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The boundary condition Ernst-Shakin-Thaler method, introduced previously to generate separable
expansions of local potentials of finite range, is applied to the study of the triplet s-wave Malfliet-
Tjon potential. The effect of varying the radius where the boundary condition is applied on the T
matrix is analyzed. Further, we compare the convergence of the n-d scattering cross sections in the
quartet state below the breakup threshold for expansions corresponding to two different boundaries.

I. INTRODUCTION

In a previous paper' we introduced separable Ernst-
Shakin-Thaler (EST) expansions of loc'al potentials, us-

ing boundary conditions in order to generate the basis.
This method, which we shall call BCEST, gives rigorous
expansions for potentials of finite range, that is, potentials
which vanish outside of a sphere of radius ro

More precisely it was established that, if one uses as a
basis for the EST expansion the eigenstates of the
Schrodinger equation subject to appropriate boundary
conditions at a fixed radius p larger than the range rp of
the potential, the separable EST series becomes exact; it
gives us back the original potential. In Ref. 1 we studied
also the rate of convergence of the separable T matrix for
a square well potential for different values of the boun-
dary radius p and found that the BCEST series converges
rapidly towards the exact T matrix.

In the case of potentials which do not vanish outside of
a given sphere, BCEST expansions will not converge to-
wards the exact solution. Nevertheless, if the boundary is
chosen such that in its exterior the potential becomes
negligible, one expects that separable T matrices con-
structed according to the BCEST prescriptions should
still yield good approximations to the exact T matrix. In
order to investigate this question, we studied the BCEST
expansions of the Malfliet-Tjon triplet s-wave potential
by comparing the corresponding T matrices with the ex-
act ones, using p as an adjustable parameter. These com-
parisons are made for truncations of different ranks of the
separable expansions, as we wish also to study the rate of
convergence for different values of p. The boundary con-
dition used was to fix the logarithmic derivative of the ra-
dial wave functions at p. In order that the exact T matrix
at the bound-state pole be correctly reproduced by the
separable T matrices, the value appropriate to the bound
state was chosen.

Finally, we compared the performance of our two best
separable expansions in neutron-deuteron scattering below
the breakup threshold in the quartet state, assuming only
the Malfliet-Tjon triplet s-wave nucleon-nucleon interac-
tion to be present. In Sec. II we review the BCEST
method and in Sec. III we present our numerical results
for the two-nucleon and three-nucleon calculations; the

method utilized in the calculation of the n-d scattering
amplitude is presented in Refs. 10—13.

II. THE BCEST EXPANSION

where the matrix M is given by

(~-'),,=(e,
i
v

~
qi) .

Similarly, the off-shell T matrix may be written

T= g V ~%';) ir(E)(% ~JV.

(2)

(3)

By making use of the Lippmann-Schwinger equation one
gets' for the matrix r the expression

(r ');J = (0';
i

( V —VG0 ' V)
i

O'J ),
where

(4)

Go+'(E) =(E —Ho+is)

Ho being the kinetic energy operator. The expansion of
the R matrix is similarly obtained from Eqs. (3) and (4)
through replacement of Go+' by GO ', the principal value
Green's function in Eq. (4).

If V(r) is a local spherical potential which vanishes for
radii r larger than ro, it may be seen that Eqs. (1)—(4) still
hold' for a complete orthogonal basis of functions defined
in the interior of a sphere of radius p larger than ro. In
the absence of tensor and spin orbit forces, these condi-
tions are written

g P; (r)g;(r') =r 5(r r'), r &p, r' &p, —

f r P;(r)PJ(r)dr =5;1,

where t/i;(r) denotes (r
~

4';). Further, in the particular
case of EST expansions, the states %'; are required to be

Consider a complete basis of states 4';, i =1,2, . . . , in
the subspace of a fixed angular momentum. In this sub-
space we perform the following separable expansion of
the spherical potential V,

V=+ v~q, )M,-, (e, i
v,
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(a)TABI.E I. p is the radius of the boundary and V(p ) the corresponding value of the potential. kE '

i =1, . . . , 5 are the five lowest energies appropriate to the states of the BCEST basis; E'& ' ———2.23
MeV.

Pa

(fm)

3.48
4.84
8.30

v(p )

(MeV)

—8.11
—0.71

—2X10-"

I

k(a)
I

(fm ')

0.232
0.232
0.232

1.23
0.83
0.43

k(a)

(fm ')

2.27
1.57
0.86

k( )
E4

(fm ')

3.27
2.29
1.27

4.23
2.98
1.68

eigenstates of the Schrodinger equation

(Ho+ V E;)
~

—%';) =0 .

A convenient way to obtain a complete orthogonal set of
functions satisfying Eq. (8) in the interval 0 & r &p, is to
impose linear boundary conditions at p,

f;'(p)/g;(p) =L,
Equations (8) and (9) generate a countable set of functions

In order to be useful in the calculation of the n-d
scattering amplitude, L, is chosen equal to the logarithmic
derivative of the radial wave function of the bound state.
Thus the only adjustable parameter left is the radius p.
As discussed in the Introduction, even if the potential
does not strictly vanish outside the boundary, the expan-
sions defined by Eqs. (3), (4), (8), and (9) may still
represent a good approximation to the exact T matrix.

We next summ. arize the procedure followed in the cal-
culation of the exact and separable T matrices. We found
it more convenient to start with the R matrix, which is
real. For this purpose we use the Kowalski-Noyes
method ' which consists in solving the integral equation

B(k,k', E)=V(k, k')+ f A(k, q, E)B(q,k', E)dq,

(10)

A(k, q, E)=[V(k, q) —V(k, kz) VE V(kx, q)]
q

(12)

is nonsingular. Here kF Eand ——V(k~, kE) is denoted by
V~. The off-shell R matrix is given directly in terms of
B(k,k', E) and the T matrix is obtained from the R ma-
trix by utilizing the Heitler relation.

We consider now the separable R matrix. As the ex-

IQ

where

V(k, k )=(k
i
Vik ),

~

k ) being the free particle state corresponding to the en-
ergy k (fi /M„= 1 ). The modified Lippmann-Schwinger
kernel used in Eq. (10) for E & 0,
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—Q. I

IQ

I

IQ'=

IQ

I

]
]
I

Ly

Ir
g l

1 g I

+C /%

I.
g LJ C

a. J

r (fm)
5.

FIG. 1. The Malfliet- Tjon potential versus radius. The radii
p, and pb where the logarithmic derivative of the radial wave
function is fixed are indicated.

(fm')
E

FIG. 2. ATF. '=
I TE ' —TE I, the magnitude of the differ-

ence between the separable and the exact on-shell T matrix vs

kE ——E' (1 fm =41.5 MeV) for N =3 (full curves) and
N =5 (dashed curves). The dot-dashed curve is the magnitude
of the exact T matrix. The plateaus correspond to the zeros.
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FIG. 5. As Fig. 3 for k =1.0009 fm ', k'= 1.0009 fm
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where 8(x) is the step function which vanishes if x &0
and equals 1 if x &0. In the momentum representation
Eq. (13) becomes

(k
~
+;)=&(E;)5(k —k, )k-'+(E, —k')-'Z, (k),

where

(14)

(fm') k (fm')

FIG. 3. The magnitude of the difference between the sep-
arable and the exact off-shell T matrix

~

T' '(k, k', E)—T(k, k', E)
~

vs kE E' (E)0——) and gg =( E)'—
(E (0) for k =k'=0. 0076 fm ', N =3 (full curves) and N =5
(dashed curves). The dot-dashed curve represents the magnitude
of the exact off-shell T matrix T(k, k', E). The arrows indicate
zeros or infinites.

~
q, ) =8(E, )

~

k ) +G,' '(E, ) V
~
4; ), (13)

pressions (3) and (4) do not depend on the normalization
of the states %';, we may define these states through the
equation

R,.(k)=(k
i

V i%, ), (15)

which for positive energies, E; is the exact half on-shell 8
matrix. ' The substitution of Eq. (14) into the first term on
the right-hand side of Eq. (4) gives
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(4;!V! VJ ) =8(E;)RJ(k@)+, f dk(E; —k ) '[k~R;(k)R)(k) —8(E;)kb R;(kg )RJ(kg, )], EJ &E;,

and for the second term one gets from Eq. (15) with Go+' replaced by Go ',

(I, ! VG,'~'V! %, ) = f, dk(E —k')-'[k' R;(k)R, (k) —8(E)k~R;(kb)R;(k~)] .

(16)

(17)

Thus we see that the separable off-shell R matrix may be
written explicitly in terms of the exact half-shell and on-
shell R matrices corresponding to the energy eigenvalues

III. NUMERICAL RESULTS

In this section we present the results obtained by using
BCEST expansions for the Malfliet-Tjon potential. We
selected three cases which will be characterized by the ad-
ditional index o., a=a, b, c. In Table I we give the radii p
where the logarithmic derivatives are fixed and the
BCEST energy eigenvalues E '; i =1,2, . . . , up to i =5.
The separable EST potentials of rank N generated by the
N lowest eigenvalues E ' will be denoted by V' ' and the
corresponding T matrices by T~ '. These potentials cor-
respond to truncate the summations in Eqs. (1) and (3) at
the Xth term. As the first eigenvalues E] ' are all equal
to the energy of the bound state, for rank 1 our potentials
become identical with the unitary pole approximation
(UPA)."

As can be seen from Fig. 1 and from the values of
V(p~) in Table I; the potential V(r) is already quite small
for r &pb and becomes negligible for r &p, . The value p,
was obtained by making the second eigenvalue E'2' equal
to the energy where the scattering phase shift becomes
equal to m. /2. Thus it is expected that the potentials V,'

should, for large N, get very close to the exact potential.
Consider

M& ——max! V(k, k') —V,' '(k, k')!, (18)

the maximum deviation of the matrix elements of the po-
tential as k and k' are varied. We obtained the values
M5 ——0.3 fm and M ~ ~

——0.04 fm. Considering that

I

max! V(k, k')! =l,7 fm, one sees that V,' ' gets close to
V but that this convergence is rather slow. For the T ma-
trix the convergence is much faster for energies E smaller
or comparable to the largest energy eigenvalue E~ '.

In Fig. 2 we plot b TP~, the magnitude of the differ-
ence between the separable and the exact on-shell T ma-
trices vs kE. One verifies that b, Tz~ vanishes at the
eigenvalues E ' (cf. Table I) as required by the EST con-
dition, Eq. (8). We found that, for values of kz up to 1

(W)fm, the T matnces TE, ~ive worse approximations
to the exact T matrix than TEb and TE„and also that
TE, does not improve as N increases beyond X=3.

In Figs. 3—8 we plot b T' '(k, k', E), the magnitude of
the difference between the separable and the exact off-
shell T matrices for ranks 3 and 5 vs kz for three values
of the momenta k and k'. As can be verified from Figs.
3—5 we found that if the momenta k, k', and kE are
roughly less than 1 fm ', the best results belong to case c
and the worst to case a. We obtained further for k and k'
less than 1 fm ', irrespective of the values of E, that,
again, there is practically no improvement of the T ma-

(N)trtces T, for N
lardier

than 3, as can be checked by com-
paring T,' ' with T, ' in Figs. 3—5. We thus conclude
that for momenta k and k' less than 1 fm ' the max-
imum accuracy of the sequence T,' ' has been attained
essentially at rank 3.

We now consider momenta k or k' greater than 1

fm ', corresponding to Figs. 6—8. As can be seen from
these figures, for X(3, on the average, case e still gives
the best results provided ! kE! & 1 fm, but for N & 5,
except at some narrow energy intervals, the best results
belong to case a. Thus for the larger momenta the T
matrix sequences T,' '(k, k', E) converge faster. In partic-
ular, if both k and k' are large (Fig. 8), one finds that T,' '
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TABLE II. ab
' (a,' ') are the n-d scattering lengths in the

quartet state obtained by using the BCEST potentials Vb

{V,' ') for the nucleon-nucleon interaction.

(N) (f )
(N) (3) (N) (f ) a'"' —a"'

C C IO'—
6.446 74
6.440 28
6.439 84

0.006 90
0.00044

6.446 74
6.439 28
6.439 17

0.007 57
0.000 11

gives the worst and T,' ' the best-results, the T matrix be-
ing now almost independent on E.

These results may be partly interpreted by considering
that, with regard to a fixed momentum k, k', or kE, the
most relevant states of the basis are those for which the
momenta kE lie close to it. Thus the fact that the radius

l

p, is not large enough to generate a basis containing states
with small momenta kz (cf. Table I) explains why for the

smaller momenta the T matrices T,' ' give poor results.
It also becomes clear why T,' ' performs well for the
larger values of k and k', as kz' is sufficiently large to
reach these momenta.

On the other hand, as p, is the largest of the three radii,
for almost all values of k, k', and E, we expect the T ma-
trices T,' ' to yield the best values, provided 1V is taken
sufficiently large, a result that was borne out by calcula-
tions we made for Ã~5. As a check of our conclusions
we truncated the local potential V(r) at r =p, . The error
introduced in the on-shell T matrix by this truncation for
small energies was indeed found to be of the same order of
magnitude as the deviations b, TE,'.

We consider finally the results we obtained in our test
of n-d scattering in the quartet channel. For the nucleon-
nucleon interaction we used the potentials Vb and V,
considering ranks 1, 2, and 3 only. The scattering lengths
a' ' are given in Table II; as can be seen the value corre-
sponding to 1V =1 is very close to the exact result. The
values of the deviations a~ ' —a' ' indicate a faster con-
vergence in the case a =c. In Fig. 9 we present the differ-
ences

~

cr' ' o' '
~, c—r' '(8) being the differential scatter-

CV

E—IO
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IO

r~ v

l
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FIG. 9. We present o.,' ' (dot-dashed curve) and the deviations

~

cr' ' cr' '
~

—vs the angle for Ã = 1,2 in the cases a=b (dashed
curves) and cx=c (full curves), o.~ '(8) being the n-d differential
cross section at —0. 1 MeV.

50

ing cross sections at 0.1 MeV below the breakup thresh-
old. Again these results are consistent with a faster con-
vergence in case c in agreement with our previous con-
clusions that up to the third rank the two-body T matrix
corresponding to case c is on the average the best.

Our study indicates that BCEST expansions may be a
useful tool for solving three-body problems although fur-
ther research is required to settle the question of the best
boundary. As a final remark we mention that our method
can be applied also if from the start a separable represen-
tation of the local potential is used ' as the role of the
boundary condition is to supply the expansion energies.
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