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Influence of neck formation on heavy ion subbarrier fusion
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We calculate the effect of the neck degree of freedom on subbarrier fusion reaction cross sections. The
potential energy and mass tensor are calculated on the basis of a two-dimensional representation of the
liquid drop model. The WKB and Hill-Wheeler approximations are used to calculate the tunneling ampli-

tudes for motion along the direction of the neck size degree of freedom. The resulting cross section for
collisions between two identical Ni isotopes show a marked enhancement at low energies compared with the
standard one-dimensional radial penetration calculations.

In the last few years it was observed that cross sections
for subbarrier fusion of heavy systems are strongly
enhanced compared to standard one-dimensional barrier,
penetration calculations. ' The inadequacy of the conven-
tional approach has been taken as evidence of the important
role played by additional degrees of freedom on the fusion
process. The effect of static deformation, 2 slow collective
vibrations, ' nucleon transfer, and coupling, in general, to
other reaction channels have been considered to explain
some of the existing data. Indeed, as was pointed out in
Ref. 7, the inclusion of virtually any additional degree of
freedom is bound to lead to an increase in the subbarrier
fusion cross section.

Recently a macroscopic theory of nucleus-nucleus reac-
tions has been applied to the study of the fusion of two
heavy ions at energies above the Coulomb barrier. In this
theory three degress of freedom, namely, the radial center-
of-mass distance, the asymmetry of the system, and the size
of the neck connecting the two pieces, are introduced to
describe the dynamics of the collision. The success of this
theory for the qualitative understanding of heavy-ion fusion
cross sections at moderate energies ' leads us to consider
how such a reaction model could be extended to describe
subbarrier fusion.

The full dynamical problem, which is essentially that of
tunneling under a three-dimensional potential barrier, is cer-
tainly very complicated, but we can expect to gain much in
physical insight by separately exploring the role of these ad-
ditional degrees of freedom.

In the present paper we study the effect of neck forma-
tion on subbarrier fusion cross sections. Although there
have been several suggestions that this degree of freedom
could play an important role in low energy fusion reac-
tions, " ' no quantitative calculation treating it as an in-
dependent variable has been presented. One should re-
mark, though, that in Ref. 7 a schematic representation of
neck formation was discussed in terms of an arbitrarily ad-
justable harmonic oscillator degree of freedom linearly cou-
pled to the radial motion. Also, in Ref. 13 a shape
parametrization in which a neck appears between the two
nuclei is considered, but since there is a one-to-one
correspondence between the radial distance and the dinu-
clear shape in this case, the calculations do not explore the

role of the neck variable as a separate degree of freedom.
We will consider the shapes shown in Fig. 1. For separat-

ed shapes, each fragment is a sphere modified by a smooth-
ly fitted portion of a hyperboloid of two sheets. For an un-
divided shape the two spheres are joined by a smoothly fit-
ted portion of a single hyperbolic of ellipsoidal surface of
revolution. ' Since we are interested here in assessing the
effect of neck formation, we have restricted ourselves to
symmetrical configurations, thus suppressing the asymmetry
as an additional degree of freedom.

N
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FIG. 1. Examples of separated and undivided shapes described
by our parametrization together with the coordinate system in which
it is defined. See text for additional details.
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Taking the coordinate system indicated in Fig. 1, the
shapes are given by

= Q + 6Z, Z~ «» Z «» Zy
2 2

y =R —(z —zc), zr~z~zc+R
and its reflection with respect to the plane z =0.

In Eq. (1) zc is the coordinate of the center of the right
sphere, z~ that of the circular tangency between it and its
quadratic extension, and z~= ( —a/b)' the point where
this last surface cuts through the z axis, provided the system
is separated, or alternatively the origin of the z axis in the
case of an undivided system. The three parameters a, b, R
determining this shape reduce to two degrees of freedom by
the volume conservation requirement. As variables describ-
ing our system we then choose the dimensionless quanti-
ties'4

(2)

I
R

where l = R —(zc —zr) is the thickness of the missing
spherical tip.

The first variable is a measure of the distance between
nuclear centers while the second one measures the neck
size. Depending on its value we have, for a given p, two
separated spherical (if A. = 0), or deformed (if
0 & h. & 1 —1/p) nuclei, or two nuclei joined by a concave
(if 1 —1/p & X & 1) or convex (if I & A. ~ 2) neck.

Having selected the parameters p, A. characterizing the
configuration of our system we may now proceed to study
its dynamical behavior. The kinetic energy T,

The central radial parameter p, is therefore related to the
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respect to an axis through the center of mass perpendicular
to the symmetry axis. This quantity can also be written as a
simple analytical function of p and P .'

We have assumed uniform charge and mass densities in-
side the volume limited by the sharp surface given by Eq.
(I). The actual size of the system for a given number of
nucleons A is obtained from the volume of a sphere with ra-
dius constant rp, Ro= I'OA plus the constant volume con-
dition already mentioned. For the parameter ro the
equivalent sharp surface value r0=1.18 fm was taken for
the calculation of Coulomb and surface energies as well as
for moment of inertia and mass tensor.

For the proximity energy the relevant quantity is the cen-
tral surface, which lies slightly inside the sharp surface men-
tioned above. In the spherical case the radius of this central
surface, C, is related to the equivalent sharp radius Ro
through C=RO(1 —d/Ro), with d=0.99 fm. '6 To calcu-
late the proximity interaction in the general case we have
constructed a central surface as follows. The spherical por-
tions of the sharp surface of radius R define central surface
radii C in the same way as before

C=R(I —d'/R') .

T= ~Mppp +Mpgpk + ~My), P

is calculated using the Werner-Wheeler simplified descrip-
tion of an incompressible, irrotational flow. ' This leads to
analytical expressions for the mass tensor elements
Mpp, Mp)„M), ),.

For the potential energy V, we have calculated separately
its Coulomb, nuclear, and centrifugal contributions,

v= v,.„,(p, ~)+ v„„„(p,~)+ v„„,(p, ~) .

The Coulomb energy is calculated numerically by dividing
the system into disks perpendicular to the z axis and
evaluating their interaction and self-energies.

The nuclear energy is calculated as the sum of two terms.
One is the usual surface energy,

V,„,r=y area(p, X) (6)

where y is the surface tension coefficient and the area is
given by a simple analytical expression in terms of p and A. .
The diffuseness of the nuclear surface is taken into account
by adding a proximity energy V„„„obtained by integrating
the proximity interaction' between each surface element
and its neighboring one.

The centrifugal energy' is given by
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where L is the orbital angular momentum quantum number
and I(p, X) the moment of inertia of the system with

FIG. 2. The fusion cross sections of identical nickel isotopes cal-
culated for barrier penetration along the direction of the neck size
degree of freedom (solid curves) and in the radial direction (dashed
lines). The data are from Ref. 18.
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sharp p through

p, = pR/C

and we have assumed the neck size parameter A. to be the
same for the central and sharp surfaces. This prescription
yields the correct results for the case of one or two spheres
and quite reasonably looking shapes for other situations. '

With the potential energy so defined we have calculated
Tt (E), the transmission coefficients as function of the
center of mass energy E, and the orbital angular momentum
quantum number L, using the WKB approximation,

TL(E) = exp J dX j2M&i, [E—V(po, 'A)]/f +1, (10)

where po is chosen to be equal to the classical turning point
for motion restricted to the radial separation variable and
the integration ranges from the entrance (X = 0) to the exit
point of the tunneling process. At energies above the bar-
rier we have calculated TL(E) in the standard Hill-Wheeler
approximation, using the potential of Eq. (5) with A. =O.
The fusion cross section is then calculated using

~here k is the wave number corresponding to the energy E
and the reduced mass of the system.

The results of these calculations for the case of symmetric
collision between nickel isotopes are presented in Fig. 2 (full
lines), where they are compared with the data of Beckerman
et al. ' and with the calculations considering tunneling in
the radial direction alone (dashed curves).

These results demonstrate how unfreezing of the neck de-
gree of freedom leads to a marked enhancement in the sub-
barrier fusion cross section. The lower potential barrier and
smaller mass tensor elements in the neck degree of freedom
direction make these results easy to understand qualitative-
ly. It should be noted that although the data could be ad-
justed to obtain a better fit by slightly modifying the param-
eters ro and d, and this could perhaps be justified with
respect to known structural differences between different
nuclear species, such adjustments have not been attempted
here. In our view a better way of performing more realistic
calculations is through a careful treatment of the dynamics
inside the two-dimensional barrier.
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