RAPID COMMUNICATIONS

PHYSICAL REVIEW C

VOLUME 31, NUMBER 5

MAY 1985

Radioactive decay of 232 U by 24 Ne emission

S. W. Barwick, P. B. Price, and J. D. Stevenson* *Physics Department, University of California, Berkeley, California 94720* (Received 26 December 1984)

Using polyethylene terephthalate track-recording films, which are sensitive only to particles with Z > 6, we have detected for the first time the exotic radioactive decay mode in which an energetic ²⁴Ne nucleus is emitted. For ²³²U the branching ratio for ²⁴Ne relative to alpha decay is $(2.0 \pm 0.5) \times 10^{-12}$. We point out that the spontaneous fission rates reported for ²³²U and several other nuclides based on early measurements of energetic pulses in ionization chambers may actually have been rates for emission of ²⁴Ne or other heavy clusters.

The discovery by Rose and Jones¹ of the spontaneous emission of ¹⁴C from ²²³Ra has confirmed the prediction by Sandulescu et al.² of rare modes of radioactive decay intermediate between alpha decay and fission. Gales et al.,³ Alexandrov et al.,⁴ and Price et al.⁵ have confirmed the measurement by Rose and Jones, and Price et al. have discovered two additional cases of ¹⁴C emission-from ²²²Ra and ²²⁴Ra. Poenaru et al.⁶ and Shi and Swiatecki,⁷ using semiempirical potentials for the separation of two spherical nuclei with unequal masses, have calculated that the rare decay mode, termed superasymmetric fission, involves emission of a specific nuclide with a very high Q value, leading to a tightly bound daughter nucleus with a branching ratio usually less than 10^{-10} relative to alpha decay. For elements heavier than radium the most likely nuclide is predicted by both groups to be heavier than ¹⁴C, such that in most cases the daughter is close to the doubly magic ²⁰⁸Pb. Because of the extreme sensitivity of calculated decay rates to the shape and magnitude of the superasymmetric fission barrier, advances in our understanding of the process will necessitate the discovery of additional decay modes involving emission of particles over a wide range of masses. In this Rapid Communication we report the discovery of 24 Ne decay of 232 U.

In their study of ¹⁴C emission from various radium isotopes, Price et al.⁴ used polycarbonate detectors,⁸ which are sensitive to particles with Z > 2, to measure the charge and range of carbon ions at alpha particle backgrounds up to 6×10^{10} cm⁻². The maximum tolerable alpha dose was determined by the overlap of short tracks of carbon and oxygen recoils produced in elastic collisions with alpha particles. In the present study we used a much less sensitive track-recording polyethylene terephthalate film called Cronar, which records tracks of ions only with Z > 6. From our present experience, in which we exposed Cronar to 7×10^{10} alphas/cm² (Fig. 1), we estimate that the limiting alpha particle dose for this plastic is $\sim 2 \times 10^{11}$ cm⁻². With the requirement that at least ten tracks of an ion Z > 6 be recorded, and with a hemispherical array of Cronar at a distance of 7.5 cm, this dose permits a limiting branching ratio of $\sim 10^{-14}$ to be detected.

Guided by predictions^{6, 7} of a favorable branching ratio for ²⁴Ne decay, we obtained a 0.5 ± 0.05 millicurie source of ²³²U, prepared by Isotope Products on a 2.5 cm disk covered by a 100 μ g/cm² gold film to prevent the escape of recoil nuclei. We exposed a hemispherical array of Cronar film

for one month to the 232 U source inside a vacuum chamber at a pressure of 0.01 torr. During this time the activity of the daughter 228 Th slowly growing into the freshly prepared 232 U source was negligible.

We etched the Cronar for eight hours at 70 °C in 6.25 normal NaOH solution, scanned 200 cm² of surface in transmitted light (Fig. 1), and located 24 etched tracks of ²⁴Ne ions. In an additional 50 cm² of Cronar that had been covered with a 15 μ m absorber film to slow down Ne ions, we found seven tracks of ²⁴Ne. In the uncovered Cronar we also found a small background of spontaneous fission tracks ($\sim 20 \text{ cm}^2$) whose origin we traced to the use by Isotope Products of a ²⁵²Cf-contaminated evaporator to prepare the gold film on the ²³²U source. The fission events were easily distinguished from ²⁴Ne by their short range and much higher ionization rate.

Because of the optical nonuniformity of Cronar, we made silicone replicas⁸ of the surface and measured the diameters and lengths of the tracks on the replicas instead of in the Cronar. The charge and range of an energetic ion are determined from the diameter and length of the etched track.⁸ Figure 2 compares our data for the ²⁴Ne tracks with calibrations in which we irradiated Cronar with ²⁰Ne ions at the Lawrence Berkeley Laboratory Superhilac and with ¹⁸O ions

FIG. 1. Photomicrograph showing one etch pit due to a 56 MeV 24 Ne ion striking a Cronar detector nearly head on. About 3×10^{6} alpha particles passed through this field of view.

<u>31</u> 1984

FIG. 2. Comparison of average signal of ²⁴Ne nuclei (•) emitted from ²³²U with calibrations (dashed lines) obtained with ¹⁸O (∇) and ²⁰Ne (Δ) ions at Lawrence Berkeley Laboratory accelerators. Ratio of etching rate along track to general etching rate v_T/v_G , is plotted as a function of residual range.

at the 88-inch cyclotron. The dashed lines for ions other than ²⁰Ne and ¹⁸O are based on a track formation model in which the ratio of track etch rate v_T , to general etch rate v_G , is a function of restricted energy loss rate. The errors for the calibrations are smaller than the data points. The 1 σ errors in v_T/v_G for the ²⁴Ne ions are indicated by bars. The distribution of measured ranges for the 24 events in the uncovered Cronar is compared in Fig. 3 with ranges calculated for several Ne isotopes based on Q values and assuming ground states for parent, daughter, and emitted ion. Not only does ²⁴Ne give the best fit for both v_T/v_G and range; the Q values for all other Ne isotopes are much smaller than for ²⁴Ne and lead to barrier penetration factors that are more than 10 orders of magnitude smaller than for ²⁴Ne.

Table I summarizes our results. The mean energy computed from the measured mean range and a range-energy relation agrees with the calculated ²⁴Ne kinetic energy to within 0.6 out of 55.85 MeV. The measured branching ratio for ²⁴Ne emission relative to alpha decay (2.0 ± 0.5) $\times 10^{-12}$, is quite close to that predicted by Poenaru and coworkers^{6,9} The stated error includes both statistical error and uncertainty in source strength.

One can view the superasymmetric fission process in two

TABLE	I.	Measurements	of	²⁴ Ne	decav	of	232U
		nieus ai entento	01	1.0	accuj	01	

Events detected	31
Q (MeV)	62.3
Calc. range in Cronar (µm)	33.2
Measured mean range (μm)	32.8 ± 0.23
Branching ratio, $\lambda(^{24}\text{Ne})/\lambda(\alpha)$	
Measured	$(2.0 \pm 0.5) \times 10^{-12}$
Calculated (Ref. 7)	4.87×10^{-11}
Calculated (Ref. 6)	1.58×10^{-12}
Calculated (Ref. 9)	6.7×10^{-12}
Measured $\lambda_{SF}/\lambda_{\alpha}$ (Ref. 11)	1.2×10^{-12}

quite different ways. If it is viewed as the emission of a preformed cluster that escapes from the parent nucleus after many assaults on the barrier, one is faced with the problem of calculating the preformation probability as a function of cluster size. Poenaru et al.^{6,9} and Shi and Swiatecki⁷ view the new decay process as a type of fission in which the deformation parameter is the distance R between centers of two overlapping spheres. Shi and Swiatecki use a proximity potential and improved values of nuclear radii to calculate ratios of penetrabilities. Poenaru et al. derive an analytic expression for half-life based on a quadratic fit of barrier height to R in the region of overlap of the two spheres and on use of Coulomb plus centrifugal potential in the nonoverlap region. Requiring that their relation fit the extensive data on alpha decay half-lives as well as the ¹⁴C decay of ²²³Ra gave them an empirical expression for assault frequency in terms of zero-point vibrational energy: $E_v = 0.13A_2$ MeV,⁶ or more recently,⁹

$E_v = Q [0.056 + 0.039 \exp(4 - A_2)/2.5]$ MeV,

where $A_2 =$ mass of emitted particle. Both groups have pointed out that a more refined theory must replace the two-sphere approximation with a more complex set of deformation variables that would allow the disintegrating system to seek out a more favorable path in configuration space. The agreement to within about an order of magnitude with the ¹⁴C data^{1,3-5} and with our ²⁴Ne result suggests that, for Z_2 up to 10, the separating fragments are probably not deformed far from spheres during barrier penetration.

To test the models further will require measurements of branching ratios for nuclei emitting particles heavier than ²⁴Ne. Poenaru et al. have suggested several candidates with branching ratios greater than 10^{-13} for emission of particles with Z > 10. We want to point out that indirect evidence for superasymmetric fission already exists in the form of data on spontaneous fission half-lives published mainly in the 1950s when ionization chambers were used to associate fission activity with very energetic pulses. In a number of cases, especially those of importance to reactor physics, mass distributions have subsequently been measured, and neutrons emitted concurrently with fission have been detected. However, there are eight cases tabulated by Vandenbosch and Huizenga¹⁰ in which the branching ratio for spontaneous fission relative to alpha decay is less than 10^{-10} and mass distributions have not been measured. To examine whether it is possible that the energetic pulses detected

FIG. 3. Measured range distribution for 24 Ne nuclei emitted from 232 U, compared with ranges expected for various Ne isotopes calculated from Q values.

1986

Decay mode	Predicted τ_x (yr)	Measured $\tau_{\rm SF}$ (yr)	Re
$^{232}U \rightarrow ^{24}Ne$	1×10 ¹³	6×10 ¹³	1
232 Th $\rightarrow ^{26}$ Ne	1×10^{22}	$\geq 1 \times 10^{21}$	12
$^{231}Pa \rightarrow ^{24}Ne$	4×10^{14}	$\geq 1.1 \times 10^{16}$	13
230 Th $\rightarrow {}^{24}$ Ne	3×10^{17}	$\geq 1.5 \times 10^{17}$	13
$^{233}U \rightarrow ^{25}Ne$	9×10^{15}	1.2×10^{17}	14
$^{234}U \rightarrow ^{28}Mg$	2×10^{17}	1.6×10^{16}	15
$^{237}Np \rightarrow {}^{30}Mg$	3×10^{18}	$\geq 1 \times 10^{18}$	16
$^{241}Am \rightarrow {}^{34}Si$	2×10 ¹⁵	2.3×10^{14}	17

TABLE II. Half-life predicted for heavy ion emission compared with measured spontaneous fission half-life.

in the decay of these nuclides might have been due to emission of an energetic ion such as ²⁴Ne instead of normal fission, in Table II we compare the half-life for the most favorable mode of superasymmetric fission, calculated using the expression of Poenaru *et al.*,⁹ with the spontaneous fission half-life reported in the literature. The numbers agree in each case within one order of magnitude, which is at least as good as the agreement of the data with the best fission theories.¹⁰ In fact, our measured value for the half-life of ²³²U for ²⁴Ne decay agrees closely with the reported value for spontaneous fission measured in 1951 by Jaffey and Hirsch.¹¹ Because of the presence of the spontaneously fissioning contaminant in the gold cover, we cannot yet prove that the branching ratio for spontaneous fission of ²³²U is lower than 10^{-12} ; we can only show that the events observed by Jaffey and Hirsch are consistent with our observed ²⁴Ne emission rate. The other results in Table II, if interpreted as detection of energetic heavy ions instead of conventional fission, can be used to predict superasymmetric fission half-lives. We are initiating searches with Cronar detectors for superasymmetric fission of several of these nuclides.

We are indebted to Albert Ghiorso for the use of his facilities and to A. Ghiorso, W. J. Swiatecki, and E. Segré for many helpful discussions. We thank the staff of the Superhilac and of the 88-inch cyclotron for their assistance. This work was supported by the Department of Energy.

- *Present address: Physics Department, Michigan State University, East Lansing, MI 48823.
- ¹H. J. Rose and G. A. Jones, Nature **307**, 245 (1984).
- ²A. Sandulescu, D. N. Poenaru, and W. Greiner, Fiz. Elem. Chastits At. Yadra 11, 1334 (1980) [Sov. J. Part. Nucl. 11, 528 (1980)].
- ³S. Gales, E. Hourani, M. Hussonois, J. P. Schapira, L. Stab, and M. Vergnes, Phys. Rev. Lett. 53, 759 (1984).
- ⁴D. V. Alexandrov, A. F. Belyatsky, Yu. A. Gluhov, E. Yu. Nikolsky, B. V. Novatsky, A. A. Ogloblin, and D. N. Stepanov, Pis'ma Zh. Eksp. Teor. Fiz. **40**, 909 (1984) [JETP Lett. **40**, 152 (1984)].
- ⁵P. B. Price, J. D. Stevenson, S. W. Barwick, and H. L. Ravn, Phys. Rev. Lett. **54**, 297 (1985).
- ⁶D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, J. Phys. G **10**, L183 (1984).
- ⁷Y.-J. Shi and W. J. Swiatecki, Lawrence Berkeley Laboratory Report No. LBL-18349, 1984.
- ⁸R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (Univ. of California Press,

Berkeley, 1975).

- ⁹D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner (unpublished).
- ¹⁰R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic, New York, 1973).
- ¹¹A. H. Jaffey and A. Hirsch (unpublished results), quoted in Ref. 10.
- ¹²G. N. Flerov *et al.*, Dokl. Akad. Nauk SSSR 3, 69 (1958) [Sov. Phys. Dokl. 3, 79 (1958)].
- ¹³E. Segré, Phys. Rev. 86, 21 (1951).
- ¹⁴B. M. Alexandrov, L. S. Krivokhatski, L. Z. Malkin, and K. A. Petrzhak, Sov. J. At. Energy **20**, 352 (1966).
- ¹⁵A. Ghiorso, G. H. Higgens, A. E. Larsh, G. T. Seaborg, and S. G. Thompson, Phys. Rev. 87, 163 (1952).
- ¹⁶V. A. Druin, V. P. Perelygin, and G. I. Khlebnikov, Zh. Eksp. Teor. Fiz. **40**, 1296 (1961) [Sov. Phys. JETP **13**, 913 (1961)].
- ¹⁷V. A. Druin, V. L. Mikheev, and N. K. Skobelev, Zh. Eksp. Teor. Fiz. **40**, 1261 (1961) [Sov. Phys. JETP **13**, 889 (1961)].

FIG. 1. Photomicrograph showing one etch pit due to a 56 MeV ^{24}Ne ion striking a Cronar detector nearly head on. About 3×10^6 alpha particles passed through this field of view.