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The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point
angle are discussed and analyzed in the sudden approximation. Simple expressions are derived
within the Fresnel model and applications to several heavy-ion systems are presented.

I. INTRODUCTION

One of the most conspicuous features of heavy-ion elas-
tic scattering at above-barrier energies is the quarter-point
angle. This angle is defined, through the quarter-point
recipe, as that at which the ratio of the elastic differential
cross section to the Rutherford cross section attains the
value 0.25. At an optical model level, it is also defined as
the angle that is related, through a Coulomb deflection re-
lation, to an angular momentum at which the transmis-
sion coefficient is 0.5 (or the elastic reflection coefficient
is V0.5). This angular momentum is invariably referred
to as the grazing or strong absorption angular momentum,
and it represents, using an optical analogy, the Fresnel
diffraction boundary, in angular momentum space (see
Born and Wolf, Ref. 1).

The utility of the quarter-point recipe resides in the im-
mediate, albeit approximate, determination of the total re-
action cross section through the knowledge of 0~~4 as

2crz —— (l, /4+ 1)
k

II. THE SHARP CUTOFF MODEL
OF o(8)/crR„)h(0),

AND STATIC DEFORMATION EFFECTS

Within the sharp cutoff model of heavy-ion elastic
scattering, the ratio to Rutherford is given by

sin[ —,
' (8—O~/4) ](0)=F ~'"

sin( —,
'

0~/4)
(3)

where the function F is given by

F(x)= —,
~

erfc(e'" x )
~

arising from, that we call, dynamic deformation effects
due to Coulomb excitation, and static deformation effects
due to nuclear excitation, both treated within the sudden
approximation.

In Sec. IV, we present our numerical results for several
heavy-ion systems. And, finally, in Sec. V, we present
several concluding remarks.

with

1l //4 =7j cot( p 8]/4) (2)

= —, I[—, —C(V2/mx)] +[—,
' —S(v'2/mx)] I .

The Fresnel integrals C(z) and S(z) are given by

(4)

where k is the asymptotic wave number of relative motion
and g is the Sommerfeld parameter. The quarter-point
recipe, first investigated by Blair, has been used exten-
sively in the analysis of heavy-ion elastic scattering.

Clearly the quarter-point recipe, as described by Eqs. (1)
and (2), does not take into account any nuclear structure
effect aside from the overall optical behavior exemplified
by the optical model description.

In this paper, we investigated the effect of nuclear de-
formation on the quarter-point angle. We work out ap-
proximate analytic forms for the corrections, arising from
static deformation, to 0&~4. We consider our treatment
based on the sudden approximation, as approximation to a
full coupled channels calculation, having, as a clear ad-
vantage, the closed forms, which facilitates the under-
standing of the physics involved.

In Sec. II, we present our sudden treatment of the de-
formation effects on 8~/4. Our starting point for the cross
section ratio to Rutherford is the strong absorption
Fresnel model.

In Sec. III„wediscuss the two major corrections to 0&&4

C(z)= f cos t' dt; C(z)= ——C( —z),
0

S(z)= I sin t dt; S(z)=——S( —z) .
0

Though completely not adequate at 0&0&~4, owing to
the sharp cutoff approximation, Eq. (3), nevertheless, sup-
plies a reasonable description of the heavy-ion elastic
scattering cross section ratio to Rutherford at 0&0I~4.
Furthermore, it exhibits explicitly the quarter-point prop-
erty of the scattering, namely at 0=0&«, o.to.«,h

——4,
since F(0)= —,'.

For further use, we give below the asymptotic behavior
of F(x). For 8«6I&/4, we have, using the asymptotic
forms of C(z) and S(z),

F(x)=1+ 1 1+ sin x ——,x «0
4m/x /' ~/x f

4

(6a)
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sin [—,
' (8—8iiq)]

sin
S1I1 ( Ti 8]y4) 4

The local period of these oscillations is given by

Sill ( —,8iy4)

sin(8 —8]yg)

2~9 1

q2+g»4 sin(8 —8&i4)

clearly, I'~ increases as 0 approaches Hid and as q de-
creases.

Equation (6b) indicates that the cross section ratio
o/oR„,h decreases with angle, in the shadow region, as
sin [ —,(8—8iiq)]. This is, of course, an artificial feature
associated with the sharp cutoff approximation and is far
from the exponential damping, which results if a smooth
absorption is considered. However, since our aim in this
work is to investigate the quarter angle region, which is
adequately described by Eq. (3), we feel quite comfortable
in using the sharp cutoff model.

Before introducing the deformation aspect to the prob-
lem we give below, positions of maxima and minima of
I'(x),

1/2

I'(x)=, x)&0.1
(6b)

4m Ix I'
Equation (6a) shows that the Fresnel oscillations seen in

cr/o R„,h at small angles are described by
r

III. STATIC AND DYNAMIC
DEFORMATION EFFECTS IN Hiy4

In several heavy-ion systems, the usual Fresnel form of
the ratio 0/0R„.,h at small angles comes out quite modi-
fied. As an example, we show in Fig. 1 the data on Kr
scattered by Pb and Th at 500 MeV measured by
Colombani et ai. In Fig. 2, we exhibit the elastic data of
the system ' 0+' W at 90 MeV measured by Thorn
et al. Clearly, several specific nuclear structure effects
not accounted for by Eq. (1) are involved in this case.

In particular, the strong Coulomb excitation of low-
lying excited states, both target and projectile, may have a
major role in bringing in the clear deviation in the data
from pure Fresnel diffraction. Aside from Coulomb exci-
tation, nuclear excitation also inflicts several changes in
the diffraction scattering.

In this section, we consider these two effects separately
due to the clear difference in their nature, the Coulomb
effects, represented by an adequate polarization potential,
is of a long range nature both in r and I, whereas the nu-
clear excitation is short ranged and can be accounted for
approximately, as we show below, by performing an ade-
quate average over the orientation angle.

As has been demonstrated in Refs. 5—7, the dynamic
deformation effects arising from the Coulomb excitation
of low-lying collective states can be nicely accounted for
quite adequately by an I and r dependent polarization po-
tential, which has the form

r

—l A I &I cl
Vvi(")= 3+ ~ + 5 (11)

2p r r r

where, the l and F- dependent coefficients ai, bi, and ci
are given by

g =gi/4 —2 sin

I

3~ 4m@. sin ( T8&&4)

4+ 4

m =even,

min 6]i4.—2 sin(m)
2

3m 4m' sin (T8&i4) 1.0

0.5—

0

e-
~ 0

Kr+ Th
500 Mev

The first major maximum measured from 8iiq occurs at

8','„=8ii4—2 sin '[v'3m/4gsin( —,8,i4)],
T

37T=8ig4 —cos 1 — sm ( —,8ii4)

The value of a./0. R«h at this angle is

&1.0 -~
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~Ruth
(8",'„)=1+,+ =1.40 .3~' mv'3 (10)
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Therefore, in the angle interval 0',', & 8 & 0&i4, the cross

section ratio changes by -460%, a rather major drop. It
is in this region that we expect static deformation to play
a major role.

c.rn.

FICx. 1. Elastic scattering angular distributions of Kr on
Pb and Th at El,b ——500 MeV (Ref. 4).
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(8)=exp ~ ——f dt V~~ [r(t)] (14)

w 1.0—
IX

la

The above formula has been applied to several cases of
heavy ion elastic scattering involving deformed targets
and its agreement with the data has been quite satisfacto-
ry.

Because of the long range nature of V~&(r), we expectI

that the damping in o/crR«h arising from it and given by
Eq. (14) to be still valid even at above-barrier energies,
where Eq. (14) should be replaced by

12

~Ruth
(8)=

0 eo

(8)exp ——f dt V~&[r(t)]
~Ruth

J

(15)
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C.fTl .
FKs. 2. Elastic scattering angular distributions of ' 0 on
Pb and "W at Et,b

——90 MeV (from Ref. 5).

To support our claim above, we apply Eq. (15) to the
data on ' 0+' W, Fig. 3. We generate o,&/oR«h from
spherical optical model potential suggested by Love
et a/. Figure 3 summarizes our finding. Clearly, Eq.
(15) is quite reasonable.

It is important, at this point, to point out that o,~/crR«h
is still, in general, not obtainable, in principle, from a
straightforward optical model calculation, since at above-
barrier energies, the short-ranged nuclear excitations come
into play. We turn to the calculation of o,t/o R«z(8).

Having isolated the long-range Coulomb polarization
effect on a,~/oR«h, we now treat cr,~/oR«h, Eq. (15), as
containing only a short-range nuclear coupling effect.

%'e adopt the sudden approximation, which amounts to
neglecting the excitation energies of the excited states. In
this limit the coupled channels problem simplifies signifi-
cantly. If all states of the rotor are included, one reduces
the problem to that of an equivalent sphere calculation.
Accordingly, one needs but to evaluate the elastic ampli-
tude for a given value'of the angle x that specifies the
orientation of the symmetry axis with respect to the line
that joins the centers of the two colliding heavy ions, at
asymptotic distances.

where

1=(1+—,
' )/rt,

Z)Z2e 2

a = =rt/k,2E

, ~ &2ll~(E2)llo&
q0 z = m'/5

a Z2e

(13)

1oQ f

lab

In the above equations, it is assumed that only the tar-
get nucleus (A2, Z2) is deformed and only the 2+ excited
state is considered. Generalization to include multistep
excitation processes (4+, 6+, . . . ) and projectile excitation
has been done in Ref. 8. For a detailed discussion of po-
larization potentials see Hussein et al.

At subbarrier energies, where nuclear excitation and ab-
sorption is very small, the cross section ratio to Ruther-
ford is easily evaluated and comes out to be

C.fA.

100

FIG. 3. Elastic scattering angular distribution of ' 0 on ' %'

at E&,b ——90 MeV. The solid curve corresponds to Eq. (15) (see
the text), while the dashed curve is obtained from a spherical op-
tical model calculation (Ref. 6).
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Therefore the "elastic" scattering amplitude, that goes
into the calculation of o,i/o R„,h, is given by

by an amount which corresponds to the total angle-
integrated inelastic cross section

OO

f(8,x )= g (21+1)Pi(cos8)[SI"(x)e ' 1]—.
2~k I=p

(16) (23)

The elastic scattering amplitude f(8) is obtained from
f(8,x ) by averaging the latter over all orientations

f(8)=(f(8,x)&„—= I dn„f(8,x) . (17)

It is easy to recognize that the total nuclear inelastic
cross section is given by

& I «8 x)
I
'&n„—

I &f(8») &n„I

'. (18)

This is so since

+inel
I
(IM

I f(8,x )
I

00 & I
(19)

1M~0

where the states
I
IM & are connected with the x degree of

freedom. Adding and subtracting

I&o lf(8 x)10&
I

'—= 1&f(8»&n
I

'

and using closure on the IM sum, we recover Eq. (18).
It is important to recognize that one may distinguish,

using the averaging procedure above, between the real
elastic scattering cross section described by (f(8,x)&n
and, what may be called, the generalized elastic scattering
cross section given by

where li/4(x) 'is connected with the x-dependent nuclear
radius, through

A l 1/4(x ) =R (x) I E—Vc[R(x)]—V~[R(x)]I,2p
(25)

writing for R(x),

R ( x)=D+X(x ),
X(x)=r AO2/3v'5/4irP2(cosx) .

The barrier radius R(x) is determined from

(26)

with do;„,1/d 0 given by Eq. (19). Obviously o.g'" & o.~.
The above equations, Eqs. (16)—(23), constitute our sud-

den approximation to the calculation of o,&/g R„,h.
In our application to heavy ion systems we shall use the

above equations both within an optical model description
of the scattering, as well as in the sharp cutoff approxima-
tion exemplified by Eq. (1).

Before presenting our numerical results obtained within
the optical model, we give below the changes, arising from
static (short-ranged) deformation effects, on the sharp cut-
off cross section, Eq. (1).

In the sharp cutoff limit, Eq. (16) becomes
I

~ /4(x)

f(8,x)= g (2l+1)Pi(cos8)e (24)2ik 1=0

E"= ", g (2l+1)11—
& IsPx) I'&n„],

k I 0
(21)

is different from the total reaction cross section, extracted
fl om

which, according to Eq. (18), is the sum of the elastic
cross section and all inelastic cross sections.

Therefore the "generalized" total reaction cross section
attached to dcrs, „/dQ, given by

Vc(r ) + V~(r, x ) +d

Simple algebra leads to

X(x )

2p D
l 1/4(x) = 1+

A' l 1/4(x)

2p
(27)

d~
=

I &f(8»)&n„I'

cry —— , y (2l+1)[l—1(sP(x)&n I']
k ) 0

(22)

x l1,4(0)+D Vo(D) 1—+2
2 1

2p X(x)'+
D

(28)

where D is the nuclear radius when P=0.
The expression F(8,x ) can be evaluated approximately, using the stationary phase method, to give

f(8,x)= ,' fR„,h(8)erfcI e '—/4[—,
' 10,',„1(ki/(x)) I

]'/'(A, , (x)—A,, ) I, (29)

where A, =i+ —,'.
Therefore, the cross section ratio to Rutherford is given by

~0
(8)=F ~

Ruth

1/2
A, i /4(x )

2 sin(81/4(x ) )
2 siil[ —,(8—81/4(x ) )] (30)
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where 8g(x) is defined by

8 t /4(x ) =2 tan
'9

A, t/3(x)
(31)

0
(8}=—„' 1 — (e' u (8,8t/4(x) })

~Ruth 0
(32)

If we perform the average over x on Eq. (28), we obtain the result of Rowley. ' Such a calculation would result in a
"generalized" quarter-point angle related to off", Eq. (21).

On the other hand, if we average f(8,x) and then calculate tT,t/oR„th, Eq. (30), we should obtain the genuine elastic
scattering cross section. In the vicinity of the grazing angle 8&/4(x ), we may write

2

where u (8,8&/4(x) ) is given by

A, &/4(x)
& (8y 8t/4(x) ) =

2 sin( —,
'

8t/4(x) )

1/2

2 sin I —,[8—8t /4(x) ] I . (33)

To the second order in P, the new, deformation-modified, quarter-point angle may be obtained simply by setting

( u(8$/4, 8t/4(x)))n ——0

1/2 2

sin[ —,(8$'/4 —8$/4)]+ —, sin( —,8t/4)cos( —,8t/4)
sin( —,8t/4) D n

X [I+4atan ( —,8t/4)+2cos ( —,8t/4)[1+2atan ( —,8t/4)] I (34)

with a=E/Vo(D), and 8t/4 is the quarter-point angle when P=O.
Solving for 01'/4, we obtain

~e1 ~0
~1/4 ~1/4 ~static ~

where

1 X . 0 D2

sin(8&/4) 1+2—tan ( 28&/4)+2cos ( 28&/4) 1+—tan ( 28t/4)
0 D 2 ) 0

D n a a

2

(35)

(36)

where

D2 4m D2
(37)

~dynamic= +~/g'Vain(8&/4)

X Iexp[ —„",qo ~p(g)1(8—t/4)] —1I . (40)

Ruth
(8t/4) = Oel

(8t/4)
~Ruth

X exp[ ——„qo 2gz(g)I(8t/4)]

1

4 (38)

which results in

A
1/4 ~1/4 ~static+ ~dynamic ~

where

Clearly when P=O, we have 8t'/4 ——8t/4, as expected.
It is important to recognize that 01/4 is still not the

quarter-point angle since it represents 01/4 for o.,1/o.R„th.
The quarter-point angle that should be compared to the
data is obtained by setting

The exponent in Eq. (18) was obtained by calculating
the integral of Eq. (15), with Vzut(r) given by Eq. (11).
The factor g2[g=g(AE/2E)] is a semiclassical energy-
loss factor [g2(0)=1]. Finally I(8) is given by

I(8)= —~ sin —+3 tan — 1 ——(vr —8)tan—. 40 20 ) I9

2 2
—

2
—

2

2

(41)

Our expression for 8t/4, Eq. (39), should supply a
reasonable estimate of the total reaction cross section in
the case of scattering of deformed heavy ions. It is in-
teresting to observe that the two corrections Ady„, ;, and

k„„icare of the same signs: both corrections tend to push
01/4 to small values.

In eases where the generalized elastic scattering dif-
ferential cross section is considered, e.g., when the experi-
mental resolution is such that one is not able to isolate the
elastic peak from the 2+ or 4+ peaks in the spectrum, we
anticipate, as Rowley has done several years ago, that the
8f/4 is given by
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en 0 gen
8f/4 81/4 t5'static ~ (42)

where est'a"„c is different from Est„icsince it involves the
solution of the equation (F(8I/4(x)))tl ———,', and not

I &f(8I/4(») &n„I

'= —.
'

~

Substituting Eqs. (4) and (5) in (17) and (6), and using
Eq. (42), we find

~gen 1 1/'4S(8 )
static S (8p

10 2

1.0

0.6

0.4

I I I I

I

I I I I
i

I I I I

I
I l I I

16O 28S

SI (8)=sin8 2&g/2mcos ——2 cos—8
2 2

'2
0 0 I I I I

0 30
I

40 50

1+—tan — —1 —2—tan—D 28 D 28
a 2 a 2

D2 28S2(8)= 2 +cos
X o

(43)

c.m.
FIG. 4. Generalized elastic scattering angular distribution for

I60+2sSi at E, =35 MeV for P=O (dashed curve) and P=0.3
(solid curve). The equivalent spherical optical model was em-
ployed.

X 2g+ cos ——8V17/21rcos—20 0
2 2

—2&21 /2m cos—1+2—tan—8 D 28
2 a 2

1+—tan—D 28
a 2

equivalent sphere optical model calculation of o,„/oR„,
„

fo«he system ' + Sl at E, =35 MeV, using for the
spherical potential the E18 complex interaction, ' with
the parameters

In obtaining Eq. (43), we have used the condition
as-/aR. th (8f'r4) =

4

In contrast to the static deformation correction to the
pure elastic quarter-point angle, d, t'atjc comes out to be
negative thus resulting in a 1arger 8f/4. As was discussed
by Rowley, ' this feature explains several erroneous inter-
pretations of experimental data when the quarter-point
recipe is applied directly to deformed systems, such as

Kr+ Th. One may easily end up with an extracted
strong absorption radius which is much too small. (For
example, at 500 MeV, it was concluded by Colombani
that the strong absorption (SA) radius parameter in
Kr + Pb is larger than that in Kr+ Th.

IV. NUMERICAL RESULTS

V=10.0 MeV, rpl ——1.35 fm, av ——0.618 fm,
%=23.4 MeV, rpll =1.23 fm, air ——0.552 fm .

Although the 16O+28Sj system js not so strongly de-
formed, we have chosen it for our discussion and varied
the deformation parameter of 28Si arbitrarily. Figure 4
shows our results for the generalized elastic cross-section
ratio to Rutherford, indicating clearly the shifting to
higher values of 8f/4 in accordance with our discussion
above. In Fig. 5 we show 8f/4 vs p. Also shown is the re-
sult obtained by Rowley using the sharp cutoff model. At
small p, both calculations yield similar 8f/4. At larger p,
however, significant deviation occurs. For qualitative
purposes, however, the Fresnel model should be quite ade-
quate.

We present in this section the numerical results of our
sudden approximation calculation of hs;,"„„b,„„;„and
~dynamic The results were obtained both through an opti-
cal model calculation and a subsequent averaging, as well
as using the approximate analytical results of Sec. III. In
our calculation we take only the target nucleus as de-
formed. The quadrupole deformation parameter, p, is
then related to the experimental p(E2) values according
to12

42.3—W

~x

16O 28'

E, =35.0 MeV

OPTICAL MODEL

FRESNEL MODEL

/
/I

/
/

/
/

/
/

/
/

/
/

/
///

p(1 0 16p)
4n. 1/'8(E2)

R 2z2e
(44) 42.1—

1I~

The nuclear radius, R, and the Coulomb barrier position,
D, are taken to be" I

-Q.2 -Q.1
I

Q.O
I

Q, 3
I

Q.4

R; =1.2338 —0.9782; ' fm,
(45)

D=1.07(A I/'+A2I/')+2. 72 fm .

To start with, we present in Fig. 4 the result of the

FIG. 5. p/4 vs p for I60+2sSi at Z, =35 MeV. The
dashed curve was obtained using the optical model, whereas the
solid curve is based on the Fresnel model. The equivalent spher-
ical method was employed.
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TABLE I. Calculation of Of/4 for the systems t3~Xe+ "2Sm
and Ar+ U (see Ref. 14 and the text).

TABLE II. Calculation of 01&4 from 01/4 for ' C+" W and
"0+' W (see Refs. 5 and 6 and the text).

System

"4Xe+ '"Sm
40Ar+ 238U

El.b

690 MeV
340 MeV

0
01/4

94.0
51.9

1/4

96.0
52.6

95.3
52.4

System

12C+ 184W

18O+ 184W

Elab

70 MeV
90 MeV

80.5
84.0

~spherical
~1/4

84.7
90.5

0
~1/4

84.3
91.0

In Table I, we compare our approximate calculation of
8f/4, Eq. (42), with those of Refs. 14 and 15 obtained
from coupled channels calculation, 8i/4. The background
spherical 0]/4 is extracted from optical model calculation.
It is clear that our approximate formula for 0&/4 is quite
adequate. In Table II, we present our results for the
genuine elastic quarter-point angle 0&/4 and the extracted
spherical 0~/4, which comes out very close to the one
0&/4'"'" obtained from optical model calculation. In our
calculation of 8i/4 we employed Eq. (39). We note that

is intrinsically positive, in clear contrast to
tatjstic Once the value of 0

& /4 is extracted, a deduced
value of the strong absorption radius may then be ob-
tained. We have attempted to extract these radii for
Kr+ Pb and Kr+ Th using our approximate formulas.
The results were not satisfactory owing to the large defor-
mation effects in Kr+ Th scattering. On the other hand,
the general trend comes out reasonable.

This work was supported in part by Fundaqao de Am-
paro a Pesquisa do Estado de Sao Pauli, FAPESP, and in
part by the Conselho Nacional de Pesquisas, CNPq.

APPENDIX

2P 4E 2 4O.

D Vc(D) D Vc(D)
(A 1)

and the approximation A, &«-l»4 in Eq. (31), we may
rewrite Eq. (28) as'

In this appendix we present the details of the calcula-
tion of the generalized elastic scattering cross section in
the short cutoff model (Fresnel model) and for small
values of the deformation parameter.

Using the identity

V. CONCLUSIONS

ot2( —,
'

8i/4(x) ) = cot ( 2 8i«)+2

In this paper we have investigated the deformation ef-
fects on the heavy-ion quarter-point angle. In cases where
the summed elastic plus inelastic cross section is measured
(for very strongly deformed systems), the generalized
quarter-point angle is obtained in the form

Writing now

X [cot ( —,
' 8i/4)+2a]

X+ [cot ( 2 8i/4)+4a]D2
(A2)

8f/4 81/4 ~static ~

where 8i/4 corresponds to zero deformation and As;,"„,is
negative.

When the elastic component is clearly identified and
measured, we have then

~0] /4 = t9] /4 ~static ~dynamic

8i/4(x) =8i/g+ b, ,
0

we have from (A2),

b, = ——,sin(8i/4) [1+2atan ( —,8i/2)]+p 2X X
D D2

)& [1+4a tan ( —,8t/4)]

(A3)

en the correct][
positive, arise from static (short-range) and dynamic
(long-range) deformation effects. The above expression
can be used in conjunction with the data to obtain the
spherical quarter-point angle, through which an unam-
biguous strong absorption radius may be extracted. Our
analyses of several systems demonstrated the reasonable-
ness of our procedure.

It is obvious that our discussion can be easily extended
to the treatment, within the sudden approximation, of vi-
brational nuclei. The averaging then corresponds to tak-
ing into account the zero-point motion. ' '

We remind the reader that the averages of X and X are

(X )n —— RpP

(A5)

Using Eqs. (A4), (20), and (3), we find for the general-
ized elastic scattering cross section in the vicinity of the
quarter-point angle,
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doRuth

where

(0)= (F[u (8» 0ty4(x) )] )

F"[u ( 8» 0 ~ y4 ) ]

F'[u (8»0]yg)]
»

2
2 0

= F[u(0,0~g4)]+ z sin (8~~4) I+2atan0 X . 2 0 1/4

D o„
1 ~ P ~1/4——,sin(0»4) I+4a tan (A6)

sin[ —,
' (8—8]/~) ]

u(8» 8&g4) =Xi
sin( —,

'
8& &4)

In Eq. (A6), F' and F" are the first and second derivation of F at 0~&4.

(A7)
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