exchange potentials which
play the major role in causing the uprising oscillatory
structure in the backward angle region of the differential
cross section.

Both the scattering and reaction channel experimental
data have been fitted simultaneously with a common set
of parameters. If two sets of adjustable parameters are
used separately, better agreement may be obtained. The
recoil effect of the cores has been neglected and improve-
ment may be gained by taking it into consideration.

One of the authors (P.N.) is very grateful to Dr. E.
Bernstein and Dr. D. Halderson for their help and the in-
terest shown in this work.
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APPENDIX

The LCNO matrix elements, Eqgs. (16) and (17), may be written as

v (r;)=vg; eXp(—Ag;ri) +v4; exp(—A 1), i=1,2
and
¢( ri):(a,-+b,~r,~2)exp(—'r,~r,-2) )

where

a;=—0.0673460a 53{%, b;=0.244688a 70/ 7,=0.5a53; -

(1) Ki(R)=(¢(Fy)|v(ry) | d(F;))

=F(vR2,AR2a1,b1,71,R)+F((v42,A 40,a1,b1,7,R),

where

2mvAE,
Fl(vy)"’abbl,TI’R)=

Ci=a?+3a,b,/a +15b3 /4a?, Cy=2a,b,+5b%/a ,

Cs=b?, a=27+A, Z=AR(Q2m+A)"'2,
A=exp(—AR2+2Z%), Eq=+5Vw[l+erf(Z)].

T[C‘ +(C3+CsZ%~1Z2% " ")Za ",

(2) K(R)=F(vg1,AR1,@2,b2,72,R)+Fy(v41,A 41,G2,b5,75,R) .

(3) JI(R)=<¢(71) I U(rz) ' ¢(72)>

=F,(VR2,AR2,@1,01,71,82,b2,72, R)+F5(v 49,A 45,a1,b1,71,a5,b5,73,R) ,

=________[DO+(D1+{D2+[D3+(D4+DSZa—1/2)Za—1/2]Za—I/Z}Za—l/?.)za—l/Z]a—l/Z ,

where

Fy(v,A,ay,b,7,a2,b5,75,R)
2mvAE,
(A+72)R

Dy=—a,b,R/a—3b,b,R /2a?,

Dy=ay[ay+by[R*+(A+7)" "1+ 3(a1by+ b1 {ar +bo[R*+(A+7,) "' ]1+5b,/2a})]a 71,
D2=—-2(a1+3b1/a)b2R, D3=a1b2+b1{az+b2[R2+(K+Tz)"‘+Sa_1]} N

D4=—2b1b2R, D5=b1b2, a=k+7'1+1'2 N

Z =(A+7)R(A+714+7)" 2, A=exp[—(A+7,)R*+2Z?] .

(4) Jo(R)=((F,) |v(ry)| d(F;))

=F,(vr1,AR1,82,02,72,01,01,71,R) + F3(v 41,A 41,@2,b2,75,a1,b1,7,R) .

*Present address: Western Michigan University, Kalamazoo,
MI 49008.
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