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Thermal properties of ' 0 and Ca with a realistic effective Hamiltonian
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A realistic microscopic effective nuclear Hamiltonian, H, ff, is employed with the spherical finite
temperature Hartree-Fock approximation to evaluate the thermodynamic properties of ' 0 and

Ca. We introduce a simple method to scale H, ff to accommodate the 3-dependent effects. We
then adjust the Hamiltonian slightly to reproduce appropriate ground state properties within spheri-
cal Hartree-Fock theory. A range of acceptable temperatures for each model space size can then be
determined. The binding energy, free energy, density distributions, entropy, neutron and proton
chemical potentials and single particle energies, occupation probabilities, and other properties are
evaluated for temperatures T(7 MeV. We provide convenient parametrizations for the excitation
energy, rms radius, average density, and entropy as a function of T. We find the thermal response
of these nuclei to be substantially greater than that obtained with zero range phenomenological
forces.

I. INTRODUCTION

A realistic microscopically derived nuclear equation of
state for finite nuclei would be of great utility for inter-
preting current experiments in heavy ion scattering and
high energy particle-nucleus experiments. A first step to-
wards obtaining this equation of state involves solving for
the thermal properties of finite nuclei within a mean field
approximation using a realistic Hamiltonian. In this pa-
per we present results for two representative nuclei, ' 0
and Ca, in the spherical finite temperature Hartree-Fock
approximation (FTHF) employing a realistic microscopic
effective Hamiltonian.

A theoretical framework to explore the thermal proper-
ties of Fermion systems in the mean field approximation
was first introduced by Bloch and de Domenicis. ' This
framework was applied to the reaction matrix at finite T
and invoked for astrophysical problems. ' Other studies
of thermal properties of nuclear systems either postulated
a single particle level scheme or a phenomenological ef-
fective interaction.

Recently, formal extensions to the mean field approach
by Goodman' allow one to study critical properties of
finite nuclei near the superfluid phase transition and as a
function of angular momentum. " However, we are not
aware of any calculations for the thermal properties of
finite nuclei which have utilized a realistic Hamiltonian.
It is our goal here to present details of our initial calcula-
tion of the microscopic Hamiltonian and its implementa-
tion within the finite temperature mean field framework.
The current work amplifies and extends our earlier re-
port.

In later efforts we will explore the role of external con-
straints and fluctuations in order to obtain a more com-
plete picture of the nuclear equation of state. Our work is
similar in spirit to the work of the Giessen group which
employed a phenomenological Hamiltonian. While our
initial effort here is limited in mass range and in size of
the model space, we see many important differences in the

thermal sensitivity of nuclei from the previously reported
results. We provide evidence that these differences will
remain in more extensive calculations.

We organize our paper so as to present in Sec. II a sum-
mary of the method of obtaining the microscopic effective
Hamiltonian and our choices of restrictions in the prob-
lem such as model space details. We describe the scaling
rules for the various components of the Hamiltonian and
how they are obtained. In addition, we present the
dynamical equations of the FTHF approximation. In Sec.
III we describe how we adjust the Hamiltonian in a simple
way to reproduce the ground state properties of these nu-
clei in the Hartree-Fock (HF) approximation and we give
the theoretical motivation behind it. We proceed in Secs.
IV and V to present the bulk of our results. Finally in
Sec. VI we present our main conclusions and outlook for
further work.

II. MICROSCOPIC STATISTICAL MODEL

H= gh;, =T..i+V+Vc (2.1)

where its pure two-body nature is evident from the use of
a relative kinetic energy operator

Except for nuclei with 2 (3, the bound state and
quasibound state spectra of realistic Hamiltonians have
not been exactly calculated. Therefore, numerous many-
body formalisms with varying approximation schemes
have been introduced and applied to finite nuclei. A
thermal mean-field approach with phenomenological
Hamiltonians has provided insight into the possible tem-
perature ( T) dependence of shell effects. s 9 When ad-
dressing these issues with realistic Hamiltonians possess-
ing strong short-range interactions we must either invoke
a correlated basis or develop an effective interaction. We
choose the latter.

The full Hamiltonian acting on all A nucleons is de-
fined by
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( Trel )ij =—
2Am

(2.2)

the realistic nucleon-nucleon potential V, and the
Coulomb potential Vc. We use p for single particle
momentum and m for nucleon mass. Next we imagine
that the many-body method we invoke is suitable to ap-
proximate the results of shell model diagonalization in a
very large but finite basis. In particular, we choose a no-
core basis space in order to avoid the need to calculate
core polarization effects with realistic effective interac-
tions. In previous applications with realistic effective no-
core Hamiltonians we have used moment methods to ob-
tain spectral distributions' and we have introduced' and
applied' a coherent correlated pair method for the
ground state energy as well as a recently developed
dynamical basis generation scheme. ' In the present ef-
fort we use the FTHF approximation in a sequence of
no-core model spaces of increasing dimensionality. Since
these many-body methods are assumed adequate for the
particular applications where they are employed we only
need to develop the effective Hamiltonian appropriate for
diagonalization in the no-core basis space. We approxi-
mate the effective no-core Hamiltonian with

H,g ——T„)+V,gg+ Vc . (2.3)

In this approximation we neglect renormalization effects
of T„~ and Vc and we calculate only leading order pro-
cesses that contribute to V,~~. We expect that these ap-
proximations become less severe as we increase the size of
the no-core model space. In addition, we introduce
phenomenological adjustments below which partially
compensate for these approximations. The method of cal-
culating the leading term of V,~~,

' which is the
Brueckner G matrix' based on the Reid soft core poten-
tial, ' has been presented elsewhere. ' ' ' ' In recent ef-
forts' ' we have also included the lowest order folded di-
agram in V,~~ so that the diagrammatic representation of
V,~~ is now as. shown in Fig. 1. Thus, besides higher order
folded diagrams, we are only neglecting effective many-
body forces between three or more particles. Our neglect
of these higher order terms and the neglect of T
dependent effects on H,« is based on the hope that model

spaces may eventually be taken large enough and the
many-body framework will become accurate enough that
these corrections would be small.

The matrix elements of H, ~~ are obtained in a harmonic
oscillator basis with %co=14 MeV. The terms in V,~~ are
obtained as a function of a gap parameter 0, which speci-
fies the energy difference between the last oscillator state
of the model space at energy eL and the first state of the
oscillator space above the model space at eF,

63 —Q,
Ep —CI =i'+

2
(2.4)

1/2
%co'+ «). (2.5)

A strong dependence of the results on 0 would indicate
sensitivity to the choice of model space. Here we employ
Hamiltonians evaluated only for 0=9 MeV arid explicitly
demonstrate in Sec. III that the dependence of results on
the choice of model space is weak in the low temperature
regime.

In order to simplify applications of H,« to as wide a
range of nuclei as possible we have studied the dependence
of the matrix elements of each term in Eq. (2.3) on the
harmonic oscillator parameter Ace. All matrix elements of
T„~ are exactly proportional to (fun), while all matrix ele-
ments of Vc are exactly proportional to (fico) . We have
studied the Am dependence of matrix elements of various
short-range phenomenological nucleon-nucleon interac-
tions. The larger two-body matrix elements are approxi-
mately proportional to ~ due to the dominant role of rel-
ative s-state interactions. That is, the larger matrix ele-
ments of V,~~ grow as the average distance between two
nucleons decreases (depends on %co) rather than growing
as the volume decreases. Thus, if we signify a matrix ele-
ment of an operator, e.g., H,«, by (H,«) implying it was
calculated for 3 nucleons in an oscillator basis with spac-
ing Rcu, the matrix elements of H,g in a basis with spac-
ing Ace' for A' nucleons are approximately given by

We have evaluated H,~~ in a sequence of model spaces
abbreviated as the two-space (Os, Op, and ls-Od shells),
the three-space (two-space plus lp-Of shell), the four-
space (three-space plus 2s-ld-Og shell), and the five-space
(four-space plus 2p-lf-Oh shell). This sequence of model
spaces permits us to estimate convergence characteristics
of the FTHF results for light nuclei.

We employ H, ~~ in the FTHF approximation which is
to minimize the free energy

I' = (H,«) —TS, (2.6)
FICr. l. Lowest order diagrams included in V,q~ for no-core

model spaces. The vertex represents an antisymmetric two-body
6-matrix element based on a realistic nucleon-nucleon interac-
tion. External lines and circled intermediate state lines represent
states in the model space. The remaining intermediate pairs of
states represent either one state in and one state out or both
states out of the model space.

where (H,«) is treated in the Hartree-Fock (HF) approxi-
rnation with self-consistent thermal single-particle occu-
pation probabilities. That is, the basic approximation in
FTHF is that the free energy depends only on the self-
consistent thermal mean field.

In this way, one obtains a set of equations
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(2.7)

where
~

v& (e„) represents the HF single-particle state (en-
ergies) and h is given by its matrix elements

TABLE I. Overall factors A,
&

and A, 2 for the kinetic energy
and effective interaction, respectively (see the text), and the ap-
propriate value for Ace for ' 0 and Ca in all three model spaces
used in this work.

& ~
I
h

I
~& = 2 & ~1

I
H.ff I &y &fy . (2.8)

Here, the thermal occupation probability for fermions is
given by

Nucleus

16O

Model space

3
4

9.47
9.40
9.71

0.95
0.97
0.98

1.18
1.26
1.30

fr —— 1+exp (2.9)

The chemical potentials p are determined separately for
neutrons and protons at each iteration by

10.08
7.95
7.97

0.99
0.98
0.98

1.11
1.22
1.28

V
neutrons

f =X and g f,=Z.
protons

(2.10)

The constraints (2.10) are the major difference between
the application of a FTHF formalism to a finite versus an
infinite system.

The entropy is obtained with

5 = —g [f,ln(f„)+(1 f ) ln(l —f—,)], (2.1 1)

and the thermal HF energy with

(2) (1) (&) (&) (&)
Papyri=Pampa —Paagp~ .

This approximation was checked in Ref. 7 to verify that

(2.13)

(2.14)

holds to the l%%uo level in typical FTHF calcul'ations.
We make a further approximation by restricting the

FTHF orbitals to have good angular momentum, good to-
tal angular momentum and its projection, and good iso-
spin projection. Only the radial wave function of the
single-particle state is varied and we refer to this spherical
Hartree-Fock (SHF) approximation since even-even nuclei
will be spherically symmetric.

III. PHENGMENQLOCxICAL AD JUSTMENTS
AND RATIONALE

At T =0 we anticipated our SHF results would be simi-
lar to those of the Brueckner-Hartree-Pock (BHF) approx-
imation. Small differences may be ascribed to different
choices for the Pauli operator [ours sets Q =0 for all
pairs of single particle (s.p. ) states in the model space] and
s.p. spectra (we use oscillator energies) in the two-particle
propagators of V,rr. Indeed; we found the standard defi-
ciencies in the T=O solutions for ' 0 and Ca in the
SHF approximation. Namely, we obtained too little bind-
ing but approximately correct rms radii. Our philosophy
is to adjust H, ff in order to achieve agreement with mea-
sured ground state properties in the SHF approximation

EFTHF ge f g &&13 ~~ ff ~
~P&f fp . (212)

o.'(z & p

We note that the full two-body density matrix p' ' has
been approximated using the one-body density matrix p"'
by

before proceeding with the FTHF calculations. To do
this we simply introduce overall factors A,

&
and A, 2 for the

kinetic energy and effective interaction terms, respective-
ly, in Heff. We then adjust k&, A,2, and Ace simultaneously
to achieve the desired rms radius and binding energy for a
given nucleus within SHF for each choice of model space.
We have chosen to adjust H,ff to produce a point nucleon
mass rms radius in agreement with the measured charge
rms radius in order to approximately compensate for the
effects of spurious center of mass motion. One resulting
set of parameters determined this way is given in Table I.
These parameter sets are not unique and many nearly
equivalent sets were easily obtained. We favored sets
where A, ] was less than but close to unity. We do this
since T„~ is a positive definite operator and if we had re-
normalized it by itself into a finite model space this would
have reduced its magnitude. Of course, in a more com-
plete effective operator approach we cannot isolate the ef-
fect on separate components of H.

One might not expect Ace to change smoothly when one
adds a single shell at a time due to parity considerations.
Instead, we expect changes to occur smoothly when
viewed after a shell of each parity is added.

The behavior of A, z is especially noteworthy since it in-
creases substantially with increasing model space. The
fact that A.z is greater than unity compensates for the lack
of sufficient binding observed even within BHF men-
tioned above. We also note that realistic Hamiltonians
underbind nuclei even when employed with correlated
wave functions, such as the coupled cluster or exp( S) for-
malism. In fact, the BHF (Ref. 22) and exp(5) (Ref. 23)
results both produce approximately 5 MeV/nucleon bind-
ing in ' 0 for the Reid soft core interaction. The increase
of A,2 with model space increase is more subtle. As the
model space increases, the renormalization procedure used
to obtain V,rr produces an effective interaction with weak-
er attraction. As model spaces become very large the ef-
fective interaction approaches the bare interaction whose
oscillator matrix elements are large and positive. Thus,
our whole procedure of remaining within, the HF approxi-
mation must break down eventually with increasing model
spaces. Even though A, 2 becomes as large as 1.30 we see
that model spaces have not yet increased to the point of
losing the attraction in V,ff. We feel the real test of our
philosophy is whether the low temperature properties
remain the same in the FTHF approximation with in-
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TABLE II. Some representative Ca matrix elements of A,2V,qq in the T =0 spherical Hartree-Fock
representation for different model spaces.

& Os 1/20$1/2 I
Os1/20s 1/2 &

(Os1/20$1/2 I
OS1/20s 1/2 &

(Os 1/20s, n I oP3/20P3/2 &

(Os, /zOs1/2 I OP3/20p3/2 )
(Os„,os„,

I
OP„,OP„, &

( Os1/20s1/2 I op 1/20P1/2 &

& Os 1/20s 1/2 I
Ods /20ds/2 &

& Os 1/20s 1/2 I
Od5/20d3/2 &

(Os, j,os, n I
ls1/2 ls1/, )

(Os1/20s1/z I ls1/z ls1/z )
( OP3/20P3/2 I

OP 3/20P3/2 &

( Op 3/2 Op 3/2 I op 3/2 OP 3 /2 &

(OP3/20P3/2 I
oP3/20P3/2 &

& OP3/20P3/2
I
oP1/20P1/2 &

& OP3/20P3/? I OP1nop1/2 &

&OpznOp3n
I
Ods/20ds/2 &

& OP3/20P3/2 I
Od5/20d 5/2 &

& Op3/zOp3n
I
Od3 /20ds/2 &

& Op3/20p3/2 I
Od 3 /20d 3jz &

(Op3/20p3n
I
ls, jz ls1/2)

& Op3/20p3/2
I

ls1/z ls, /, )
(Od, / Od, / I Od3/ Od, / )
(Ods /20ds jz I

Od3/20d3/2 )
(Od5/20d5/2 I Od3/20d3/2 )
(Odq/20ds /2 I Od3/20d3/2 )
(Ods /20ds jz I

Od3/20d3/2 )
& OdS/20ds jz I Od3nOd3/2 &

(Ods/20dq/2
I
ls1nls1n &

(Od5/20d5/2 I
ls1 /2 ls1„)

(Od5 20/ds IjOzd3/zOd3/2 )
(Od3 /20d3 jz I

Od3/20d3/2 )
(Od, ,Od,

I
Od, Od, , )

&Od5 /20ds jz I od3/20d3/2 &

( ls1n ls1/2
I

1/21s I/2 &

( ls1/21s 1/2 I
»1/21s1/2 &

& ls1/2»1/2
I
Od3nOd3/z &

( ls1/z ls1 /2 I
Od3/20d3/2 )

0
1

0
1

0
1

0
1

0
1

0
2
1

0
1

0
2
1

3
0
1

0
2
4
I
3
5
0
1

0
2
1

3
0
1

0
1

1

0
1

1

0
1

0
1

0
1

1

0
1

0
1

1

0

1

0
1

1

1

0
0

1

0
1

1

0
0
1

0
1

Three-space

—11.022
—14.373

3.520
1.3312
2.4833
5.9897

—0.3857
0.3671

—0.2271
—0.2402
—3.2593
—2.7112
—0.6324
—5.6778

2.4265
0.8136
0.9515

—0.9629
0.7134
0.1359

—0.2918
—1.4501
—1.2408
—0.5330

0.1754
—0.8644
—3.4135
—1.5894
—0.5576
—3.4625
—0.6282

1.8478
0.2330

—1.7576
—2.1397
—1.2977
—0.7601

Four. -space

—11.016
13.147
3.896
1.5734
2.7712
5.4132

—0.9051
0.6632

—1.1907
—1.6298
—3.7622
—2.4051
—1.0672
—5.6450

2.1063
1.4841
1.5744

—1.6223
1.1090
0.1278

—0.7179
—0.8063
—1.7858
—0.79060

1.9000
—0.6792
—4.6842
—1.0945

0.1852
—4.6549
—0.7964

2.7594
0.1931

—2.6205
—2.9457
—0.9344
—1.4773

Five-space

—11.554
—12.817

4.1772
1.2693
2.9717
6.3309

—0.9669
0.8280

—1.2611
—1.6099
—3.8001
—2.6230
—0.4582
—6.1662

2.1906
1.3970
1.6070

—2.0769
0.9705

—0.0067
'.—0.9343
—0.7533

'—1.8372
—0.8026

2.2896
—0.5822
—4.6887
—1.1164

0.3052
—4.9006
—0.8444

2.8425
0.1764

—2.7019
—2.8930
—0.9744
—1.5973

creasing model spaces. We show this to be true in Sec.
IV.

We present in Table II some representative Ca matrix
elements for A,2 V,ff in the T =0 SHF representation for
different model spaces. One first notices that the matrix
elements undergo large changes from one model space to
the next. Furthermore, it is difficult to discern from these
matrix elements any trend towards greater attraction or
repulsion as the model space increases since the A,2 factor
has been included. However, the changes in proceedings
from the four-space to the five-space are far less dramatic
than the changes from the three-space to the four-space.
This may be attributed to the fact that the three-space has
only one major oscillator shell (the fp shell) beyond the
minimum needed for N =Z =20. The graduation in
changes also suggests that calculations in larger model
spaces could be useful.

We note in passing that we have introduced our
phenomenological adjustments to H, ff to ensure that our

T =0 properties are reasonably correct. We believe that
the combination of theory and phenomenology yields an
approach which has a reasonable chance of success in
predicting the thermal properties correctly. We differ
from the earlier FTHF efforts " primarily in that V,ff
incorporates a tensor force and nonlocality effects. At the
same time we do not have a contact three-body force.
Any success achieved with our method at finite tempera-
ture may ultimately be attributed to choosing an W,ff
which is more appropriate for calculating valence proper-
ties. That is, the low temperature thermal behavior of nu-
clei is sensitive to valence properties. To illustrate this
point we refer ahead to Fig. 12 which shows the entropy
distribution function in "Ca as a function of single-
particle energy. It clearly demonstrates that for T(7
MeV the entropy in FTHF is distributed among the orbi-
tais immediately at the Fermi surface and hence it should
be important to employ a V,ff which can be used with
some confidence to predict the valence properties.
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IV. TEMPERATURE DEPENDENCE
OF GLOBAL PROPERTIES

150 —
e.* (M
400-

The first major question to address is the model space
dependence of the calculated thermal properties. We
present in Figs. 2(a) and (b) the excitation energy E* of
' 0 and Ca, respectively, as a function of T for the
three-, four-, and five-spaces. We note three major
features of these results. First, for T & 3 MeV the curves
E'(T) are not significantly dependent on the model space
for low T. Second, as one progresses to larger model
spaces the expected parabolic dependence on T persists to
progressively higher temperatures. Third, for T & 1 MeV,
E is approximately constant.

The first two features signal the possibility that thermal
properties calculated in limited model spaces will be ap-
proximately correct for T & T„where T, is a model space
dependent temperature. If "s" denotes the "three" in
three-space for example, we estimate from the results in
Figs. 2(a) and (b) and from other results below that for
' 0, in MeV, T3-4.5, Tq-5. 75, T&-7.0 MeV and for

Ca, T3-3.0, T4, -5.0, T5-7.0 MeV. The somewhat
smaller increments in T, for ' 0 may seem surprising but
are consistent with the greater thermal response of ' 0
than for Ca which we present in more detail below. The
inset displays the behavior of E*(T) at even higher T
where model space limits are more severe.

Returning to the third feature we remark that for dou-
bly magic nuclei the shell closure limits the thermal
response for low T. However, we have restricted the vari-
ational problem to spherical symmetry and we believe that
collective degrees of freedom could be very important at
low T even for doubly magic nuclei. A separate effort
will address this question.

We parametrize the results in Figs. 2(a) and (b) by

E*(T)=0, T & To,
(4.1)

=o.(T —To), T ) To .

Then, with To 1MeV we ob——tain o =0.1852 for ' 0
and o.=0. II.042 for Ca, where 3 represents the appropri-
ate nucleon number. These results for Ca follow the
o.=0.1A results of Sauer et al. obtained for systems with
2 )40 using phenomenological Hamiltonians. The larger
thermal sensitivity of ' 0 is clearly seen through his
parametrization.

To further display the model space dependence of the
results we show in Figs. 3(a) and (b) the rms radii of ' 0
and Ca, respectively. Here we portray results on an ex-
panded scale where full scale represents approximately a
25% increase in rms radii. Features similar to those ob-
served in Figs. 2(a) and (b) are found here. Note that due
to the expanded scale, the three-space rms radius of Ca
differs from the four-space results at T=3.0 MeV by
only 0.005 fm or by 0.14% even though the derivatives
with T are quite different. Nevertheless, this result indi-
cates we should avoid using the three-space for Ca. En

the remainder of this paper we present only five-space re-
sults for ' 0 and Ca and only for T &7 MeV.

The rms radial expansion observed in Figs. 3(a) and (b)
is considerably greater than reported by Sauer et a/. For

125-

240—

100—160—
6
lL
UJ 80—

U3
75—

Z 0
0

50—
I-
0

1 2 3 4 5 6
TEMPERATURE (MeV)

225—

200—
UJ

y 175—

150—
8
tL'
& 125-
z
UJ

Z 100
0
l-
~ 75-l-
0

I I

0 1 2 3 4 5 6
TEMPERATURE (MeV)

FIG. 2. {a) Excitation energy E* as a function of nuclear
temperature T for ' 0 for different sizes of the model space.
The dotted line indicates the three-space results, while the
dashed and solid lines show the four- and five-space results,
respectively. The inset also shows the excitation energy as a
function of temperature for ' O for a wider range of tempera-
tures. (b) Excitation energy E* as a function of nuclear tem-
perature T for Ca for different sizes of the model space. The
dotted line indicates the three-space results, while the dashed
and solid lines show the four- and five-space results, respective-
ly.
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example, at T =5 MeV we obtain -9% (8%) radial ex-
pansion for ' 0 ( Ca), respectively, while Saner et al. re-
port virtually no radial expansion for ' O and Ca at
T =5 MeV. Furthermore, the radial expansion becomes

quadratically dependent on T so that a 31% and a 17%
increase is observed at T=7 MeV for ' O and Ca,
respectively.

We also conveniently parametrize the five-space results
shown in Figs. 3(a) and (b) and obtain for the rms mass
radii, R ( T),

3.5—

3.4—

I'NS RADIUS (fm)
5.0—

4p

4.0

R(T)=RO(1+bT ),

2.00—

(4.2)

3.5

E
3.0—

2.9—

E 3.3—

3e2 30
Q

3.1—

l.75—

1.50

&E 1.25

'O 1.00

O.75

2.8— 0.50

2.70

4.1—

4.0—

2 3 4 5 6 7
TEMPERATURE (MeV)

(b)

O.25

0

2.25—

200m T 0

3 4

r(fm)

I

7

39
U)

& 3.8-
Q'

E 3.7—

3.6—

1.75

1.50

E 1.25
T

0~ 1.00

~ 0.75

I I I I I I

0 1 2 3 4 5 6 7
TEMPERATURE (MeV)

FICi. 3. {a) Root-mean-square radii as a function of tempera-
ture T for ' O. The dotted line indicates the three-space results,
while the dashed and solid lines show the four- and five-space
results, respectively. The inset shows the same results but for a
wider range of temperature. (b) Root-mean-square radii as a
function of nuclear temperature for Ca. The dotted line indi-
cates the three-space results, while the dashed and solid lines
show the four- and five-space results, respectively.

0.50

0.25

00 6 7

r(fm)

FIG. 4. {a) Radial density distribution for ' 0 in the five-
space for different nuclear temperatures. {b) Radial density dis-
tributions for Ca in the five-space for different nuclear tem-
peratures.
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3I'
exp

2R
3

p~(r, T =7)=A 2' (4.3)

where R is the rms radius and equals 3.59 (4.06) fm for
' 0 and Ca, respectively, at this temperature.

For purposes of comparing results from these self-
bound finite systems with infinite systems we present in
Fig. S the average one-body density of these nuclei as a
function of T. The average, p, is given by

pT f [pT(r)—] d v J pT(r)d v . (4.4)

and we find Ro ——2.74 (3.50) fm and b =5.1X 10
(3.2X10 ) MeV for ' 0 ( Ca), respectively.

One may expect that the thermal response of ' 0 is
greater than the response of Ca since orbitals near the
Fermi surface are most sensitive to thermal excitation and
a greater percentage of orbitals in ' 0 are in the last filled
shell at T =0 MeV than in Ca. That is, 7S% of the nu-
cleons occupy the last filled shell in ' 0 at T =0 MeV,
while only 60% of the nucleons in "Ca are in. the last
filled shell at T =0 MeV. Since the last filled shell also
contributes the most to the surface properties we may
equally attribute the greater thermal response of ' 0 to its
greater surface to volume ratio. We return to this point
when we discuss the entropy distribution in finite nuclei.

For a more complete picture of the thermal response we
present in Figs. 4(a) and (b) the full radial mass distribu-
tion for ' 0 and Ca, respectively, at T=0, 3, S, and 7
MeV. Again, no significant changes are evident for
0& T &3 MeV. Between T=3 MeV and T =7 MeV both
systems lose their low T features and have acquired a
nearly Gaussian shape in their interior regions. We may
parametrize the T =7 MeV results with

3/2 2

0R
p T=pT=o (4.5)

where R is given by the results of Figs. 3(a) and (b). We
find this gives a reasonable parametrization over this
range of T.

In Fig. 6 we plot the T-dependent contributions of neu-
trons and protons to the total entropy in Ca. Little
difference between neutron and proton contributions is
observed. The expected linear dependence on T is ob-
tained for T & 3 MeV and is approximately observed for
1 & T & 3 MeV, but with a different slope. If one fits the
T dependence for T &4 MeV we obtain the entropy per
nucleon quantities

S„/N =a„+b„T, T &4 MeV,

S~/Z =a~+b~T, T &4 MeV,
(4.6)

with (a„,b„,a~, bz) =( —1.08, 0.407, —1.25, 0.445) for
' 0 and ( —0.396, 0.237, —0.381, 0.243) for Ca, .

The total free energy in Eq. (2.6) is minimized in these
calculations with the approximation of a spherical mean
field and subject to the condition of a chosen number of
neutrons and protons. The resulting total free energy is
plotted in Fig. 7 for ' 0 and Ca in the five-space as a
function of T. In later applications we will search for

From this information one may define an average volume
VT for the nucleus by Vz. ——2/pT. Consistent with the
results above we see that pT decreases faster for ' 0 than
for 4'Ca.

For convenience we compare the calculated p with the
estimate
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FIG. 6. Entropy per nucleon (for protons and neutrons) as a
function of excitation energy for Ca.



1916 G. BOZZOLO AND J. P. VARY 31

-100—

-140—

30-

20-

-180—

) -220-

-260—
6
UJ
& -300-
2

-340 =
UJ
UJ
+ -380—
U

-10-

-20

-30—

-40

-50 '-

T=o T=2 T=5 T=6 T=7

FIG. 9. Low-lying single-particle spectra for Ca in the
five-space for different nuclear temperatures. Superimposed is
the Fermi occupation function [see Eq. (5.11].

-460—

-500 I

7

TEMPERATURE (MeV)
FIG. 7. Free energy as a function of temperature. - Both

curves (' 0 and " Ca) were obtained in the five-space.

lower branches of these curves by relaxation of some of
the symmetry constraints imposed here.

We display in Fig. 8 the chemical potential for protons
in ' 0 and Ca as a function of T. Similar curves with a

small shift are obtained for the neutrons. For T & 5 MeV
the proton chemical potentials fall at the same rate. How-
ever, for 0( T(5 MeV substantially different T depen-
dence is observed.

In concluding this section we note that the temperature
dependence of all the global properties are substantially
different between ' 0 and Ca. It is reasonable to attri-
bute these differences to the differences in the fraction of
nucleons in the last filled shell at T =0 or, equivalently,
to differences in the surface to volume ratio. However, to
substantiate this connection we need to examine more nu-
clei in the FTHF approximation. A convincing demon-
stration of the dependence of thermal properties on sur-
face, volume, and shell properties combined will require
the more careful parametrization of these results and
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those of the next section in terms of a thermal liquid drop
model plus shell corrections.

V. TEMPERATURE DEPENDENCE
OF SINGLE-PARTICLE

PROPERTIES

f (e) = 1+exp e —p
T (5.1)

We proceed with a presentation of a selected set of re-
sults for the thermal single-particle (s.p. ) properties. Here
again we restrict ourselves to the five-space results.

In Fig. 9 we present the lowest 14 proton FTHF
40single-particle energies (s.p.e.) of Ca at integral values of

T from 0 to 7 MeV. Superimposed is a plot of the fer-
mion occupation function

—1

calling that these self-consistent T-dependent neutron
s.p.e. arise solely from the mean field of a pure two-body
effective Hamiltonian. Since there is no input s.p. Hami-
tonian the spin-orbit splitting and its T dependence are
due to the effective two-body interaction alone.

The occupation probabilities of the proton orbitals in
Ca are presented in Fig. 11 as a function of T. The

most significant changes occur for orbitals closest to the
Fermi surface. Both the deeply bound and the highest or-
bitals occupation probabilities barely deviate from their
T =0 values.

VI. CONCLUSION AND OUTLOOK

We conclude the presentation of results by considering
the entropy as a continuous function off ( e), that is,

S(e)= —[f(e) ln[f (e)]+[1—f(e)]in[1 —f(e)]I, (6.1)
which uses the self-consistently determined value of p at
each T. Although the most deeply bound orbitals are not
significantly depopulated, their s.p.e. change considerably.
This sensitivity of the s.p.e. contrasts sharply with the re-
sults of Sauer et a/. , who reported the s.p.e. virtually un-
changed for T& 5 M'eV.

An easy way to see this thermal sensitivity is found in
Fig. 10 which portrays the continuous change in neutron
s.p.e. with T for Ca. Table III shows numerical values
of the Ca s.p.e. both for protons and neutrons. The
most striking feature here is that the spin-orbit splitting
dissolves fast enough that the gap between the highest or-
bit of one shell and the lowest orbit of the next is actually
preserved out to T-7 MeV. Of course, the splitting be-
tween shell centroids is decreasing with T as is expected.

We underscore the character of these results by re-

where f(e) is given by Eq. (5.1). Then, we use the chemi-
cal potential determined self-consistently for the proton
orbitals in ' 0 and plot S(e) vs e in Fig. 12 at T = 1, 3, 5,
and 7 MeV. This illustrates the range of s.p.e. most im-
por anortant for the thermal response of nuclei at each T.
Clearly, the thermal valence properties play a dominant
role in the results we obtain. Consequently, we argue that
the greater thermal response of O and Ca is a firm pre-16 40

diction of our method and is in sharp contrast with the re-
sults of Sauer et aI. The greater, thermal response is due
to our choice of a realistic microscopic effective Hamil-
tonian, which should be more reliable for the valence
properties of these systems.

All the results we have presented are limited to the
spherical thermal mean field approximation. Numerous
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extensions and improvements may be incorporated in a
straightforward manner. For example, at low temperature
it will be important to investigate the role of deforma-
tions.

With constraints introduced into the variational treat-
ment one may simultaneously explore the equation of
state with external pressure and the role of fluctuations in
regions of critical behavior.

Finally, we remark that it is also straightforward to
develop microscopic thermal approaches to finite nuclei
which treat short-range correlations and long-range corre-
lations more completely.
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