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Alpha transfer mechanism in heavy-ion reactions
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In some- heavy-ion reactions, such as Mg(' 0, ' C) Si oscillatory structure often appears in the
whole angle region in the differential cross section. This anomalous phenomenon, unexpected from
ordinary distorted-wave Born approximation theory, is explained by an alpha transfer process be-
tween two unidentical nuclear cores. Nuclear molecular-orbit theory has been formulated, and the
coupled system of wave equations describing both the elastic scattering and transfer reaction chan-
nels are obtained. An independent a particle model is assumed in the evaluation of nuclear wave
functions. The differential cross sections of both channels have been calculated simultaneously for
two cases 24Mg(i60 i60)24Mg and ~4Mg(i60 l2C)28Sj as well as 28Sj(i6O l60)28Sj and 28Sj(i60 i2C)32S.

Agreement with the experimental data can be reached in the whole angle region for both of these
cases.

I. INTRODUCTION
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FIG. 1. Differential cross section of the elastic scattering be-
tween ' O and "Mg (Ref. 1). A conventional optical model cal-
culation cannot interpret the uprising oscillatory structure at the
large angle region. The solid curve is the result of the LCNO
theory calculation based on the a transfer mechanism.

In the elastic scattering between 4X nuclei, such as the
Mg(' 0,' O) Mg case, an uprising oscillatory structure

often appears in the differential cross section at the back-
ward angle region as shown in Fig. 1. The conventional
optical model calculation generally could not describe this
oscillatory structure as the dashed curve shown in the fig-
ure. '

This anomalous phenomenon has been studied by an
a-transfer mechanism. Mg was treated as a system

with two a particles revolving about a nuclear core ' 0.
In the scattering process of ' 0+ Mg the two valence a
particles will move around the two identical ' 0 cores in
some molecular orbits. The nuclear molecular-orbit
theory or the linear combination of nuclear orbits (LCNO)
(Ref. 3) was used for this a transfer process. The oscilla-
tory structure did appear and agreement with the experi-
mental data was reached naturally for the whole angle re-
gion as shown by the solid curve in Fig. 1.

However, in the collision between ' 0 and Mg, beside
the elastic scattering, the nuclear reaction channel

Mg(' 0, ' C) Si also plays a significant role, as shown in
Fig. 2. In this reaction oscillatory structure appears in
the differential cross section throughout the whole angle
region. Paul and his collaborators have made a calcula-
tion using the di.storted wave Born approximation
(DWBA). Wide discrepancy with the experimental data
appeared in the backward angle region as shown by the
dashed curve in the lower part of Fig. 2. '

It seems worthwhile to study both the elastic scattering
and reaction channels simultaneously for this case with
the a transfer mechanism. So far in the treatment of elas-
tic transfer scattering only the cases with the transferred
nucleon or alpha moving around two identical nuclear
cores are considered. In the heavy ion collision process
the a particle may also move around two unidentical
cores in molecular orbits. In this particular case of the

Mg+' 0 system ' 0 may be considered as a system
composed of one a particle revolving around a ' C core.
In the collision process this valence o. particle moves
around these two unidentical cores ' C and "Mg.

A nuclear molecular orbital theory can be formulated
for these two-channel u transfer mechanisms. A channel
coupling wave equation system has been obtained and ap-
plied to two cases: 0+ 4Mg and 0+ 8Si. The
theoretical calculations agree with the experimental data
well for both cases as shown by the solid curves in Figs. 2
and 4.
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FIG. 3. Coordinate system for the molecular state with a
valence alpha particle a revolving around two unidentical core
nuclei C& and C2.
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C.and optical potential between nucleus 3 and core
The last term is the residual Hamiltonian for the
transferred a cluster.

h~(R„r~)=t(r, )+u,c (r, )+u,c (r2) .
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IO

E

The total Hamiltonian of the system may also be written
as

Hp= Tp(R2)+ V,p, (R2)+h p(R2, r( ),
where

IO
hp(Rq, r~)=t(r2)+u~c (r2)+u~c (r~) . (4)
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According to the LCNO theory the total wave function
for the system can be expressed as

V=+ [C~Q~(R()P~(r))+C P~(R2)P (rz)], (5)

where P (r&) and P~~(r2) are the wave functions for the
valence particle n bound to nuclear cores C& and C2,
respectively.

If the recoil effect of the cores is neglected, R
&

and Rq
can be replaced by R. All of this of course means that the
Born-Oppenheimer (BO) approximation is adopted. It has
been shown that even for a small mass ratio of core to the
valence particle, the BO approximation still holds.

We also assume that the probability of the valence par-
ticle staying in an excited state is negligible. Only contri-
butions of the ground states are considered. The system
wave function then becomes

. (deg )

24 16 16 24MFIG. 2. Differential cross sections for the Mg( 0, 0) Mg
scattering channel and the Mg(' 0, ' C)2 Si reaction channel
(Refs. 1 and 7). The dotted curves are the conventional optical
model and DWBA calculations, respectively. The solid curves
are the results of the LCNO coupled channel theory calcula-
tions.

II. LCNO THEORY FOR THE a TRANSFER
MECHANISM BETWEEN UNIDENTICAL CORES

Let us consider a system with an alpha cluster a revolv-
ing about two unidentical cores as shown j.n Fig. 3.

(a +C& )+C2~C2+(a +C& ) (a channel),

(a +C& )+Cz~(Cz+a)+ C& (P channel),

where Ci and C2 are two unidentical nuclear cores with
zero spin and a is the a cluster transferred between these
two cores.

Originally the a cluster is attached to core C~ to form
nucleus A (A =C~+a). During the collision process ei-
ther a may stay with core Ci, and the elastic scattering
channel takes place, or a may be transferred to C2 to
form nucleus 8 (B =C2+a) and the system takes a nu-
clear reaction channel.

The total Hamiltonian of the system for the scattering
channel is

H~ = T~(R i )+V,p, (R i )+h~(R i,r2),
where the first two terms are the relative kinetic energy

O'= C Q (R )P (r ) )+CPQP(R )PP(r2 ) .

Now we perform the following operations:

(P (r, ) ~H. E~ 4) =0, —

(PP(r, )
~
Hp E~ 4) =0, —

and consider p (r~) and pp(rq) to be orthogonal to each
other. As is known, the overlapping integral

is a small quantity. It gives only higher order modifica-
tion. A system of differential equations is obtained from
Eq. (7) describing the coupling between a and 13 channels

[ T (R )+ V)(R)+X)(R)+e) E]Q (R )+C)J—)(R)gP(R )
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[ Tp(R )+ V, (R)+K2(R)+e, —E]1( (R )+C2J2(R)1' (R )

=0,
where

Vi(R) = V,"~'(R)+ V1(R), i =1,2 . (9)

i W—I 1+exp[(R —Rw)/aw] j (10)

The Wood-Saxon potential is used for the nuclear poten-
tial

V'1"= —VI 1+exp[(R —R z) /a„] I

where a; is the oscillator length parameter.
The LCNO matrix elements of Eqs. (12), (13), (16), and

(17) can then be easily integrated in closed forms and the
results are listed in the Appendix. The values of the in-
tegrals of Eqs. (14) and (15) are taken directly to be the
experimental energies of the ground states.

Finally the coupled differential equation system Eq. (8)
is solved numerically and the phase shifts determined.
From the approaching behavior of the wave functions one
gets the scattering amplitudes for the two channels as fol-
lows:

and the Coulomb potential V (R) is taken to be

Z)Z2e (3 R /Rc—)/2Rc R (Rc
V (R)= '

Z)Z2e /R, R &Rc

K2 (R ) = & () p( r 2 )
~

u ( r 1 )
j 4p( r 2 ) &

e, =(y (r, )
~
h(r, )

~ P (r))),

(12)

(13)

f =f + g v'4'(2l+1)
2ik

2.S, 2.S, c
&&(e

' —1)e ' Yio(0),

g v'4m(2l + 1)e Yto(&),
2i(5I +5)c)

2ikf3

where

(20)

(21)

h(r, ) =t(r1)+u(r1), (14)

e2= &P~(r2)
I

it (r2)
I

'(t' (r2)

h(r2) =t(r2)+u(r2), (15)

2i(5&+& —V 1nsin()/2)

2k~sin 8/2

(R)= (4 (r1)
I
u(r2)10 (r2) ) (16)

(17)

is the Coulomb scattering amplitude. 5i and 5pt are
Coulomb phase shifts. The differential cross sections for
scattering and reaction channels will be

The interaction between the a particle and the nuclear
core v in the above integrals is taken to be the Gaussian
potential

uc, (r;)= Vz exp( r; /aii )—2 2

do. /dQ=
i f /f

dop /dA=
i fp i, f3~a .

(23)

(24)

+ Vz exp( —r; /a~, ), (i =1,2), (18)
III. CHOICE OF PARAMETER VALUES

AND RESULTS

P(r;) = (ma; ) ~ [(2—v 6)+V8/3(r;/a;) ]
8

Xexp( —r; /2a; ), i =1,2, (19)

which contains a repulsive term with Vz ~0 and an at-
t

tractive term with Vz ~0. For the bound state wave
t

function of the valence particle P, an independent particle
model has been used. In this model the wave function
for the valence a particle can be expressed simply as a
combination of harmonic oscillator functions,

The formulation of the LCNO theory for the two-
channel transfer mechanism has been applied to calculate
the angular distribution of two cases: Mg(' 0, ' 0) Mg
and 2 Mg(160 12C)28Si' 28Si( 60 160)28Si and

Si(' 0, ' C) S. Experimental data of these cases are
available. '7 The optical model parameters in Eqs. (10)
and (11) are kept the same as those used by previous au-
thors. " (See Table I.) The parameters of the Gaussian
potential between the valence a particle and the nuclear
core in Eqs. (18) and (19) are listed in Table II.

TABLE I. Wood-Saxon optical potential and Coulomb potential parameters taken from Refs. 1 and
10 without adjustment.

System

16O +24Mg
16O+ 28Si

V
(MeV)

37.0
10.0

Rov'
(fm)

1.37
1.35

ay
(fm)

0.394
0.618

W
(MeV)

78.0
23.4

1.32
1.23

aw
(fm)

0.208
0.552

Roc'
(fm)

1.2
1.0

'This is the value of the root mean square radius with R;=Ro;(A & +32 ), i = V, W, C.
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—285.0
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1.7
2.5
2.1

0.95
0.93
1.0

'This value is determined from s ecrom spectroscopic data (Ref. 2).
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APPENDIX

The LCNO matrix elements, Eqs. (16) and (17), may be written as

u(r;)=vR; exp( AR;—r; )+v„; exp( Aq—;r; ), i =1,2
and

P(r;)=(a;+b;r; )exp( ~;—r; ),
where

a; = —0.067 3460a HQ;, b; =0.244688a HQ;, ~; ——0.5a HQ; .

(1) IC](R)= &P(r] )
~
u(r2)

~
P(r] ) )

F1 ( vR 2 ~R 2 a 1 b 1 r] R ) +F] ( u A 2 ~A 2 a 1 b 1

where

2m.vAEO 2 —1 2 —1 —].F](u, k, ,a],b],&],R)= [C]+(C3+C5Z a )Z a ]Za
A,R

C] ——a]+3a,b]la+1Sb]/4a, C3 ——2a]b]+Sb] la,
Cs=b„a =2~]+A, , Z=AR(2v]+k)

A =exp( A—R +Z ), Eo ——,'Me[1+—erf(Z.)] .

(2) IC2(R) =F](vR],AR], Q2, b2, r2, R)+F](uz],k„„a2,b2, ~2,R) .

(3) J]«)= &4(r])
I
v(»»

I 4(r2) ~

=F2(uR2, &R2,Q],b],r] Q2 b2 ~2 R)+F2(uA2 ~+2 a] b] r] Q2 bZ +2 R)

where

F2(U, A, ,Q],b],7],Q2, b2, ~2,R)

2~v AFo
[Do+(D]+ ID2+[D +(D4+D Za ' )Za ' ]Za ' Iza ' )Za ' ]a

A, +~2 R

Do = —a]b2R /a —3b] b2R /2a

D] ——a][a2+b2[R +(A+72) ']+ —,
' (a]b2+b] Ia2+b2[R j(A+72) ']+Sb2/2a ) )]a

D2 ———2(a]+3b]la)b2R, D3 ——a]b2+b] Ia2+b2[R +(A, +~2) '+Sa ']I,
D4 ———2b i b2R D5 =b ]b2, a =k+7 )+'T2,

Z =(A+12)R(A, +'r]+72) ', A =exp[ —(k+v2)R +Z ]
(4) J2(R)=&4(r2)

~
u(r]) ~]It(r])&

F2(vR 1 ~R 1 Q2 b2 +2 a] bl +I R) +F2(uA 1 ~A 1 Q2 b2 +2 a] bl +1 R)
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