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Covariant soliton dynamics: Structure of the nucleon
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We present a model of nucleon structure that is fully covariant. We begin with a Lagrangian that
describes quarks coupled to various mesonic fields (o., m.,p, co) and an additional field, J, which is re-

quired to bind the quarks into a nucleon. The couplings of the cr, m, p, and co fields to the quarks
are fixed so as to reproduce the empirically determined coupling of these mesons to the nucleon.
The latter couplings are taken from fits to nucleon-nucleon scattering data made using one-boson-
exchange models. Therefore the free parameters of the model are the mass and coupling constant of
the J field and the quark mass, m~. In order to simplify the problem, the nucleon is assumed to vir-

tually decay into a quark and a diquark. Equations which specify this amplitude are found by using
the equations for the quark and meson field operators obtained from our Lagrangian. The equa-
tions which we solve are fully covariant and nonlinear and are solved by iteration. In this model the
quark dynamics is governed by the mesonic fields whose source is the nucleon itself. The ampli-
tudes for the emission of these fields by the nucleon depend upon the (nucleon) —+(quark + di-

quark) amplitudes whose structures we are attempting to determine. This model therefore requires a
self-consistent solution and leads to the nonlinear equations noted above. At this point we have not
calculated mesonic corrections to the nucleon observables such as the magnetic moments, form fac-
tors, and g~, although we have included the effects of all the mesonic fields in the calculation of the
nucleon mass. However, the calculation of nucleon observables, using current operators which con-
tain only quark fields, yields a surprisingly good fit to electromagnetic form factors, magnetic mo-

ments, g~, etc. (It is possible that some aspects of these results will be less satisfactory when meson-

ic corrections are calculated. ) The model has the further virtue of generalizing the SU(6) quark
model of the nucleon so as to be consistent with the covariance requirements of the theory of special
relativity. It is clear that the major limitation of the model, other than the use of the diquark ap-
proximation, is the lack of a satisfactory description of the confinement mechanism as the P field
serves to bind the system but does not actually confine the quarks.

I. INTRODUCTION

Since the introduction of the MIT bag model' there has
been an ongoing interest in developing models of nucleon
structure. Much work has been -done on chiral bag
models and other variants of the MIT model. Recently
we have seen models that improve upon the static-cavity
approximation that is used in most applications of the bag
model. In particular we are here most interested in non-
topological models such as that of Friedberg and Lee.~

This modd has the structure of a simple field theory with
quarks coupled to a scalar field which confines the quarks
to a finite region. The source of the scalar field is the sca-
lar quark density and therefore the equations of this
model must be solved in a self-consistent manner. Usual-

ly, this is done by introducing a static approximation and
solving the classical (c-number) version of the field equa-
tions. In an earlier work we demonstrated how one could
avoid the static approximation and analyze the
Friedberg-I. ee model in a manner which maintains the
translational invariance of the model throughout. In this
work we will proceed along these lines and discuss soliton
models in a fully covariant approximation. (The approxi-
mations we use will be discussed in detail at a later point. )
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FIG. 1. Schematic description of a covariant self-consistent-
field model. (a) A nucleon decays virtually to three quarks, one
of which emits a meson. The meson is later absorbed by a
quark. (b) A "diquark" approximation. A nucleon of momen-

tum P decays virtually to a quark and diquark. A meson is
emitted by the quark and is ultimately absorbed after another
virtual decay of the nucleon. [See the right-hand side of Eq.
(5.5).) In both cases the nucleon form factor for emission of a
meson is given in terms of the amplitude for the virtual
decay —see Fig. 2.
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We should note that the equations of the Friedberg-Lee
model have been solved in the static approximation by
Goldflam and Wilets and methods for restoring transla-
tional invariance to the model have been discussed by
Hadjimichael and Fiebig and by Betz and Goldflam
among others.

In the Friedberg-Lee model the scalar field which is
used to confine the quarks is apparently unrelated to the
scalar mesons exchanged between nucleons in the boson-
exchange model of nuclear forces. Since we will have to
deal with more than one scalar field in this work we will
call the scalar field of the Friedberg-Lee model X(x). We
will use the notation o'(x) for a scalar field which might
appear as the chiral partner of the pion field or as the sca-
lar field that appears in the boson-exchange model of nu-
clear forces. These distinctions become important as we
now have a new class of soliton models ' in which a
bound state (a nucleon) is formed by solving either the
equations of the nonlinear or linear o model of Gell-Mann
and Levy. " We should also mention the work of Seki and
Ohta' which combines both a confining field X(x) and a
chiral o. model. In addition to these models there are also
topological models which develop some ideas of Skyrme. '

In these models a nucleon is obtained from a Lagrangian
that contains only boson fields. ' (The resulting objects
are often called Skyrmions. ) Models which contain both
quarks and meson fields and have interesting topological
properties have been discussed by several authors. '

Clearly before undertaking studies in this area one must
adopt a point of view that will assist in choosing among
the rapidly increasing number of models of nucleon struc-
ture. We will try to clarify the basis of our work by indi-
cating some of our goals:

(1) We desire to construct a covariant soliton model.
The preservation of translation invariance in the model is
particularly important if one wishes to calculate form fac-
tors properly. Calculations of nucleon magnetic moments
made using static models are subject to large errors, for ex-
ample. Aside from the importance of a proper treatment
of translational invariance for the calculation of dynamic
properties such as form factors, static properties such as
the nucleon mass are expected to have significant "recoil"
or "center-of-mass" corrections.

(2) We desire to discuss the interaction between solitons.
This requires a description of solitons that is nonstatic.
For example, recent studies of the nucleon-nucleon
scattering amplitude have shown that nucleons appear to
interact, in part, by the exchange of rather intense
(Lorentz) scalar and vector fields. '6 Indeed, that was al-
ways true in boson-exchange models. However, as has
been discussed recently, if the free-space nucleon-nucleon
scattering amplitude is written in terms of Dirac matrices
(which act in the space of spinor solutions of the Dirac
equation) it is apparent that the scalar and vector terms
are very large. ' This analysis of the nucleon-nucleon
scattering amplitude requires only a knowledge of the NN
phase shifts and therefore is independent of any model of
the interaction. It is clear from these studies that the
strong attraction in the NN force is of (Lorentz) scalar
character and the repulsion is of vector character. These
features of the interaction cannot be obtained by using a

static soliton model of the nucleon to study the nucleon-
nucleon interaction.

(3) It is one of our goals to create a model of a nucleus.
Therefore our solitons must be able to move about in the
presence of external fields generated by other solitons.
Thus with the development of a nonstatic soliton model
we might be able to develop a shell model of a nucleus
composed of interacting solitons.

(4) The recent successful descriptions of nuclear struc-
ture based upon a relativistic many-body theory' implies
that the boson-exchange model of nuclear forces should be
taken seriously as a model for the interaction of nucleons.
The essential features of the model are the couplings of
the nucleon to fields with the quantum numbers of the 0,
rr, p, and co mesons. ' These four fields are the minimum
required to describe the nucleon-nucleon interaction. Of
these, the o field plays a particularly important role in the
successful description of nuclear dynamics in a relativistic
model. ' &e believe our soliton model should incorporate
the insight gained from our studies of relativistic nuclear
structure physics.

In light of the above comments, the model of Birse and
Banerjee' is of interest. These authors have studied the
linear o. model. (In their work, quarks replace the nu-
cleons which appeared in the original version of the o.
model. ) This model has a o field and a pion field coupled
to the quark fields. A nucleon is constructed using a
"hedgehog" solution to the equations of motion. ' As
Kalbermann and Eisenberg have recently remarked, it
appears somewhat unexpected to create "confinement" via
meson-quark coupling. In particular, the pion is respon-
sible for a large part of the attraction in the Birse-
Banerjee model. As we have noted earlier, we believe we
should include reference to the a, m, p, and co fields. Thus
one is tempted to add the p and co fields to the Birse-
Banerjee model. As we shall see, the interaction of the p
and co fields with the quark is repulsive. Indeed the repul-
sion is sufficiently large to cancel most of the attraction
obtained from the o.- and m-quark coupling. Given this
observation, one option is to include an additional scalar
field, X(x), in addition to the mesonic fields. Thus, in this
work we consider a model in which we form a soliton
solution using a scheme somewhat analogous to that used
by Friedberg and Lee and developed by Goldflam and
Wilets. We are stiH interested in including the o., m, p,
and co fields. Thus our Lagrangian has two parts, one of
which involves the X field while the other describes the in-
teraction of the quark field with meson fields
(cr,~,p, co, . . .). This model can be seen to have the fol-
lowing unsatisfactory feature. We must assume that only
the mesonic modes (o,~,p, co, . . .) are exchanged between
two solitons in interaction and that the scalar field, X(x),
does not participate in the interaction. This ad i'roc as-
sumption does have one satisfactory feature, however. It
essentially trivializes the nuclear force problem since our
solitons interact by exchange of cr, rr, p, and co mesons and
these exchanges can describe the NN force. This scheme
also greatly reduces the number of free parameters to be
specified since the coupling of the o, rr, p, and co mesons
to the nucleon must be given correctly. As we will see, in
our model, the coupling constants of these mesons to the
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quarks are related linearly to the meson-nucleon coupling
constants which are known from phenomenological stud-
ies; therefore there are no free parameters in the quark-
meson Lagrangian. (We do have the freedom to include a
tensor coupling of the p and co fields to the quarks. The
strength of this coupling is a free parameter. It can be
seen that a nonzero value for this parameter has the effect
of giving the quarks an anomalous magnetic moment, if
we use a vector-dominance model to calculate electrornag-
netic form factors. )

%'e may remark that one could carry out our analysis
with a single scalar field which is exchanged between nu-
cleons and also serves to provide sufficient binding to
form a nucleon. However, if one were to use a single sca-
lar field one would have to use a somewhat different cou-
pling constant to describe the coupling of this field to the
quarks in the calculation of nucleon-nucleon scattering
and in the calculation of the structure of the nucleon.
While we can provide some arguments to justify such a
procedure, we have decided to use two scalar fields in this
work. The use of two such fields can be seen as an alter-
nate to introducing two different (effective) coupling con-
stants for a single field. Either of these procedures will
lead to the same results in this model.

Before entering upon a discussion of the equations of
our model it is useful to indicate, in a schematic fashion,
the dynamical basis of our formalism. The mathematical
analysis is based upon algebraic manipulations; however,
the resulting equations have a useful diagrammatic repre-
sentation. The interaction for the model we would like to
study is shown in Fig. 1(a). Here a nucleon of momentum
P is assumed to decay (virtually) into three (valence)
quarks. One of the quarks emits a meson and the nucleon
reforms and propagates with moinentum P '. The meson
is then reabsorbed by one of the valence quarks. This de-
fines the interaction to be used in a covariant self-
consistent-field description of a (relativistic) bound state.
As this problem is too difficult for us at this time, we turn
to an approximation discussed in an earlier work. %'e as-
sume that two quarks form a quasibound state, a
"diquark, " and consider the dynamical model shown in
Fig. 1(b). This is the model we will develop in this work.
[More precisely, Fig. 1(b) is a schematic representation of
the right-hand side of Eq. (5.5).] It is clear that the field
seen by the quark on the far right of the diagram depends
upon nucleon form factors which govern the amplitude
for the emission of various mesons. In turn, the form fac-
tors depend upon the quark "wave functions, " that is,
upon the nucleon to quark-diquark amplitudes. Thus we
see the nature of the self-consistent solution that will be
required in our analysis.

The limitations of this model have been discussed previ-
ously. In this model all the momentum is carried by
quark and mesonic fields. There is no reference to the
gluons which appear in the quantum chromodynamics

I

(QCD) Lagrangian and which are thought to carry signifi-
cant momentum. At this stage of our understanding,
however, we are not able to provide a satisfactory inodel
which has gluon degrees of freedom. (We should remark
that the quarks of the QCD Lagrangian have only small
"current" masses. The quarks in our model have large
"constituent" masses. This feature inay involve the
"dressing" of the quarks by the gluon field. We are not
able to further develop such speculations at this time. )

The plan of our work is as follows. In Sec. II we
present the Lagrangian of our model and the associated
field equations. We also introduce a series of nucleon
form factors which play a role in the analysis. In Sec. III
we discuss the form of the amplitude for a nucleon transi-
tion to a quark and a diquark. In Sec. IV we relate our
model to the SU(6) model of nucleon structure by study-
ing our wave functions in the nucleon rest frame. In Sec.
V we provide equations which determine various invariant
amplitudes which parametrize the (nucleon) to (quark-
diquark) amplitudes. These amplitudes are shown to de-
fine relativistic quark wave functions which take a simple
form in the nucleon rest frame. (Since we are working
with a covariant formalism we can discuss the soliton
wave function in any Lorentz frame. ) In Sec. VI we dis-
cuss the calculation of the nucleon form factors intro-
duced in Sec. II. In Sec. VII we discuss how the meson-
quark coupling constants may be obtained from the
phenomenological meson-nucleon coupling constants and
the calculated nucleon form factors. In Secs. VIII and IX
we discuss our numerical results. Section X contains a
summary and some general remarks.

F„„(x)=B„to„(x) B„e)„(x—), —
we have,

(2.2)

II. LAGRANGIAN AND FIELD EQUATIONS

We begin by writing the Lagrangian density of our soli-
ton model. This Lagrangian includes the interaction of
the quarks with the o, m, p, and co fields as well as with
the field X(x). We also include terms which describe the
tensor coupling of the p and co fields to the quarks. Here
mq, mz, gx, and A, are parameters of the model. The
coupling constants g, g„, gz, and g„are to be fixed by
requiring that the empirical values are obtained for the
coupling of the mesons to the nucleon. Furthermore, X
can be fixed by requiring that the tensor coupling of the p
and co fields to the nucleon is given correctly. If A, is fixed
in this manner, the model has four parameters, mq, mx,
gx, and a diquark mass parameter, me. (In our calcula-
tions we have found quite satisfactory results with A. =o.
However, we present the various A,-dependent terms in the
following for completeness. ) With the definitions,

F~„(x)-=a„p„(x)-a„p„(x) (2.1)

and

W(x)=q(x) iy&d~ mq —g o(x) g—xX(x) ig ys~q. II(x)—g—y"co„(x)—

+gh)
mN

o" rq. F~~,(x) q(x)o" F„(x) gpy" rq.p„(x)+gp-
4mN
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+ —,
' [BQ(x)c)l'X(x)—mxX (x)]+—,

' [c)„cr(x)c)t'cr(x)—m cr (x)]+—,
' [BqII(x) c)t'II(x) —m II z(x)]

—
~ [Fg„(x) Fz"(x)]+ ,

'
m—zp (x ) p&(x) —,' [F—g„(x)F~"(x)]+ ,' m—„cot'(x)co„(x). (2.3)

From this Lagrangian density we obtain the following field equations:

(i yi'8& m—q)q(x) =g q (x)cr(x)+gzq (x)X(x)+ig y Fq'q(x) II(x)+g yt'q (x)co&(x)+ crt'"q (x)B„co (x)2' N

+gz y"Fqq(x). p„(x)+ crt'"F~ q( x)B„p„(x)
2mN

(CI+m )o(x)= —g q(x)q(x),

(El+m & )X(x)= —gzq(x)q (x),
(CI+m )II(x)= ig q—(x)y rqq(x),

(2.4)

(2.5)

(2.6)

(2.7)

(C1+m )c0"(x)=g )q(x)y"q(x) — 8 [q(x)cr""q(x)]
2PPl N

(2.8)

(0+m~)p "(x)=g~ q(x)y"~, q(x) B„—[q(x)cr""~,q(x)]
2m

We will denote the nucleon states as
I P,s, t) and normalize them such that (P ',s', t'

I P,s, t)
=5~5«5(P' P)[EN—(P)lrnN], where EN(P)=(P +mN)' . Here s and t denote the projections of the nucleon spin
and isospin. The mass of the nucleon, mN, may be calculated using the formalism presented in the Appendix. This
quantity also appears in our equations for the nucleon-quark-diquark amphtudes. (See Sec. V.)

The analysis of Eqs. (2.4)—(2.9) proceeds uict the definition of various form factors which appear in the following equa-
tions:

2

(P ',s', t'
I q(0)q(0) I P,s, t) =u(P ',s')u(P, s)5«

(2~)

( ')
(P ' s' t'

I q(0)y'~&q(o) I
P s t) = «'

I ~N
I
t&, u(P ' s')y'u (P s)

(2~)
|LiV

p', s', t' q(0) y"—A. q„q(0) P,s, t = u(P', s') y"Fio(q')+ q. F20(q
2m N (2~)

(2.10)

(2.11)

(2.12)

i 0.&
P', s', t' q(0) y"wz — q„rq q(0) P, s, t

7tl N

u(P', s') y"Fii(q )+ q„Fz&(q ) u(P, s) .
(2~)3 2mN

(2.13)

The calculation of these form factors is discussed in Sec. VI. From these equations we obtain

(P ',s', t'
I
cr(0)

I P,s, t) =

(P ',s', t'
I
X(0)

I
P,s, t) =

2—g -, , - p(q)
z u(P ',s')u (P,s)—q l+ m (2n. )

—gx -, , - P(q)2
z u(P', s')u(P, s)—q +my (Zm. )

(2.14)

(2.15)

( —ig), gi(q')
(P',s', t'

I
II(0)

I
P s, t)=(t'

I rN I
t) l z [u(P', s')y u(P s)]—q'+ m (2n. )'

(2.16)

, u(P', s') y"Flo(q )+ q Fzo(q ) u(P»),—q +m (2n. ) 2mN

(P',s', t'I p "(0)
I
P,s, t)=(t'I ~N I t) ~ z 3

u(P', s') y"F&i(q )+ q„Fqi(q ) u(P, s) .
+mp (27r) 2mN

(2.18)
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Before analyzing our quark field equation, Eq. (2.4), we
will introduce certain matrix elements of the quark field
operator. These matrix elements are introduced and
parametrized in Secs. III and IV. In Sec. V we return to
the study of Eq. (2.4) and will there make use of Eqs.
(2.14)—(2.18).

1 Bg 1A+ u(P, s)
i
t)

(2m) r2 md 4n'

I=S(P),rz A+ u(o, s) it) .
(2m )'r mg

' V4~

111. NUCLEON-DIQUARK AMPLITUDES

The analysis of our field equations follows, in part, the
analysis given in Ref. 6. Here we improve upon that work
in that we present a manifestly covariant specification of
the matrix elements of the quark field operator. We con-
sider the amplitude for a nucleon of momentum P to de-
cay into an off-shell quark and an on-shell diquark of
momentum Q. The diquark energy is put equal to
(Q +m~)' with md=2m~ Th.e diquark has spin Sand
helicity A, . The isospin of the diquark is T with projection
MT. Thus we consider the matrix element

(QSATMT
I q.(0)

I
P s, t) .

(3.4)

The four-vectors Q& and Q„' are related by a Lorentz
transformation, S(P)g'S '(P) =g. Note that
S(P)u (O,s) = u (P,s).

It is instructive to specify the nucleon amplitude in
more detail. (We will use the notation Q= iQ i

and
Q'=

i Q
'

i
in the following. } In the rest frame, P=0, we

have,

(Q'
i
q(0) i O, s, t)

R„(Q') is)
I
t) . (3.5)

(2n) v 4~ oQ'Rt( Q') is)

We may consider the simple case, S =0, T =0 first and
write the amplitude in question in terms of scalar invari-
ants, A and B,

(Qiq(O) iPs t)= „, A+
(2~)3~2 md 4~

Here R„(Q') and Rt(Q') are the Lorentz scalars,

R„(Q')=A + INmd

and

Rt(Q') =B/md .

Note that we may also write,

(3.6)

(3.7)

Here u (P,s) is a Dirac spinor and
i
t ) is the isospin wave

function of the quark; the quark isospin projection, t~, is
here equal to t. In the nucleon rest frame (P =0) we have,

(Q'iq(o) i o,s, t)

Ed(Q ')B
R„(Q')=A+

my
(3.8)

which follows upon evaluation of the invariant

[P Q/(mNm~)] in the frame where P=O. Furthermore,
it is useful to define the function

Rt(Q') =
I Q

'
I
Rt(Q') =

I Q
'

I
B/md (3.9)

1 Bg'A+ u(o, s) it) .
(2n. ) md 4m.

(3.2)

The scalar invariants A and B may be taken as func-
tions of the Lorentz scalar, [(P.Q/mN) —mq]', which
may be identified as the magnitude of the quark (or di-

quark) momentum in the nucleon rest frame, where P =0.
(In the calculations which follow we will need to consider
amplitudes of the form given in Eq. (3.1) where the nu-
cleon has either four-momenta P or P'. In that case we
can introduce another Lorentz scalar, [(P '.Q/m N )—md ]' . Scalar invariants that are functions of
[(P'Q/mN) —md]' will be denoted as A' and B'.)

We remark that the amplitude given in Eq. (3.1) may be
obtained by applying a Lorentz boost to the rest-frame
amplitude. %'e have

g 2

2Ed(Q)

or defining

R„(Q)=R„(Q)/[2Ed(Q)]'

and

R,(Q) =R,(Q)/[2& (Q)]'"
we have,

J"Q'dQ«'. (Q)+R t'(Q)]=1

(3.10)

(3.11)

Indeed, at a later point we will provide integral equations
for the functions R„(Q') and Rt(Q'). We choose the nor-
malization

(Q i q (0)
i
P,s, t) =S ti(P)(Q'

i qp(0) i
O, s, t) (3.3)

The description of the (virtual) nucleon decay into a
quark and an S=1, T=1 diquark is somewhat more
complicated. In the nucleon rest frame both s-wave and
d-wave decay is allowed. Therefore there are four scalar
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amplitudes required for a complete specification of the
matrix elements of the quark field operator between a nu-
cleon state and a diquark, state. To avoid unnecessary
complication we have assumed that we can neglect the

I

d-wave transition and therefore we have organized the
amplitudes so that they describe an s-wave transition.
This amplitude can then be specified in terms of two
I.orentz scalars, 2 and S. VVe write,

(QSA, TMr Iq(0) I
P,s, t)= „, y' 3, 1+ +g'„2+g — Bg

(2~)' ' 4~ mN led Pld
(P )gT 1/21/2

I
t ) (3.12)

Here

1
P Q

N2 NPld

(3.13)

and tz
——t —Mr. Furthermore, g =(~(Q ) is the polarization vector of the S = 1 diquark.

Again, if we need to consider the amplitudes

(QSXTMr
I q(0)

I
P,s, t)

RIlCl

(QSA, TMr
I
q(0)

I
P ',s', t')

at the same time we will use the notation, A&, A,B for functions of the scalar [(P Q/mN) —mq]' and the notation
A'i, /I', B' for functions of the scalar [(P' Q/mN) —md]'/2.

It is instructive to inspect the wave function of Eq. (3.12) in more detail. For example, when P =0, we have,
4

(Q'SA, TMr
I q(0)

I
O,s, t) =

(2m )3/ 4n

&d(Q ')
~+

md

(3.14)

We use the completeness of the Pauli spinors, and the relation

(3.15)

which is valid if Q
' is along the z axis, to write

(Q 'SA, TMr
I
q(0)

I
O, s, t) = —V 3

4~

Ed(Q ')B
A+ Isq

Pld

~Q'
md

gl 1/21/2CT 1/2 1/2
I ~gs s M&t t ( q~ (3.16)

with s, =s —A,.
The motivation for writing the wave function in this form is given in the next section where we also give the result for

Q in a general direction. (We might note, however, that in Ref. 6 we considered canonical states for the diquark rather
than the helicity states we use in this work. The treatment of the Lorentz, boost properties of the S=1 states given in
Ref. 6 was only approximate while in this work we provide an exact formulation. )

IV. A MODEL BASED UPON SU(6) SYMMETRY

In the general case the relations between the amplitudes A, B, A, and B must be determined from dynamical con-
siderations. It is useful, however, to make contact with the standard quark model based on SU(6) symmetry. In part,
this was done in Ref. 6 and from that work we can see that the appropriate identification for an SU(6) based model is
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(4.2)

In this case Eq. (3.17) becomes, with Q '= Q'z,

Ed(Q ')8
A+ ~s~

(Q'SA, TMT
~
q(0)

~

O, s, t) =
(2~) ~ 4~ 'Q'

Pld

C1 1/21./2CT 1/21/2 ( gAs s M~~ r ~
q~. (4.3)

A more general result with Q in an arbitrary direction
may be obtained by using

(4 4)

Similarly, we have

Fio(q') =
2 [Ffo '(q')+Ffo='(q')]

Fzo(q') =
z [Fzo='(q')+Fz~o '(q') l

(4.6)

(4.7)

(P',s', t'
i
q(0)q(0)

i
P,s, t) .

Here the operator q(0)q(0) does not contain the quark
isospin operator; therefore, we find,

p, (q') = —,
'

[p, ='(q')+p, ='(q')] . (4.5)

The factor of 3 arises since p,
=

and p,
=' are the form

factors calculated "per quark. " The factor of 2 has its
origin in our SU(6) model in which the S =0 and S =1
contributions are given equal weight. In the case where
the operator in question involves the quark isospin, we
have, for example, (see Sec. VI),

gi(q') = -,' [gf ='(q') —
3 gf ='(q')] .

and then making use of Eq. (3.16).
It may be seen from Ref. 6, that the use of Eq. (3.1) in

conjunction with Eq. (4.3) will reproduce the results of the
SU(6) quark model for the ratio pz jp„, g~, and other nu-
cleon observables. These results require that the S =0,
T =0 and the S =1, T =1 amplitudes appear with equal
weight in constructing the nucleon wave function.

At this point we should remark that the standard SU(6)
quark model is essentially nonrelativistic in character.
Attempts to extend this model to provide a representation
of the Poincare group have not been successful. However,
as noted earlier, our analysis is fully covariant. We have
only used some aspects of the SU(6) model and have
maintained covariance of our formulation throughout.
Even with a covariant formulation we still obtain the re-
sult that p&/p„= ——, and that gz ———', (1——,a), where a is
the fraction of small component in the quark wave func-
tion.

We may use this model based upon SU(6) symmetry to
calculate various form factors. For example, we consider
the calculation of

while

Fii(q')= g [Ffi='(q') —3FiP'(q')],
F21(q ) 2 [F21 '(q') —

3 F21 '(q')] .

(4.&)

(4.9)

The normalization factors have been chosen such that
$ =o(0) s =1(0)

Fig (0)=Fio (0)=1,

so that

gi(q') =
3 gf ='(q') .

We will continue our discussion of form factors in Sec.
VI. Further comments on the role of SU(6) symmetry
will be presented in the next section.

V. INTECiRAI. EQUATIONS
FOR INVARIANT AMPLITUDES:

QUARK WAVE FUNCTIONS

We are now in possession of a sufficient number of def-
initions so that we can construct an equation which deter;
mines the scalars 2 and B or the related quantities,
R„(Q) and Rt(Q). One starts with the equation for the
quark field operator, Eq. (2.4). We then form matrix ele-
ments of this equation by multiplying by nucleon states
and diquark states on the right-hand side and left-hand
side of Eq. (2.4). We then make use of the fact that

F = (0)=Fgg (0)=1 .
It follows that Fto(0)=3 and F»(0)=1. (These normali-
zation factors are discussed in more detail in Sec. VI.) It
is further worth remarking that in this model

(QSA, TMT
~
q(x)

~
P,s, t) =e' '"(QSATMT

~
q(0)

~
P, s, t) . (5.1)

Furthermore, in carrying out these manipulations one encounters matrix elements of the form
(QSA, TMT

~ q (0)o(0)
~
P,s, t) which we evaluate by inserting a set of soliton (nucleon) states: '
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p S

(QSA TMr [ q(0)o(0) (
Ps, t }=f g (QSA TMT ( q(0)

~

P ',s', t') (P ',s', t'
)
o(0)

~
P,s, t),

s't' EN(P ')
(5.2)

= —g g f (QSA, TMz-
~
q(0)

~

P ',s', t')
Sltl EN(P ')

d p ™Nu(P ',s')u (P,s) ps(q )

—q +m (2m)
(5.3)

Here we have made use of Eq. (2.14). Finally we use the definition of the nucleon-diquark amplitudes given in terms of
A' and 8' or A ' and 8 ' and the relation

p'+mN
2mN

= g u (P ',s')u(P ',s') .
S

(5.4)

Thus, we obtain, for example, an equation for the channel involving the S =0, T =0 diquark:

[y&(P —Q)~ —mq] A + u (O,s) = —gz f8g - 2 dP' mN

(2m. ) E (p~)

dP'—gn 2a E p'

p +mN ~ pg(q )
u (O,s)

2mN —g +my

p'+mN p, (q )
u (O,s)

2mN —g +m &

+g (3) f 3
y5 A'+

(2n) E (p') md

p'+mN
y u(O, s)

2mN q2+m 2

+g, y"+ ioi'"q„A'+z dp ™N ~. X . „,8'g
(2m) E (p~) 2mN

"
md

p +mN
2mN

X z z y„Fio(q )+ q "Fzo(q ) u(O, s)—q +m 2m~

+ge(3), y"+ i oi'"q„A '+
E„(P')

p'+mN
2mN

l Op~
2 y„F»(q )+ q"Fz&(q ) u(O, s) .—q +m& 2mN

(5.5)

He«P =[mN, O], P'=[EN(P '), P '], and q =P' P. Of course—, if we were to put P =[EN(P},P] the fully covariant
nature of this equation would be apparent. This equation has a rather transparent diagrammatic interpretation and may
be represented as in Fig. 1(b). Equation (5.5) is a couariant self consistent field-equation -in that the form factors are func-
tionals of the I.orentz scalars A, 8, A', and 8' It is us. eful to simplify this equation by obtaining integral equations
which do not contain any Dirac matrices. It turns out that it is most convenient to write integral equations for the quan-
tities R„(Q) and Rt(Q). The integral equations for these quantities are best written in a two-dimensional matrix form as
this most clearly shows that the kernal of the equation is real and symmetric, that is, we are dealing with a Hermitian in-

teraction. The appropriate variables are the diquark momenta Q and Q', where Q' is the diquark momentum in the

frame where the intermediate nucleon (of momentum P ') is at rest. We make extensive use of the relations

Ed(Q)Q'=Q —P'.
mN

p P, Q

mN[EN(p ')+mN]
(5.6)

Ed —=Ed(Q') =[Ed(Q)EN(p ') —P ' Q]~mN (5.7)

p J

eN(P ')
Q —Q'

[EN(P )+mN] Ed+Ed
(5.8)

(Q —Q')P'=
Ed+Ed

2mN

1—
I Q —Q

'
I
'~(Ed+Ed )'

(5.9)

After some manipulations one finds for the S =0, T =0 channel,
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Rg(Q)
mN —

( )

Eg(Q)+mq —
i Q (

—
I Q I E~(Q) —ms

R„(Q)

Rg(Q)

dP' eN(p') pg(q )

(2~) 2E (p ') my —q —P ' Q/pN(p ')

P' Q '/eN(p') R„(Q')

g g ' RI(Q')

dP' &N(P') p, (q )
gcr-

p' m~ —q
A—P '.
Q

&N(p ')

P'.Q'

eN(p ') Rg(Q')

Ri(Q')

dP ' &N(p ')

2& 2E p m —q

P' /e (P') Q'P '/eN(P ') R„(Q')

—p 'Q/eN(P ') —[2QQ' —Q Q '(Q'+Q')]
(Ed+Eg)

r

dp~ e (p ) 1 V~~ V~g R+(Q')

2-'2E. P --'-q' V: V: R '

r

dp ~ e (p ) 1
V~(( V~jz R„(Q')

+gp(3)
(2~) 2EN(p ') mp —q V21 Vzz Rl(Q )

(5.10}

where

2[2mN —E~(P ')] 3gp z

11 +
eN(P ')

p &2

[Fio(q')+Fzo(q')l —Fzo(q') 1+
2mN e (p &)

(5.11)

r
A —+—2P '.
Q

'
1 ——[Fio(q )+Fzo(q )l —Fzo(q +2

P'Q'
eN(P ') 2mN

2P'Q A,
[Flo(q )+Fzo(q )]+F20(q )~2 2 P'Q

2m~

(5.12)

(5.13)

V~ [F (qz)+F ( z)) N gg 2P QP. Q ~ 2(P Q)(P Q ) P (QQ )

e'N(p ) eN(p ') ez„(P ') ezN(p )

—Fzo(q') Q Q
' 1— A, P'

2m NeN(P ')
(5.14)

To ob«in V», V~z, etc., replace F&0(q ) and Fzo(q ) by
Fr&(q ) and Fz~(q ) in Eqs. (5.11)—(5.14).

Fu~her development of this equation require a change
of the variable of integration from P' to Q'. These vari-
ables are related as in Eqs. (5.g) and (5.9).

The Jacobian of this transformation is given in Ref. 6,
where the equation for a quark field coupled to a scalar
field is developed in some detail. We found dp'~dQ'g
a&here,
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eN(P ') J=
2EN(P ')

r

2mN

E~+Ei
1

2

Q —Q'

4

{Q—Q')'Q'
Eg(Eg+Eg )

(5.15)

and noted that

1+ {Q—Q')'Q'
Ej (Eg+Ej )

my +EgEg+ Q.Q
'

Eg(Eg+Ej )
(5.16)

[See Eqs. (85) and (88) of Ref. 6.]
Now that we have Eq. (5.10) available we can return to

further consideration of the wave function of the nucleon
whose structure is based upon an underlying SU(6) model.
Thus far we have only presented an equation for the case
that the diquark has S =0 and T =0. A similar equation
may be written for the case in which S =1 and T =1.
That equation would involve the amplitudes 3, 8, 3 ',
and 8'. The S=O, T =0 equation and the S=1, T=l
equation would be coupled through the various form fac-
tors which appear in these equations.

We do not write the equation for the S = 1, T = 1 chan-
nel here. However, we can note the difference between
that equation and Eq. (5.10). First we note that the equa-
tions for the S=1, T=l channel contain some small
terms proportional to the quantity A i defined earlier. In
addition, the isospin factors are different. The factors
3g«and 3g& in Eq. (5 10) ar.e replaced by —g«and —

g&
on passing to the S =1, T =1 equation. If these isospin
factors had been unmodified we could have argued that
the use of our SU(6) model would be justified. Since the
pion and rho meson contributions are quite different in
the two equations we need to present arguments that can
be used to justify the SU(6) model. First we can argue
that the 6 isobar plays a role in the S =1, T =1 channel.
If the coupling of the delta to the nucleon through the

transition N +—m+5 or N~p+5 were considered one
could write coupled equations in the S = 1, T = 1 channel
involving both nucleon-diquark and delta-diquark decay
amplitudes. The delta might serve to restore the SU(6)
symmetry by giving rise to an effective isospin factor of 3
for the pion and rho meson, in the S =1, T =1 channel.
This coupled channel model is under study at this time.

The second argument for the use of the SU(6) model re-
lates to the nature of the binding mechanism. If binding
were achieved with the scalar field X{x), wave functions
could then be constructed that have an SU(6) symmetry.
At that point, "turning on" the interactions with the cr, m,

p, and co fields could lead to only a relatively small viola-
tion of this symmetry since the effects of these mesonic
couplings tend to cancel. (The cr and m fields yield attrac-
tion while the p and co fields yield repulsion. )

We will assume that the second of these two sugges-
tions is reasonable and defer the study of the coupled
equatio'ns involving the 5 for another investigation. In
the next section we discuss the calculation of the various
form factors which appear in Eq. (5.10), and in Sec. VII
we specify the coupling constants of the quark-meson in-
teraction.

VI. CALCULATIGN GF NUCLEGN FGRM FACTGRS

We have defined a series of form factors in Sec. II. In
this section we show how these form factors may be cal-
culated in terms of the nucleon-diquark amplitudes intro-
duced earlier For exa.mple, let us recall the definition of
the scalar form factor, p, (q ),

(P', s', t'
i q( 0) q( 0)~ P,s, t)

p, (q')
=5«u(P ',s')u (P,s) . '(6.1)

(2m. )3

We now insert a set of diquark states between the
operators q(0) and q(0):

(P',s', t'
~
q(0)q(0)

~
P,s, t)= g f (P', s', t'

~
q(0)

~

QSA, TMz) (QSXTMz-
~

q(0)
~

P,s, r) .
SA.TM~ 2'(Q)

(6.2)

We use the S =0 and S =1 amplitudes defined earlier and note that with normalization chosen for our SU(6) model,
we must insert a factor of —,

' . We have

r

gN(P ',s', t'
~
q(0)q(0)

i
P,s, t) =— 5« f u(P ',s') +2' 3 + u {P,s)2 (2' ) 477 2E (Q) lilac vip

r r

+ g s 5« f u(P', s') 2 '+ gi+ 1+(2~) 4n 2E (Q) mg mg

A'iP gi

mN

u (P,s) (6.3)
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Thus the contributions naturally divide into an S =0 T =0 and S = 1 T = 1 part. [Recall that we are using the SU(6)
model described earlier where A = —(1/v 3)A and 8= —(1/V 3)8.] We write

p, (q')= —,'[p, =
(q )+p, ='(q )]

and find that,

(6 4)

p, (q )= J — (A'2+8'8)+ (A'8+8'A) . ,
s=o z 1 d& O P+P'

4~ 2E (Q) (P +P')2

while the general form for p, ='(q ) is

(6.5)

s=i( z) 1
y

dQ
47/ 2E (Q)

I'.I"
2

mN

(P'.Q)(P Q),
1

2mN Q.(P+P')
m Nmd

I
md (P +P')

P P'
+3 A '2+8'8+

~ (A '8+AB')(P+P')'

—2(A ' —8 ')(A —8) 1— 2mN Q.(p+p')
(P+P')' (6 6)

These expressions may be evaluated in any frame, but it
is useful to take P=O. Furthermore, the primes on the
invariant amplitudes signify the dependence on nucleon
rest-frame variables discussed earlier.

It is worth noting that

p, (0)=3(1—2a), (6.7)

a = I Q dQ[R ((Q)] . (6.&)

We note that if one performs the isospin sums explicitly
one has

gi(q') =
2 [gi ='(q') —

~ g i ='(q')]

where the ——, is an isospin factor. We find

(6.9)

where a is the fraction of lower component in the quark
wave function,

The procedure for calculating these form factors is
quite straightforward. From the solution of Eq. (5.10)
one obtains R„(Q) and Ri(Q) from which one can obtain
& (Q) and B(Q). We can now refer to Fig. 2 for further

insight. We see that if we put P=0 we can use the ampli--
tudes A (Q) and 8 (Q) to specify the left-hand vertex since

Q is the diquark momentum in the nucleon rest frame.
For the right-hand vertex, however, the nucleon has

momentum P= q. Therefore the argument of the ampli-

tudes A and 8 is
I Q

' I, where Q
' is the diquark momen-

tum in the rest frame of the nucleon of momentum P'.
The vector Q' may be obtained from the knowledge of Q
and P ' using Eq. (5.6). As mentioned previously, we use
the notation A'=A:(Q') and 8'=8(Q') where
Q'=

I
Q'I.

Before leaving this section we show that our choice of
normalization yields the correct baryon number for the
nucleon. Note that

with

g i ='(q') = f — (~'~ 8'8) (W'8 —8—W)—4' 2E (Q)

X
" Q' ', ' . (6.10)

md (P' —p)2

Thus we have

(6.11)

The expressions for the vector form factors are quite
lengthy, particularly those for S =1, so that we do not
present them here.

P=O

FICx. 2. Calculation of nucleon form factors in the diquark
approximation. (This calculation may be carried out in any
Lorentz frame but we here specialize to the case P=O. ) The
nucleons and the diquark are on the mass shell in this approxi-
mation.
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(P', s, t ~B
~
P,s, t)=(P', s, t

~

—,
' f dxq(x)y q(x)

~
P,s, t),

= —,'(2m) 5(P' —P)(P,s, t
i q(0)y q(0)

i
P,s, t),

(2m )' -, - -
p

- Fio(0)
5(P ' —P)u(P, s)y u (P,s)

3 (2m)

(6.12)

(6.13)

=5(P ' —P)EN(P)/mN, (6.14)

since F,o(0)=3. If we evaluate Eq. (6.12) by inserting S =0 and S =1 diquark states we would find

F)p= (0)+F)() '(0)
(P,s, t

i q(0)y q(0) i
P,s, t) = u(P, s)y — u (P,s),

(2m ) 2
(6.15)

3

(2~)3 mN
(6.16)

which also leads to the correct result. In Eqs. (6.15) and (6.16) the factor of 3 has its origin in that Fio= (q ) and
Fip '(q ) are calculated Per quark and are normalized such that Fio= (0)=F,p='(0) = 1 in the SU(6) model. The factor
of 2 in Eq. (6.1S) also has its origin in our SU(6) model which requires that the S =0 and S =1 amplitudes appear with
equal weight when specifying the nucleon wave function.

As another exercise, let us consider the isospin operator, T3. As mentioned earlier, we are neg1ecting the mesonic con-
tributions to the current operators Ther.efore, we express T3 only in terms of the quark fields,

T3= dxg x f g x
2

%'e have

(6.17)

(P', s, t
~

T3
~
P,s, t)=(2') 5(P' —P)( —,

' )(P,s, t
~
q(0)y ~qq(0)

~
P,s, t)

1 (1/2) t-
u (P,s)you (P,s)F) i (0)5(P ' —P), (6.18)

1 )(1/2) —t EN(p)
5(P ' —P),

2 Ulw

since F» (0)= 1. The evaluation in terms of a set of intermediate diquark states yields

(6.19)

(P', s, t
~

T3
~
P,s, t)=(2n) 5(P' —P)( —', )[F()= (0)——,'F((='(0)] ( —1)"/ ' 'u(P, s)y u(P, s), (6.20)

1)(1/2) t EN(P)—
5(P —P '),

2 mN
(6.21)

where we have used the fact that

F11= (0)=F))='(0)=1
jn our SU(6) model. Again the factor of 3 in Eq. (6.20)
appears because our form factors for specific diquark
spins are calculated per quark. The factor of ( —,

'
) in Eq.

(6.20) again has its origin in the SU(6) based model as not-
ed above.

We have provided a somewhat lengthy discussion of
our choice of normalization since this can be a source of
some confusion. We also note that in the general case the
axnplitudes A and 8 are not linearly related to A and B.
These amplitudes must be determined from dynamical
considerations through the solution of the S=0, 7=0
and S=1, T =1 equations. As remarked earlier, these
equations are coupled through the appearance of the same
form factors in both equations. (The form factors depend

VII. DETERMINATION OF COUPLING CONSTANTS

By using Eqs. (2.14)—(2.18) we can relate the meson-
quark coupling constants of our model to empirical
meson-nucleon coupling constants. For example, we have

G NN=g p, (0»

GpNN gp F1 1 (0) gp ~

G NN=g F(o(0)=3g

(7.1)

(7.2)

(7.3)

(7.4)

upon all the invariants A, 8, A, and 8. ) A inodel in
which we do not impose SU(6) symmetry at the outset
will be presented in a future work as well as calculations
of the mesonic field contribution to the electromagnetic
form factors and magnetic moments.
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The ratio of tensor to vector coupling for the p and co

mesons is given by

T
6pNN

v
6pNN

T
6coNN

vG cyNN

Fzi(0)
F (0)

=F""'
Fzo(0)
Fip(0)

Fzo(0)
3

VIII. RESULTS OF NUMERICAL CALCULATIONS

Before discussing our results we need to comment on
the various aspects of self-consistency in these calcula-
tions. The results depend upon the choice of various cou-
phng constants and masses. Indeed, the quark moves in a

Fits to nucleon-nucleon scattering data give values for
G~NN/4n, etc.. For example, for the potential of Holinde,
Erkelenz, and Alzetta (HEA) one has G NN/4m =4.63,
G~NN/4m=13, G~Np/4m =14, Gi,NN/4m =1.5, (Gp~N/
G&~N)=3. 5, and (G~NN/G~NN)=0. (In this model m
= 138.5 MeV, m =500 MeV, m p

——763 MeV, and
m„=782.8 MeV. ) This one-boson-exchange model of the
nucleon-nucleon force also has q, P, and 5 mesons which

play a relatively minor role in the data fitting. We will

not consider these additional mesons at this time. Using
the above values we find 6~NN ——7.63, G NN

——12.8,
G„NN ——13.3, and G&NN

——4.34. Thus g =7.63/p, (0);
g =12.8/gi(0), g„=4.33, and gz ——4.34. (The equality
of g and g& obtained in this manner is rather striking. )

To obtain a value for p, (0) we note that

p, (0)=3(1—2a),

where a is the fraction of the lower component in the
wave function in an SU(6) model. Furthermore, we may
show that g~ ———', (1——', a). Let us assume that we have.

constructed a model that gives g~ ——1.25. That would re-
quire a =0.19 and therefore we could estimate

p, (0)=1.86. This in turn would yield g =4.10 which is
surprisingly close to the 4.33 and 4.34 obtained for g„and
gz. Finally, to obtain a value for g~ we need an estimate
for gi(0). Calculations of this quantity are given in Ref.
6. In that work baglike wave functions were used to
parametrize the vertex functions and values of about 2 to
4 were obtained depending on the bag size. In this work
we find g, (0)=4.78. (See Tables I and III.)

Ideally, one might iterate our equations by adjusting g
and g at each stage so that 6 NN and 6 NN are given
correctly. Alternatively one could fix g and g and then
calculate values of 6 NN and 6 NN based upon the values
obtained for p, (0) and gi(0). We chose a combination of
these procedures. Over the first few iterations g and g
were adjusted so that 6 NN and 6 NN were given correct-
ly. Then g and g were fixed and the iteration was con-
tinued. Because of the iteration scheme chosen, the final
value for G NN was 12.9 instead of the value of 12.8 ap-
propriate to the potential HEA. (Rather rapid conver-
gence of the iteration procedure was obtained, with a
stable solution appearing after three or four iterations.
Stability was checked by continuing the iteration to about
a total of nine iterations. )

potential that is quite sensitive to the value of the nucleon
mass through its use in various kinematic transforma-
tions. In order to keep the scale of the interaction from
changing radically, we have used the experimental value
of mN in constructing the Jacobian fEq. (5.15)] and the
various mN-dependent terms in Eq. (5.10). However, us-

ing the techniques of the Appendix we may calculate a
value for mN by constructing the expectation value of the
Hamiltonian in the soliton state. The value of mN so
determined is denoted mN~~~. The fact that mN~H~ does
not precisely reproduce the experimental value makes the
calculation not fully self-consistent. (With an improved
model we might be able to achieve self-consistency for
this aspect of the calculation. ) However, the calculation is
self-consistent in what we consider the most important as-
pect. The form factors of the nucleon are calculated with
the invariant amplitudes that are obtained from the solu-
tion of Eq. (5.10). Of course, the interaction in this equa-
tion is constructed in terms of these form factors. The
solutions we present are self-consistent with respect to this
feature.

As noted earlier, the model we are discussing has
several free parameters, g&, mz, mz, and X. A full ex-
ploration of this parameter space is a large task. There-
fore we have put mr ——500 MeV and A, =O and considered
variation of m~ and g&. The results are sensitive to the
variation of these parameters and not all choices lead to
stable solutions of the nonlinear equations. The inclusion
of the p meson in the analysis creates a special problem.
Indeed, we find that when the p meson is included the sol-
iton tends to collapse in size and a stable solution cannot
readily be found. This feature may be traced to the way
the p is coupled to the nucleon. One notes that F2i(q ) is
quite large. From studies of NN scattering using the
one-boson-exchange models of the nuclear force one finds
that the phenomenological values of

F„(0)/F»(0) =F»(0)

vary from about 3.50 to about 6.0. (As we will see, it is
not difficult to reproduce the lower of these values while
at the same time providing a good fit to the nucleon mag-
netic moments. ) The nucleon magnetic moments are
given in terms of Fzo(0) and F2i(0) in Ref. 6, Eqs. (8.1)
and (8.2). With these large values of F2i(q ) there is a
large amplitude for the nucleon to emit a meson that car-
ries a large momentum. fNote that the momentum of the
emitted meson is q = I

—q, —q I with q =EN(q)
—mN. ]. We see from Eqs. (5.10)—(5.14) that V~„(qi) be-

comes negative for sufficiently large
~

P'~ =
~ q (. Thus,

inclusion of recoil effects leads to the situation where the

p meson provides a repulsive potential for small
~ q ~, and

an attractive potential for large
~ q ~, in pf&(q ). Fui-

thermore, we see from these equations that since Fzi(q )
is large, the term V,2(q ) is large Therefor. e the p meson
is particularly effective in enhancing the lower com-
ponents of the wave function, FYi(g) Because o. f these
features which tend to destabilize the calculation, we
found it useful to replace g& by gz(1 —q /A ) with
A=800 MeV/c. This replacement regulates those high
momentum aspects of the model that are due to the cou-
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pling of the p meson and enables us to obtain reasonable
solutions. With this feature in place it was possible to
find relatively stable solutions and one further, relatively
minor regulation of the high momentum behavior was

needed, as will be discussed below.
As noted earlier, the model has several free parameters

g&, mz, m&, and A, , and we chose to put A, =O and
m& ——500 MeV. %Pith m&

——600 MeV and g~ ——6.0 we ob-

TABLE I. Results of calculation using gz ——6.3, mz ——500 MeV, and m~=600 MeV. (The meson
masses were set at m =500 MeV, m =138.5 MeV, m =782.8 MeV, and mp=763 MeV, which are
the values used in constructing the potential HEA of Ref. 22. The values of G~NN, G„NN, GpNN, and
G„~N were also taken from the potential HEA—see Sec. VII.)

Baryon density rms radius

Scalar density rms radius

Calculated

0.647 fm

0.511 fm

Experimental

mN (Ed )
(Ed )

181 MeV

1314 MeV

1495 MeV

205 MeV

168 MeV
—133 MeV

29 MeV

528 MeV

mx(H) 1342 MeV 938 MeV

{1087 MeV)'

2 ) 1/2

2 )1/2

( 2)1/2

' de(q2)
dg

0.867 ffn

0.813 fm

0.820 frn

3.65X 10-' fm'

0.87+0.02 fm'

0.80+0.03 fm'

0.79+0.15 fm'

(1.89 + 0.04))& 10 fm '

Pp

Pn

@pan
gw

2.76
—1.81

1.50
1.27

2.79
—1.91

1.46
1.25

gp=

GaNN

p, (0)
GUNN

g)(0)
GcoNN

3
GpNN

1

7.63
1.94

12o91 2 70
4.78
13.3 4

3
4 34 4 34

1

Gp F2({0)
G' Z»(O)
G~ F2p(0)
G„' F»(0)

'SU(6) value: (m~+mN)/2.
HEA: Ref. 22.' Reference 23.

d Reference 24.' Reference 25.

3.56

—0.048

3.50

0.0b
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1/2
dGE(q )

(8.1)

tained a solution that converged rapidly to yield an object
that had properties quite similar to that of the nucleon.
This solution, however, exhibited a very small residual
drift upon successive iteration which indicated that the
high momentum properties of the model were still not
satisfactory. Therefore we implemented a sharp cutoff at
—q2=40 fm for al/ the mesons. [This was most readi-
ly accomplished by putting all the form factors, p, (q ),
gi(q ), EI0(q ), etc., equal to zero for —q &40 fm
The cutoff for the p meson which was implemented by re-
placing gz by gz(l —q /A ) was maintained, as well. ]
With this sharp cutoff we found convergent solutions and
readily obtained objects that had the properties of the nu-
cleon. (The sharp cutoff limits

~ q ~

are to be less than
about 1.5 GeV. This is a not unreasonable choice as one
expects that gluon degrees of freedom should become im-
portant for momentum of the order of 1—2 GeV/c. )

Our results are summarized in various tables and fig-
ures. In Table I we present values for various quantities
obtained when forming the expectation value of the Ham-
iltonian. (The notation is defined in the Appendix. ) As
may be seen from the table, the value of the nucleon mass
is about 40% too large; however, the values for g„, p~,
and p„are in very good agreement with the experimental
data. We also present values of the rms radius of the
baryon and scalar densities obtained from the coordinate
space wave functions depicted in Fig. 3. These wave
functions are obtained by Fourier transformation of the
momentum space wave functions in the nucleon rest
frame. In Figs. 4 and 5 we show the calculated values for
the proton and neutron form factors and compare these
values with the experimental data. Numerical values are
given in Table II. The fit to the data is quite good for

~ q ~

&0.3 (Ge&/c) . From the slope of the curve for
Gz(q ) at the origin we can extract a value for the proton
electromagnetic radius,

5.0—

2.5
Factors

2.0

l.5

0.5

The value obtained in this manner is given in Table I. For
a strongly coupled system it is not unexpected that this
value differs somewhat from the value of the rms radius
of the baryon density which is also given in Table I. In
Table I we also present values for the neutron and proton
magnetic radii defined by

dG4(q')

q2 P

dq 2

2 I /2 (8.2)

6
GM(0)

2)i/2 (8.3)
. q 0

Finally, in Table III we present values for p, (q2),
g l(q ) +10(q ) &ti(q )~ +20(q ), and E2i(q ) for various
values of q . We should again note that we have neglect-
ed mesonic corrections to the magnetic moments, elec-
tromagnetic form factors, etc. In the calculations report-

I I 1 I 1 I I ) I

0.2 0-4 0.6 0.8 I.O
—

q (GeV/c)

FIG. 4. Proton electric and magnetic form factors. The
dashed curves represent the data while the solid line represents

' the results of our calculations.

5.0 i

2.5—
Neutron Magnetic Form Factor

2.0-

l.5

i I I I I I.O

0.5

FIG. 3. Coordinate-space quark wave functions obtained by
Fourier transformation of the momentum-space amplitude in
the nucleon rest frame. The curves represent the upper and
lower radial components of the coordinate-space spinor.

0 0.2
I I t

0.4 0.6 0.8
—

q (GeV/c)

FICx. 5. Neutron magnetic form factor. The solid line
represents the results of our calculations.
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TABLE II. Calculated electric and magnetic form factors of
the proton and neutron.

fm required to fit the proton moment. In our model,
which treats recoil effects properly, one has a more com-
plex situation. The analysis of Ref. 6 provides the result

6'(q') GM(q ) 6&(q') 6"(q') 4 Cp, =(1——,a)+p, , (9.2)

0.0
. —4.0
—8.0

—12.0
—16.0
—20.0

1.00
0.61
0.38
0.24
0.15
0.09

2.76
1.79
1.21
0.85
0.60
0.44

7.23 X 10-'
4.17X '10-'
8.49 X 10-'
1.16X10
1.35 X 10-'
1.41X10 2

—1.81
—1.16
—0.78
—0.54
—0.39
—0.28

where

3 C=TSA+Pp ~ (9.3)

p, = ——", mN( —', ) I x R„(x)Ri(x)dx . (9A)

The R„(r) and Ri(r) are Fourier transforms of the
momentum-space wave functions and are normalized
such that

ed here we have used currents expressed in terms of quark
fields only. The mesonic corrections will form the subject
of a future publication.

IX. DISCUSSION OF THE RESULTS
OP NUMERICAL CALCULATIONS

In Ref. 6 we considered a model for nucleon form fac-
tors which was a simplified version of the model con-
sidered here. Indeed, given the simplifications of that
reference it was possible to provide analytic expressions
for the various form factors of the nucleon. These were
given as integrals involving the upper and lower com-
ponents of the quark wave function in coordinate space.
We will use some of the results of that analysis to inter-
pret our numerical results.

A. The axial coupling constant, g~

The value of gz was found to be

gz ———,
' (1——,a), (9.1)

where a was the fractional contribution of the lower com-
ponent to the normalization integral. A value of
a =0.188 yields gz ——1.25. (The value of a in the NIT
bag model is a =0.26. ) We were able to obtain a solution
of our equations with gz ——1.27 and very good values for
the magnetic moments.

B. The nucleon magnetic moments, p~ and p,

In the MIT bag model the magnetic moments are
linearly related to the bag size with a bag size of R —1.4

I [R„(r)+Ri(r)]r dr =1 . (9.5)

The factor of ( —, ) in Eq. (9.4) had its origin in our ap-

proximating Eq. (5.6) by Q'=Q —( —', )q. [This choice
corresponds to a "weak coupling" limit where m~-3m&
and Ed(Q)-2m~. In retrospect we feel that this approxi-
mation was not appropriate. j In the work reported here
we calculate the moments using the relations

r

Ezp(0) Fzi (0)
pp= ~+ +

6 2
(9.6)

' Fzp(0)

6
Fzi (0)

2
(9.7)

C. The nucleon form factors

using Eq. (5.6) without making any approximation. How-
ever, it is useful to have analytic results such as those ob-
tained in Ref. 6 and reproduced in Eqs. (9.2)—(9.4). From
these equations we see that the value obtained for the mo-
ments is not simply related to the size of the confinement
region. Indeed, we have found solutions that describe ob-
jects of the saine size that have quite different values of
the magnetic moments. For example, if Ri(r) is very
small and a=0 we have @~=1.0. However, such an ob-
ject can have an rms radius of about 0.7 fm for the baryon
density. Since we can find solutions with sizable RI(r)
and a=0.2 we can obtain p&-2.7 with objects of similar
size ((r )' =0 7fm) to tha. t described above. Thus the
value obtained for a is a sensitive indicator of the quality
of the fit to be expected for gz and the magnetic mo-
ments.

0.0
—4.0
—8.0

—12.0
—16.0
—20.0
—24.0

p.(q') gi(q')

1.94
1.42
1.07
0.81
0.62
0.48
0.37

4.78
3.16
2.17
1.53
1.11
0.81
0.60

+go(q )

3.00
1.83
1.17
0.76
0.51
0.34
0.23

+)g(q ) +20(q ) +2I(q )

1.00
0.70
0.50
0.36
0.26
0.19
0.14

—0.14
0.05
0.12
0.15
0.15
0.14
0.12

3.56
2.25
1.47
1.03
0.72
0.52
0.39

TABLE III. Form factors obtained in a self-consistent solu-
tion of Eq. (2A).

As noted above, we have obtained a good fit to the
form factors for —q & 0.3 (GeVic) . The fit deteriorates
progressively above this value of —q . This leads us to
believe that we require a more detailed evaluation of the
form factor at the larger values of —q . Indeed as —q
approaches 1 or 2 (GeV/c) we expect gluon degrees of
freedom to become important and other techniques will be
required in the evaluation of the form factors. Ultimate-
ly, one would hope to move continuously from our calcu-
lation to a QCD based analysis, the latter analysis being
relatively insensitive (at least in the predicted q depen-
dence) to those details of the wave functions of the nu-
cleon which are probed at low q .
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D. Meson-nucleon coupling constants F. The size of the nucleon

As we have discussed in some detail, the coupling of
the quarks to the mesons has been adjusted to give the
empirical values for the coupling of the mesons to the nu-
cleon .Some interesting features emerge in this analysis.
First, one finds that the quark-meson coupling constants
are quite similar in value. Second, the p and co mesons are
coupled to the quarks in an entirely similar fashion. The
results of our calculation using our SU(6) based model
yields quite different couplings of these mesons to the nu
cleon. Indeed the model reproduces the strong tensor cou-
pling of the p meson to the nucleon quite well and at the
same time yields essentially zero tensor coupling of the co

to the nucleon. This feature is also consistent with empir-
ical values obtained for these couplings when use is made
of the one-boson-exchange model for the description of
nucleon-nucleon scattering. We should also remark that
since the photon is coupled to the quarks in a manner
similar to the coupling of the p and co, a successful fit to
the magnetic moments implies that (in this model) the p
and ~ tensor coupling to the nucleon wi11 be given correct-
ly.

E. The nucleon-nucleon interaction

As discussed in the last subsection, the meson-quark
couplings have been adjusted to give the phenomenologi-
cal meson-nucleon coupling. Therefore if one were to cal-
culate the diagram shown in Fig. 6(a) one would have the
correct strength for the various parts of the momentum-
space one-boson-exchange potential. [We have adjusted
our quark-meson coupling constants in order to reproduce
the potential HEA (Ref. 22).] Further iteration of this po-
tential using the techniques described in Ref. 18 would
yield the nucleon-nucleon scattering amplitude. The itera-
tion is indicated in a schematic fashion in Fig. 6(b).

One of the more interesting aspects of our results is the
fact that in a relativistic calculation of a strongly bound
system the electromagnetic size of the soliton may differ
significantly from the "physical" size. The latter size is
obtained by calculating the rms radius of the baryon den-
sity, for example. The electromagnetic size is obtained
from the slope of the proton electric form factor at q =0.
[See Eq. (8.1).] The different values obtained in the two
calculations arise from the way the transformation prop-
erties of our vertex functions affect the calculation of
form factors. The most relevant equation is Eq. (5.6).
From this equation we can infer that if mz ——2m~ is
greater than mN we can expect (r. ~)z to be greater than
(r ) '~z calculated from the baryon density.

G. The nucleon mass

In our calculations we find mN~~~
——1342 MeV. This is

about 43% too large if compared with the nucleon mass.
However, one may suggest that in an SU(6) based model it
is more appropriate to compare the calculated value with
the average of the delta and nucleon mass, a mass of
about 1087 MeV. If the latter comparison is made the
calculated value is only about 23% too large. In the fol-
lowing paper we present the results of a calculation in
which we fit the SU(6) values .for the mass rather well;
however, the value obtained for g~ in that case is some-
what too small. It is quite possible that a more extensive
parameter search will yield good fits for all the nucleon
observables simultaneously.

X. CONCLUSIONS AND SUMMARY

pl
1

Pi'

(a)

FIG. 6. (a) The nucleon-nucleon potential in a one-boson-
exchange model. Both direct and exchange terms are shown.
(b) Iteration of the potential constructed in (a) using the tech-
niques of Ref. 18 will yield the nucleon-nucleon scattering am-
plitude.

In this section it is useful to summarize the various pos-
itive and negative features of our model. Of the negative
features, the most serious is the absence of a good model
for confinement. Indeed the connection of this model to
QCD is tenuous at best. Furthermore, the model is not
renormalizable; however, since we are dealing with an ef-
fective Lagrangian we do not consider that a serious de-
fect. In addition, the diquark approximation should be
improved upon and the structure of the meson fields
should be addressed. In surveying the results of our cal-
culations, we see that the nucleon mass is too large and
the form factors fall off somewhat too fast with increas-
ing values of —q . Of course, results obtained in a model
with several free parameters such as g~, m~, and m~ are
subject to revision.

Having surveyed some of the deficiencies of the model,
we now turn to the more positive features. First, we see
that we have introduced a new, fully covariant approach
to relativistic bound state dynamics. We have obtained
good fits to the nucleon magnetic moments and the axial
vector coupling constant, g~. Also there is a good fit to
the electric and magnetic form factors of the nucleon, for
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values of —q that are not too large. Another nice
feature of this model is that it is consistent with the one-
boson-exchange model of nuclear forces. ' The model is
restricted such that 6 ~N, 6 NN, 6&NN, and G„N& are
given correctly. (This is accomplished by adjusting g
and g during the first few iterations of our nonlinear
equations. Note that gp and g do not require such ad-
justments as the p and ro mesons are coupled to conserved
currents. ) In addition, the ratio of the tensor to the vector
coupling constants of the p and co mesons to the nucleon
are given correctly by the model. [For example, for the p
meson this ratio is

(GpNN/GpNN) F21(0)/Fll(0)

while the phenomenological value obtained for the NN
potential HEA (Ref. 22) is 3.50. Correspondingly, the ra-

- tio for the co meson

(G~NN/G~NN) =F2P(0)/Fio(0) = —0.15/3= —0,05,
while the value for the potential HEA is zero. ] The fact
that it is possible to couple the o., m., p, and co mesons to
the nucleon and still have a viable model appears to us to
be quite important in light of the rather complete success
found when using a Lagrangian based on the boson-
exchange model of the nuclear force for studying the

properties of nuclear matter, effective forces in nuclei, and
the nuclear optical potential. '7 Other studies of nucleon-
nucleus scattering using a relativistic impulse approxima-
tion have shown that the NN scattering amplitude is best
represented in terms of its Dirac-matrix representation. '

In this representation it is clear that the Lorentz-scalar
part of the amplitude is large and attractive while the
Lorentz-vector part is large and repulsive. These features
are consistent with an underlying boson-exchange model
of the interaction and further support the picture of the
NN interaction obtained from application of the boson-
exchange model at lower energies.

We may hope that our model will also provide a basis
for the construction of a theory of many-body soliton
dynamics. One may consider the construction of a shell
model for solitons and also investigate the modifications
of soliton properties in external fields or inside a nucleus.
We explore these matters in the following paper.
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APPENDIX

In this appendix we calculate the energy of the nucleon by forming the expectation value of the Hamiltonian. Let us
consider the states

I P,s, t & which have the normalization

(P',s', t'
I
P,s, t&=5(P—P') .

We have

(P', s', t'I~ IP,s, t&=(P',s', t'I f ~(x)dx IP,s, t&=(2~) 5(P' —P)(P s, t I~(0) IPs, t&5„» ~ .

Here ~(x ) is the Hamiltonian density. We further define

(A 1)

(A2)

(P,s, t I
A (0)

I P,s, t & =E(P), (A3)

E(P) =(P +mN(H) )

Therefore

(A4)

( P s t
I
A

I
0&s&t & —5(P )mN(~)

where mN~H~ is the mass of the soliton. We have included the subscript (H) as an indication of how this quantity was
calculated since the notation mN was used for the eigenvalue of Eq. (5.1()).

The Hamiltonian density may be obtained from the Lagrangian density given in Eq. (2.3),

~«)=q(x) —.y ~+m, +g o(x)+gxX(x)+g„y"co„(x)+ig y5P-, .II(x)+g ypF, p„(x)l

—gq) cT Fp~(x) —gp
721 N

a""Fq FPp~(x) q(x)

'2

a + I ~&«) I'+mr&'(» + —' + I
~~

I
(» I'+m'~'(x)

Bt
J J
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2

+ivrr( )i'+ '. rr'( ) I+[-,'s'„".( )F"."( )—l '. "( ) ( )]
Bt

Bp
(x)q(x)cr 'rqq(x)+[ ,'F~~—(x)Fp"'(x) ,

' —mp—p "(x).p„(x)] F—p~(x) —
gp

mN

8co~Fo"(x) g„—q(x)cr "q(x) (x) .
2mN Bt

(A6)

mN(~) =3(mN —(Eg) )+@'x+@'~+&~+@'~+w'~,

where

I 2(q ) p, (q ) p, (q )

( —q +my) —q~+m~
gx dq &N(q)

2 (2m ) 2EN(q)

eN(q) 2(q')'p,'(q') p,'(q')

2EN(q) ( —q +m~) —q +m

2
dq

(2~)

d q &N( q) EN( q) —m N 2(q')'g((q') g &
(q')

2EN(q) EN(q)+mN ( —q +m~) —q +m~
2

1/2
gm d q ~N(q)

(277) 2EN( q )

1/2
2m

P'(o(q )++zo(q )]—2 2 +zo(q') .
2mN

2

g,'(3) dq
p 2 (2~)3 2EN(q)

2/2

Fz((q') .
2m~

[F (q')++&((q')l—

e.~N(q) ( —q +mp)
(AS)

and mN is the eigenvalue of the equation for the invariant amplitudes, Eq. (5.10). Furthermore,

J dQEd(Q)[& '. (Q)+& BQ)] (A9)

Vfe may put

e=mN —(Eg) (A10)

and

(A 1 1)

so that

(A12)

We will drop the last two terms of Eq. (A6) when evaluating the energy of the system since these terms are quite small.
Using the techniques developed in this work we find
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