Half-life of ²⁴¹Pu

S. K. Aggarwal, A. R. Parab, S. A. Chitambar, and H. C. Jain

Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

(Received 5 April 1984)

The half-life of ²⁴¹Pu was determined by periodically observing the decrease in isotope abundance of ²⁴¹Pu relative to other isotopes of plutonium with a thermal ionization mass spectrometer. A synthetic mixture of plutonium isotopes with initial values of ²⁴¹Pu/²³⁹Pu, ²⁴¹Pu/²⁴⁰Pu, and ²⁴¹Pu/²⁴²Pu isotope ratios close to unity was prepared. This was done with the objective of achieving high precision (better than 0.1%) in the isotope ratio measurements. The decrease in the isotope ratio was measured at intervals of 6 months over a period of about 5 yr. A value of 14.38±0.02 yr was obtained using the double ratio method which eliminates variable systematic error due to isotope fractionation. The value obtained in the present work supports the results reported earlier by the daughter growth method from this laboratory and is in good agreement with the values reported recently by other laboratories during the course of our investigations.

I. INTRODUCTION

In view of the large discrepancy¹ between various published values for the half-life of ²⁴¹Pu, which range from 14–15 yr, various laboratories^{2–8} are measuring the halflife using different methods and instruments. The halflife of ²⁴¹Pu has also been determined in this laboratory by a variety of methods. Earlier from this laboratory, the results obtained by the daughter growth method^{9–12} employing α spectrometry,^{9,10} α proportional counting,¹⁰ isotope dilution alpha spectrometry,¹¹ and isotope dilution mass spectrometry¹² in independent sets of experiments for measuring the ingrowth of ²⁴¹Am had been reported. This paper presents a ²⁴¹Pu half-life value obtained by periodically measuring the change in abundance of ²⁴¹Pu relative to other isotopes of plutonium through thermal ionization mass spectrometry. The method demands a precise measurement of the small change (about 1% in three months) in the atom ratio of ²⁴¹Pu relative to other isotopes of plutonium.

In thermal ionization mass spectrometry, the observed isotope ratios in a single run change with time due to isotope fractionation in the ion source. The extent of isotope fractionation depends upon a number of parameters such as sample composition and size, sample purity, sample acidity, sample loading procedure, heating temperatures of the vaporization and ionization filaments, and the time of measurement, and is proportional to the mass difference between the two isotopes. This makes it difficult to achieve high accuracy in the half-life of 241 Pu using a single ratio (241 Pu/ 239 Pu, 241 Pu/ 240 Pu, or 241 Pu/ 242 Pu) unless the experimental conditions are strictly controlled and reproduced over the entire period of the experiment, which may be as long as 5-10 yr. The difficulty is evident from the half-life values reported by Zeigler and Ferris¹³ in which six different American laboratories participated in a sample exchange program; the ²⁴¹Pu halflife values from these laboratories varied from 14.50 to 15.06 yr. The effect of isotope fractionation can be circumvented by using the double ratio method (also referred to as the ratio of ratios method), provided the isotope ratios are measured with high precision (external standard deviation better than 0.1%). The latter argument is evident from the data reported by Wilkins,¹⁴ who in spite of using the double ratio method obtained the poor half-life value of 15.02 ± 0.10 yr, due to poor precision (0.5-1%) in the isotope ratio measurements.

In the present work, a synthetic mixture of plutonium isotopes was used with initial 241 Pu/ 249 Pu, 241 Pu/ 240 Pu, and 241 Pu/ 242 Pu isotope ratios close to unity. The experimental conditions were strictly controlled and carefully reproduced over the entire period of the experiment. Both factors led to high external precision (better than 0.1%) in the isotope ratio measurements. The isotope fractionation effect was eliminated by using the ratio of ratios method for calculating the half-life. To obtain a change of at least 2% in the isotope ratios, measurements were made at six month intervals.

II. PRINCIPLE OF THE METHOD

The method involved the mass spectrometric determination of 241 Pu/ 239 Pu, 241 Pu/ 240 Pu, and 241 Pu/ 242 Pu isotope ratios over a period of five years. If R(t) denotes one of the isotope ratios at a time "t" and R(0) is the value at zero time, then

$$\ln[R(0)/R(t)] = \lambda(^{241}Pu)t .$$
 (1)

A least squares analysis yields a half-life value for 241 Pu. A corresponding equation was used for calculating the half-life with the double ratio method. The double ratios used in the present work were $(^{241}$ Pu/ 239 Pu)/ $(^{242}$ Pu/ 240 Pu), $(^{241}$ Pu/ 240 Pu)/ $(^{240}$ Pu/ 239 Pu), and $(^{241}$ Pu/ 242 Pu)/ $(^{240}$ Pu/ 240 Pu).

III. EXPERIMENTAL

A. Preparation and purification of synthetic mixture

A synthetic mixture of plutonium isotopes was prepared by using solutions of ²⁴¹Pu (enriched), ²⁴²Pu (en-

<u>31</u>

1885

©1985 The American Physical Society

Filament loading	Run	2412 (2392	241.2 (240.2	Isotope ratio	240	242
No.	No.	²⁴¹ Pu/ ²³⁹ Pu	$^{241}Pu/^{240}Pu$	241 Pu/ 242 Pu	240 Pu/ 239 Pu	²⁴² Pu/ ²³⁹ Pu
1	(i)	0.471 960	0.924 772	0.694 667	0.510319	0.679 353
		$\pm 0.00022^{a}$	$\pm 0.00020^a$	$\pm 0.00009^{a}$	$\pm 0.00012^{\rm a}$	$\pm 0.000.37^{a}$
	(ii)	0.472 326	0.925 074	0.694 668	0.510 541	0.679 821
		± 0.00011	± 0.00011	± 0.00016	± 0.00003	± 0.00017
· · · · · · · · · · · · · · · · · · ·	(iii)	0.472 675	0.925 518	0.694 539	0.510717	0.680 556
		± 0.00011	± 0.00010	± 0.00003	± 0.00010	± 0.00012
	Maaa	0 472 220	0.025.121	0 604 635	0.510.526	0 (70 010
	Mean	0.472 320	0.923 121	0.094 025	0.510 520	0.079910
		±0.00036	$\pm 0.00037^{\circ}$	$\pm 0.00007^{\circ}$	±0.00020°	$\pm 0.000.61^{\circ}$
2	Mean	0.471 868	0.924 750	0.695 034	0.510 253	0.678 904
		± 0.00011	± 0.00007	± 0.00001	± 0.00005	± 0.00017
2	1	0.451.544	0.004.400	0 (05 005	0.540.654	
3	Mean	0.4/1/46	0.924 499	0.695 035	0.510274	0.678 654
		± 0.00027	± 0.00014	± 0.00011	± 0.00021	± 0.00030
Mean of means		0.471 98	0.924 79	0.694 90	0.51035	0.67916
		$\pm 0.000\ 30^{b}$	±0.000 31 ^b	±0.000 24 ^b	±0.000 15 ^b	±0.000 66 ^b

TABLE I. An illustration of mass spectrometric data.

^aInternal standard deviation

^bExternal standard deviation.

TABLE II.	Summary of dat	a on isotope ratio	measurements.

1

	Decay period	²⁴¹ P 11/ ²³⁹ P 11	²⁴¹ Pu / ²⁴⁰ Pu	Isotope ratio $\frac{241}{242}$ Pu	²⁴⁰ Pu / ²³⁹ Pu	²⁴² Pu / ²³⁹ Pu
	(4)	14/14	1 <i>u</i> / 1 <i>u</i>	1 u/ 1 u		
1	0	0.57228	1.11745	0.841 52	0.51213	0.68005
		$\pm 0.000 14^{a}$	$\pm 0.00063^{a}$	$\pm 0.00024^{a}$	$\pm 0.000 14^{a}$	$\pm 0.00041^{a}$
2	231	0.552 89	1.084 46	0.814 51	0.509 83	0.678 81
		± 0.00032	± 0.00082	± 0.00064	± 0.00025	± 0.00094
3	430	0.53787	1.054 78	0.794 97	0.509 93	0.676 59
		± 0.00068	± 0.00100	± 0.00056	± 0.00024	± 0.00072
4 ^c	883	0.51010	0.994 00	0.752 93	0.51317	0.677 49
		± 0.00071	± 0.00038	± 0.00150	± 0.00180	± 0.00180
5	1269	0.482 63	0.94571	0.71049	0.51034	0.679 30
		± 0.00026	± 0.00031	± 0.00030	± 0.00010	± 0.00068
6	1436	0.471 98	0.924 79	0.694 90	0.51035	0.679 16
		± 0.00030	± 0.00031	± 0.00024	± 0.00015	± 0.00066
7	1871	0.445 82	0.87346	0.65595	0.51037	0.679 65
		± 0.00007	± 0.00008	± 0.00003	± 0.00005	± 0.00016
				Means of means	0.51087	0.67872
					$\pm 0.0005^{b}$	$\pm 0.0005^{b}$

^aExternal standard deviation s calculated from

$$s^{2} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} / (n-1)$$
,

where x_i is a replicate mass spectrometric analysis and n is their number. ^bStandard error of the mean of means calculated as s/\sqrt{n} , where

$$s^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} / (n-1)$$

with n = 7, where x_i is the isotope ratio at each decay period.

"Not considered for calculation of the half-life due to poor precision on the isotope ratios measured.

0.0068^b

14.376

 ± 0.014

 $\frac{\overset{241}{\text{pu}}}{\overset{240}{\text{pu}}} \cdot \frac{\overset{239}{\text{pu}}}{\overset{240}{\text{pu}}} \cdot \frac{\overset{241}{\text{pu}}}{\overset{240}{\text{pu}}} \cdot \frac{\overset{$ $T_{1/2}$ (yr) by single ratio method u ^{241}Pu ^{241}Pu $T_{1/2}$ (yr) ²⁴⁰Pu Data $\frac{{}^{241}\text{Pu}}{{}^{239}\text{Pu}}\cdot\frac{{}^{240}\text{Pu}}{{}^{242}\text{Pu}}$ ²⁴¹Pu points ²⁴⁰Pu ²³⁹Pu ²⁴²Pu (X)(Y) (\mathbf{Z}) (X)(Y) (\mathbf{Z}) used (1,5) 14.143 14.441 14.236 13.941 14.753 14.338 (2,6)14.463 14.369 14.405 14.503 14.277 14.386 (3,7) 14.567 14.496 14.224 14.289 14.431 14.360 Mean 14.391 14.435 14.289 14.244 14.487 14.361 $\pm 0.22^{a}$ $\pm 0.064^{a}$ $\pm 0.10^{a}$ $\pm 0.28^{a}$ $\pm 0.024^{a}$ $\pm 0.24^{a}$ Variance 0.048 0.004 0.010 0.080 0.059 0.0006

-0.0687^b

14.396

 ± 0.072

-0.0057^b

14.364

±0.023°

14.357

 ± 0.053

14.376

 $\pm 0.019^{d}$

0.0051^b

14.337

±0.050

TABLE III. Half-life of 241 Pu calculated from changes in isotope ratios. Footnotes a-d were calculated for each method separately.

^aStandard deviation σ calculated from

0.0022^b

14.515

 ± 0.055

$$\sigma^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 / (n-1)$$

with n = 3.

for x, y, z

Mean of

means

analysis

Mean

Covariance for xy, yz, zx

Least squares

^bCovariance $\sigma(xy, yz, \text{ or } zx)$ calculated from expressions of the type

-0.0060^b

14.371

±0.085°

14.433

 ± 0.053

14.428

 $\pm 0.089^{d}$

$$\sigma_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

with n = 3.

^cError calculated considering variance and covariance

Total error = $\frac{1}{n} (\sigma_x^2 + \sigma_y^2 + \sigma_z^2 + 2\sigma_{xy} + 2\sigma_{yz} + 2\sigma_{zx})^{1/2}$.

^dExternal standard deviation *s* calculated from

$$g^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 / (n-1)$$

with n = 3.

	TABLE IV. Isotope	e fractionation factors calc	ulated for different isotop	be ratios.
	Isotope ratio (single)	Fractionation ^a factor	Isotope ratio (double)	Fractionation ^a factor
1	²⁴¹ Pu ²³⁹ Pu	1.004 18	$\frac{\frac{241}{239}}{239} \frac{240}{242} \frac{240}{242} \frac{240}{242} \frac{240}{242} \frac{2}{242} \frac{2}{242} \frac{2}{2} \frac{2}$	1.000 017
2	²⁴¹ Pu ²⁴⁰ Pu	1.002 09	$\frac{{}^{241}{\rm Pu}}{{}^{240}{\rm Pu}} \cdot \frac{{}^{239}{\rm Pu}}{{}^{240}{\rm Pu}}$	0.999 993
3	²⁴¹ Pu ²⁴² Pu	0.997 93	$\frac{{}^{241}{\rm Pu}}{{}^{242}{\rm Pu}} \cdot \frac{{}^{241}{\rm Pu}}{{}^{240}{\rm Pu}}$	1.000 010

TABLE IV. Isotope fractionation factors calculated for different isotope ratios.

^aRepresent the boundary values on Langmuir's equation and calculated as $\sqrt{m_1/m_2}$, where m_1 and m_2 are the nuclide masses of the isotopes 1 and 2, respectively.

AGGARWAL, PARAB, CHITAMBAR, AND JAIN

TABLE V. Comparison of various ²⁴¹Pu half-life values.

	Authors	Year	Method	Half-life (yr)
1	Seaborg <i>et al.</i> (Ref. 15)	1949		10
2	Thompson <i>et al.</i> (Ref. 16)	1950	ingrowth of ²⁴¹ Am	15.37 ^a
3	Mackenzie <i>et al.</i> (Ref. 17)	1953	ingrowth of ²⁴¹ Am	14.12 ± 0.2^{a}
4	(Ref. 17) Rose $et al.$	1956	ingrowth of ²⁴¹ Am	$13.87 {\pm} 0.28^{a}$
5	(Ref. 18) Brown $et al.$	1960	ingrowth of 241 Am	14.12 ± 0.24^{a}
6	(Ref. 19) Smith	1961	by α counting α/β branching ratio	13.3±0.3
7	(Ref. 20) French <i>et al.</i>	1966	change in isotopic ratios	13.59±0.46
8	(Ref. 21) · Nisle and Stepan	1970	by mass spectrometry change in reactivity	14.63±0.27
9	(Ref. 22) Shields	1970	change in isotopic ratios	14.6±0.4
10	(Ref. 23) Whitehead $et al$.	1972	ingrowth of ²⁴¹ Am	14.96 ± 0.15^{a}
11	(Ref. 24) Zeigler and Ferris (Ref. 13)	1973	change in isotopic ratios by mass spectrometry	14.89±0.11
12	Strohm and Jordan	1974	(mean of six laboratories) calorimetric determination	$14.355 {\pm} 0.007$
13	(Ref. 25) Wilkins	1974	change in isotopic ratios	15.02±0.10
14	(Ref. 14) Whitehead	1977	ingrowth of ²⁴¹ Am	14.56±0.10
15	(Ref. 2) Crouch (Ref. 3)	1978	change in isotopic ratios by mass spectrometry	14.24-14.53
16	Garner (Ref. 4)	1978	change in 241 Pu/ 240 Pu isotopic ratios by mass spectrometry	14.38±0.07
17	Vaninbroukx	1978	(a) change in 241 Pu/ 240 Pu isotopic ratios	$14.30{\pm}0.14$
	(Kel . 5)		(b) ingrowth of 241 Am by	$14.60{\pm}0.10$
18	Aggarwal and Jain (Ref. 9)	1979	γ and α counting ingrowth of ²⁴¹ Am by α spectrometry,	14.42±0.09
19	Aggarwal <i>et al.</i> (Ref. 10)	1980	taking 20 Pu and 20 Pu as reference isotopes (a) ingrowth of ^{241}Am by α spectrometry, taking ^{242}Du	14.37±0.09
			as a reference isotope (b) ingrowth of 241 Am by α proportional counting;	14.50±0.08
			by isotope dilution mass spectrometry	
20	Marsh <i>et al.</i> (Ref. 6)	1980	change in ²⁴¹ Pu/ ²⁴² Pu isotope ratios by mass spectrometry	14.32-14.43
21	Aggarwal <i>et al.</i> (Ref. 11)	1981	ingrowth of 241 Am by isotope dilution α spectrometry	14.52±0.08
22	Aggarwal <i>et al.</i> (Ref. 12)	1982	ingrowth of ²⁴¹ Am by isotope dilution	14.32 ± 0.11
			mass spectrometry	

	Authors	Year	Method	Half-life (yr)
23	De Bievre <i>et al.</i> (Ref. 8)	1983	changes in ²⁴¹ Pu/ ²⁴⁰ Pu isotope ratios by mass spectrometry	14.33±0.02
24	Present work	1984	changes in ²⁴¹ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²⁴⁰ Pu, and ²⁴¹ Pu/ ²⁴² Pu isotope ratios	
			by mass spectrometry	
	· · · · · · · · · · · · · · · · · · ·		(a) single ratio method	14.43 ± 0.08
			(b) double ratio method	$14.38\!\pm\!0.02$

TABLE V. (Continued).

^aHalf-life of ²⁴¹Pu recalculated using $T_{1/2}$ for ²⁴¹Am=432.6 yr.

riched), and ²³⁹Pu. Enriched ²⁴¹Pu was obtained from Oak Ridge National Laboratory in 1969. Chemical exchange between the plutonium isotopes was ensured by using H_2O_2 in 3M HNO₃ as the redox reagent. The plutonium solution was evaporated to near dryness, treated with concentrated HNO₃ twice to break the polymer, if present, and was finally taken up in 7M HNO₃. It was subjected to a redox cycle once more and purified from ²⁴¹Am with a double stage anion exchange procedure. The plutonium solution in 7M HNO₃ was loaded into the (60 °C) column containing Dowex 1×8 resin (200–400 mesh). Americium was washed down with 3M HNO₃ and plutonium was eluted with 0.35M HNO₃. The purified plutonium solution (referred to as the synthetic mixture) was transferred to a clean and dry volumetric flask using 1M HNO₃. The radiochemical purity of the synthetic mixture was checked by γ spectrometry and was found to be free of ²⁴¹Am (by checking for the 60 keV peak on an intrinsic germanium detector).

B. Mass spectrometry

The ${}^{241}Pu/{}^{239}Pu$, ${}^{241}Pu/{}^{240}Pu$, and ${}^{241}Pu/{}^{242}Pu$ isotope ratios were determined periodically after separating ²⁴¹Am from an aliquot of the solution of the synthetic mixture with the procedure mentioned in Sec. III A. A CH-5 mass spectrometer was used for the first four measurements and a MAT-261 mass spectrometer for the latter three. Rhenium ribbons $(0.04 \times 0.7 \times 8 \text{ mm})$ served as the vaporization and ionization filaments in the double filament assembly. The various parameters like sample loading conditions (2 A for 5 min), sample size (1 μ g of plutonium), sample acidity $(0.5M \text{ HNO}_3)$, heating temperatures of the vaporization and ionization filaments (2 A and 6 A, respectively), and the time of data acquisition were kept constant over the entire experiment. Temperatures of the ionization and vaporization filaments were fixed by monitoring ¹⁸⁷Re⁺ ion current $(3 \times 10^{-12} \text{ A})$ and ²³⁹Pu⁺ ion current $(1 \times 10^{-11} \text{ A})$, respectively. At each interval, three independent filament loadings were used, and each mass spectrometric analysis consisted of two or three runs of isotope ratios, each run containing a set of 11 isotope ratios. Mass spectrometric measurements were completed within 24 h from the time of purification. An illustration of the mass spectrometric data obtained is given in Table I. A summary of data on isotope ratio measurements over a period of 1871 d is shown in Table II.

IV. RESULTS AND DISCUSSION

The results obtained for the half-life of ²⁴¹Pu using single ratios as well as double ratios are shown in Table III. The ²⁴¹Pu signal used in each of the ratios (single or double) was from the same mass spectrometric determination, and hence the different isotope ratios were not independent. For assigning an error on half-life, the half-life values were calculated from the data points given in Table II, viz., (1,5), (2,6), and (3,7); each pair considering a decay period of about 3 yr. A value of 14.37±0.08 yr was obtained using a single ratio, whereas the use of a double ratio gave a half-life value of 14.36±0.02 yr. For arriving at the best estimate of the half-life, a least squares analysis of the isotope ratios determined at different decay periods was performed. Values of 14.43 ± 0.09 and 14.38 ± 0.02 yr were obtained by the single ratio method and the double ratio method, respectively. Here the errors specified represent the external standard deviation. It may be mentioned that the first approach gives the best estimate of error while the second approach gives the best estimate of the half-life value. Hence the half-life values recommended from the present work are 14.43 ± 0.08 and 14.38 ± 0.02 yr by the single ratio method and the double ratio method, respectively.

As can be seen from the boundary values of the isotope fractionation factors given in Table IV, the use of the double ratio eliminates the variable systematic error which can arise due to isotope fractionation in the ion source. Thus the use of the double ratio method can yield an accurate value for the half-life of ²⁴¹Pu as compared to the single ratio method. We believe that in the present work, due to our efforts to reproduce the different experimental parameters over the entire period and the high precision in the isotope ratio measurements, the use of the single ratio has also yielded a value which is close to that obtained by the double ratio method. But the use of the double ratio method along with the high precision in the isotope ratio measurements certainly leads to higher precision and accuracy in the half-life value.

A comparison of the various 241 Pu half-life values published so far is presented in Table V. It is evident that the value obtained in the present work by the parent decay method supports the values reported earlier from this laboratory by the daughter growth method.⁹⁻¹² Furthermore, the present value is in good agreement with the results reported recently by other international laboratories during the course of our investigations. It may be mentioned that the work reported in this paper is the first experiment of its kind in that the half-life of 241 Pu has been evaluated using all the possible single isotope ratios as well as double isotope ratios, whereas in the studies reported recently by other international laboratories, only one isotope ratio, 241 Pu/ 240 Pu, or 241 Pu/ 242 Pu, was used.

- ¹R. Vaninbroukx, European Atomic Energy Report No. EUR-5194 e, 1974.
- ²C. Whitehead, United Kingdom Nuclear Data Progress Report No. UKNDC (76), 1977, pp. 86 and 41.
- ³E. A. Crouch, United Kingdom Nuclear Data Progress Report No. UKNDC (78), 1978, pp. 88 and 97.
- ⁴E. L. Garner and L. A. Machlan, Trans. Am. Nucl. Soc. 33, 3 (1979).
- ⁵R. Vaninbroukx, in Proceedings of an International Conference on Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes, Harwell, 1978 (OCDE Nuclear Energy Agency, Paris, 1978), p. 235.
- ⁶S. F. Marsh, R. M. Abernathey, R. J. Beckman, and J. E. Rein, Int. J. Appl. Radiat. Isot. **31**, 629 (1980).
- ⁷E. L. Garner and L. A. Machlan, NBS Special Publication 582, 1980, p. 34.
- ⁸P. De Bievre, M. Gallet, and R. Werz, Int. J. Mass. Spectrom. Ion Phys. **51**, 111 (1983).
- ⁹S. K. Aggarwal and H. C. Jain, Phys. Rev. C 21, 2033 (1980).
- ¹⁰S. K. Aggarwal, S. N. Acharya, A. R. Parab, and H. C. Jain, Phys. Rev. C 23, 1748 (1981).
- ¹¹S. K. Aggarwal, S. N. Acharya, A. R. Parab, and H. C. Jain, Radiochim. Acta **29**, 65 (1981).
- ¹²S. K. Aggarwal, S. A. Chitambar, A. R. Parab, and H. C. Jain, Radiochem. Radioanal. Lett. 54, 83 (1982).
- ¹³R. K. Zeigler and Y. Ferris, J. Inorg. Nucl. Chem. 35, 3417

ACKNOWLEDGMENTS

Our sincere thanks are due to Dr. M. V. Ramaniah, Director, Radiological Group, and to Dr. P. R. Natarajan, Head, Radiochemistry Division, Bhabha Atomic Research Center, for their keen interest in this work. The authors are also thankful to Shri Hari Singh of NUMAC for his guidance in the statistical analysis of the data.

(1973).

- ¹⁴M. Wilkins, Atomic Energy Research Establishment Report AERE-R 7906, 1974.
- ¹⁵G. T. Seaborg, R. A. James, and L. O. Morgan, *The Transuranium Elements: Research Papers* (McGraw-Hill, New York, 1949), p. 22.1; National Nuclear Energy Series, Plutonium Project Record, 1949, Div. IV, Vol. 14 B.
- ¹⁶S. G. Thompson, K. Street, A. Ghiorso, and F. L. Reynolds, Phys. Rev. 80, 1108 (1950).
- ¹⁷D. R. Mackenzie, M. Lounsbury, and A. W. Boyd, Phys. Rev. 90, 327 (1953).
- ¹⁸B. Rose and J. Milstead, J. Nucl. Energy 2, 264 (1956).
- ¹⁹F. Brown, G. G. George, D. E. Green, and D. E. Watt, J. Inorg. Nucl. Chem. **13**, 192 (1960).
- ²⁰H. L. Smith, J. Inorg. Nucl. Chem. 17, 178 (1961).
- ²¹R. J. French, F. L. Langford, Jr., W. D. Leggett, and R. J. Nodvik, Yankee Core Evaluation Program Quarterly Progress Report for the period ending 30 September 1966, WCAP-6082.
- ²²R. G. Nisle and I. E. Stepan, Nucl. Sci. Eng. 39, 257 (1970).
- ²³W. R. Shields, National Bureau of Standards Technical Note 546, 1970, p. 25.
- ²⁴C. Whitehead, A. C. Sherwood, and B. Rose, Atomic Energy Research Establishment Report AERE-PR/NP 18, 1972.
- ²⁵W. W. Strohm and K. C. Jordan, Trans. Am. Nucl. Soc. 18, 185 (1974).