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The process pp— AA is studied using a one-boson z-channel strangeness exchange mechanism in-
corporating pseudoscalar, vector, and tensor mesons. Particular attention is paid to the spin degrees
of freedom in the calculation. Initial and final state interactions, including the spin-orbit interaction
and absorption, are taken into account using simple phenomenological models. The calculations are
performed using density matrix ideas in the helicity basis, and the most important contributing am-
plitudes are identified. A reasonable fit to existing data can be obtained by allowing a smooth varia-
tion of the final state parameters with laboratory momentum. The effect of each of the exchanged
mesons, and of the initial- and final-state baryon-baryon interactions on the cross sections and spin
observables, is discussed. It is found that the tensor meson exchange plays an essential role even
near threshold, which indicates the need for a detailed understanding of the short-range spin dynam-
ics, perhaps as provided by future quark model studies.

1. INTRODUCTION

The low energy antiproton ring (LEAR) at CERN is
now producing antiproton beams of unequaled intensity,
beam purity, and momentum resolution.! High-precision
experiments are thereby made possible, and should pro-
vide new knowledge about matter-antimatter interactions,
and ultimately about the underlying quark dynamics. The
mission of this facility may be characterized as a broad-
scale study of the problems of low-energy quantum chro-
modynamics.

One of the experiments being performed? (PS-185) is an
examination of hyperon-antihyperon (YY) production fol-
lowing Pp collisions. The problem is interesting because
of its close similarity to interaction mechanisms in Pp
elastic scattering, but with the added requirement of
strangeness exchange necessary to create the final state.
Because the weak decay of the YY final state makes the
process self-analyzing,® the final state polarizations and
spin correlation coefficients can be measured without
needing a second scattering. This determination, in addi-
tion to the differential and total cross sections, forms a
nearly complete set of experimental measurements (at a
given energy) for the process. Only the introduction of
polarization into the initial state can constrain the process
further. '

In what follows, we discuss the process pp—AA as a
sum of z-channel one-boson exchange diagrams, including
the K (494, J™=07), the K* (890, J"=17) and the K**
(1430, J™=2%). [See Fig. 1(a).] Initial and final state ab-
sorption and spin-orbit interactions are included using
simple eikonal ideas. Special emphasis is placed on the
spin-dependent quantities, namely the polarizations of,
and correlations between, the final state A and A spins.
Our purpose is to provide a rather complete meson ex-
change calculation with which later quark-gluon model
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calculations can be compared. The simplest one-gluon ex-
change mechanism [Fig. 1(b)] is not likely to be able to
describe the polarization data at either low or moderate
energy; the reason for this is discussed in Sec. IIE below.
On the other hand, at the high momentum transfers re-
quired by this experiment even at threshold, the simple
one-boson exchange picture is probably extended past its
region of validity.

The first measurements? are a study of the pp— AA re-
action near threshold, for which only a few partial waves
are important in either the initial or final state. Also, the
07, 17, and 2% t-channel meson exchanges become quite
simple at threshold, making the reaction observables
easier to analyze phenomenologically. However, under-
standing the underlying quark dynamics will remain a dif-
ficult task, and our hope is to prepare for those studies by
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FIG. 1. (a) The process pp—AA viewed as a sum of single
t-channel exchanges involving the K, K*, and K** mesons. The
dashed ovals indicate initial- and final-state distortions using the
method described in the text. (b) The simplest one-gluon ex-
change mechanism for converting the initial %u pair to the final
SS pair.
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first providing a determination of the role of short-range
spin dynamics that the quark models must describe.

The calculations are formulated in the helicity basis*
using a density matrix approach, from which all experi-
mental observables can be easily obtained in any frame be-
cause the calculations are relativistically invariant. In ad-
dition, the effects of changes in the initial state beam and
target polarizations can be easily studied. We have exam-
ined the sensitivity of the final polarizations and spin
correlations to the various meson exchanges and have
determined the role of each. Once the precision data are
available, an important application of the methods
developed here will be to extract the individual amplitudes
directly from measurements.

Our work differs from earlier®~!® peripheral model cal-
culations by the inclusion of tensor meson exchange and
by an improved treatment of the initial and final state in-
teractions which includes an accounting for. absorption
and for a spin-orbit coupling. (For this purpose, we use
the limited available experimental information of Refs. 16
and 17.) To the extent that these absorptive interactions
are included, the Born approximation is relaxed. Previous
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work has shown that K (07) exchange alone does not suf-

fice, as it yields backward-peaked differential cross sec-
tions. Thus K* (17) exchange must also be included. We
extend the calculation by adding the K** (27) exchange as
a probe of short distance behavior. If short-distance spin
effects do play a role, then quark dynamics will probably
have to be confronted. In addition, we include the effects
of vertex form factors and the decay widths of the K* and
K** mesons. We also compare our results to a very sim-
ple one-gluon exchange calculation, and show that the
latter is unable to generate the necessary polarizations ob-
served experimentally (at higher energies) in the final
state.

The organization of the paper is as follows: Section II
contains the details of the calculations leading from the
initial Pp state to the final four-particle (p7™)(p7 ™) state.
Section III compares our results to previous work with the
peripheral model and the Regge pole hypothesis;'® 22 Sec.
IV gives our conclusions and suggested directions for fu-
ture work. Two appendices are added as explanatory ma-
terial.

II. DETAILS OF THE CALCULATION
~ A. General formulation

In this section we provide an outline of the calculation
to be performed. To be able to include the effects of pro-
jectile and target spin, as well as to represent the intrinsic
relativistic nature of the calculation, a density matrix for-
mulation* is used in which the matrix elements are
evaluated in the helicity basis.*> The density matrix for
the initial spin state is written as an outer product, whose
separable form is valid since the beam -and target are
naturally prepared in an uncorrelated manner:

Prp="1(1+0P)(1+0°P), . (1)

Here the o are the Pauli spin matrices and the P are the
initial polarizations of p and p. _
The density matrix which describes the final state (AA,

for example) is obtained by operating on the initial state

" Ppp by the (angle-dependent) transition matrix T*

pan=T O, T(O". 2)

This matrix contains all experimentally available informa-
tion about the AA system: We can, for example, obtain
the differential cross section as

d_O’_ Tl‘(pr)

= (3)
dQ  Trlpy,)

or the density matrix for just one of the final state parti-
cles:

PE= 2 PAa - )
A

The correlation between the spin components of the out-
going A particles [labeled (1) and (2)] is given by

Cyj=Tr(pgr01 ) /Tripz,) - (5)

The experimental signature of the fp— AA process will
be the weak decays of the A and the A, which yields a
four-charged-particle state (see Fig. 2) via the processes
A—p+ 7~ and A—p+7+. Because of charge conjuga-
tion symmetry these branches are equal and represent
64% of the total weak decays. Since the weak decay does
not conserve parity, it is asymmetric with respect to the
direction of the A (or A) polarization vector. This asym-
metry is extremely useful experimentally, as it allows a
determination of the final state polarizations without the
need for a second scattering. The density matrix for the
four-particle state is obtained by operating on px, with
the weak decay T matrix T; viz.,

¥
Psatpr— = TwpaaTw - ' (6)
From this expression we may obtain the normalized angu-
lar distribution for the decay particles P and p moving
along directions k; and k,, in their respective rest frames:

W (k;k,)=(167)"" |1+ aP,cosd +aP,cosd

+aa Y, Cjcosb;cos6; | . (7)

ij

FIG. 2. Schematic laboratory view of the pp— AA reaction,
followed by the weak decay A—pw™.



Here the indices (ij) stand for (x,y,z); @ and a are the
weak decay asymmetry parameters, which are well
known:®
teraction physics of pp—AA is contained in the polariza-
tions Fy and Py, the correlation coefficients Cj;, and the
total and differential cross sections. A more detailed
derivation of the above form is given in Appendix A; the
above result is obtained when there is no polarization in
the initial state. ‘

B. The strong interaction 7-matrix 7(8)

Calculation of the T matrix was carried out in the heli-
city formalism of Jacob and Wick;’ the coordinate system
used is shown in Fig. 3. In what follows, we make exten-
sive use of the conventions established by Sopkovich.®
Among the several advantages to be gained by using the
helicity basis are the following: (1) because of relativistic
invariance, the polarizations and correlation coefficients
can easily be calculated in either the laboratory frame or
in the individual rest frames; (2) the spin-dependent ex-
change diagrams are more easily evaluated than in an LS
representation; and (3) the partial-wave expansion of the
T matrix is very compactly expressed in terms of the
Wigner & functions. The angle-dependent T matrix is
written as (see Fig. 3)

(qQA') | T(6,¢) | pAL)
=3/ + DU | T | JANY D3 $,6,— )

(8)

where the & functions have labels corresponding to total
angular momentum J and projections u=A—A and
u'=A"—A’. The helicities A are the angular momenta of
the particles projected along the directions p or q. De-
pending on context in what follows, A takes on values of
+5 or 1. The quantities (JA'A’| T |JAL) are obtained
from the strong interaction model used, and are described
below.

The helicity basis states are not eigenstates of parity
(see Appendix B). In order to write states of good parity,
the following combinations of helicity states (for a given
J) are formed:

1
;J1>=7_2~(|J+—>—}J-+>),

1
|J3)—‘/§(|J++>+|J———~)),

. 9)
|J2>=7§(|J+~)+|J—+>),

L
V2

The notation used for the helicity states is |JAA); the
kets on the left make up the so-called number basis.
Number states |J1) and |J4) are of parity (—1)/*1,
while |J2) and | J3) are of parity (—1)’. (Recall that
the intrinsic parity of an antifermion is —1.) The (uni-

[J4)=—=(|J++)—|J—=)).

a=—a=0.642+0.013. All of the strong in--
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FIG. 3. The coordinate system used for the calculations
presented in the text. The kinematic variables p and g are the
initial and final state momenta in the center-of-momentum
frame, while € is the energy of any particle in that frame. The
A is produced at an angle 6 with respect to the incident p direc-
tion. The z axes are taken along the directions of the § and the
A, respectively, and the y axis is in the direction pXq. The ini-
tial helicities are A and A for the p and P, respectively; the final
values are denoted by primes.

tary) transformation linking the helicity basis to the num-
ber basis is given by:

1 10 0
_ . |-=110 0
0 01 —1

Here the rows have helicity labels (4 —), (—+), (+ +),
and (— —); the columns are labeled 1, 2, 3, and 4. For
self-conjugate final states, the number states are eigen-
states of G parity [G =Cexp(inT,)]. State 1 has G pari-
ty (—1D!+/+1 while states 2, 3, and 4 have G parity
(—1)'*/. For the AA final state, I =0. For the process
Pp—AA, the restrictions due to conservation of parity
and G parity lead to a transition matrix of the form:

I
4000
0BDO
0FCO
00O0E

(n'|T|n)= (11)

Here A" represents a transition between triplet states
with L =J and E¥ a transition between singlet states.
The other elements.are transitions between triplet states
with L =J+1. Thus, six amplitudes are required to
specify completely the transition for a given J and isospin
I. For a non-self-conjugate final state (e.g., pp—AZ),
which is not an eigenstate of G parity, eight amplitudes
are required, giving

1J
400G
(n'|T”]ﬁ)- 08D0 (12)
|0 FCo
‘|HOOE

The L-S coupled states [*L;(L =J and L =J+1) and
1L,] are simply related to the above number basis states
by the following unitary transformation:
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1 0 0 0 The states on the left-hand side have good parity, G pari-

12 12 s ty, and total angular momentum J, but mixed helicity.

1 0 J+1 J L, The states on the right-hand side have good parity, G par-

2 27 +1 2J +1 3L, ity, total angular momentum J, and total spin S. In addi-

3| = 12 12 A tion, their threshold behavior is simply understood be-
0 J J+1 0 Ly cause of the orbital angular momentum labels.

4, 2J +1 2J +1 'L, To proceed further, we take the incident p direction to

o 0 0 1 define the z axis (§=0). Then, using Eq. (11) with

transformation (10) in Eq. (8), and for convenience taking

(13) the azimuthal angle ¢ =0, we find the helicity matrix ele-
Here the notation is L =J, L'=J —1, and L"=J 41,  mentstobe

|
24(0) —2B(6) —D(©O)  —D(O)
oy |-2B0) 240 DO D(6)
AN|THAOMY=—| F9) _F(6) CO)+EW®) CO—E®) |- (14)

F(B) —F(6) C(0)—E(08) C(6)+E(6)
In the process, six (independent) helicity amplitudes have been defined for a given isospin I

Alo =22(2J+1)(A”+B”)dj() T+ —+—),

B’(9>=%2<21+1><A” BU)dl_(0)=—TN+—;—+),
0)= 3 (27 +DCVdo(0) = [T+ +;++)+ TH+ +;— -],
J
(15)
0)=3 (2J + DD¥d1y(0)= — T (+—;++) ,
J
0)= 3 (2J + DEYd{o(0)=F[ T (+ +;++) =T+ +;——)],
J
FiO)=3 (2] + DFYd{(0) =T (+ +;+—) .
J

In these expressions the quantities dljm'(O) are the Wigner reduced d matrices,?’ and quantities 77 represent matrix ele-
ments: T/(+ —;+—)=(+4+—|T/0)| +—). The above amplitudes correspond to no helicity flip (4,C +E); single
helicity flip (D,F); and double helicity flip (B,C —E).

Using Egs. (2) and (3) we may now write the cross sections for pp—AA in terms of the isospin-0 amplitudes (where
we now include a V2 factor from isospin and drop the I =0 label):

do/dt=(m/8p*)m mp/€)(|A+B |*+ |A—B |*+|C|*+|D|*+ |E|*+|F|Y, (16)
o(pp—AA)=(7q/2p)im,mp/€? 3, (2] +1)(| A7 |?+ |B’|?+ | C’ |24 | D’ |*+ |E|*+ |F/|?) . (17
’ [
In Eq. (16) the amplitudes appearing are the theta- Cpy(0)=[|F|*+|C|?*+ |D |*~ |E|?

dependent amplitudes of Eq. (15), while in Eq. (17) the

*

amplitudes are the partial wave decomposed quantities. +4Re(47B)]/1(0) , (20)
Kinematic variables are given in Fig. 3. Using the density Cn(0)=[2(|4 |>*+ |B|H+|D|*—|C|?
matrix method, we may now calculate several important 5 5
observables for the case when the beam and target are un- —|E|"—|F|"]1/1(0), @D
polarized: Cox(0)=2Re(A*F +B*F +D*C)/1(0) , 22)

P,(6)=2Im(4*F+B*F +C*D)/1(6), I(@)=(|A+B|*>+|A—B|*+|C|*+|D|?

(18) 2 2
I_)y(e):——Py(@), +IE| +|F[ ). (23)
(@)=[|F |2+ |C |2 |D |~ |E [2 All of these quantities have been calculated using the

Jacob-Wick conventions (Fig. 3). We note that the polari-
—4Re(A*B)]/1(0), (19)  zations will be zero in the simple plane-wave one-boson-



31 MESON EXCHANGE CALCULATION OF THE pp—AA REACTION 1861

exchange model. However, this will not be the case if the
incoming and outgoing waves are distorted by complex
potentials, or if the exchanged particle is allowed to have
a complex mass to account for its decay.

Finally, we calculate the singlet fraction, which is the
expectation value of the singlet projection operator
Pi=+(1—0y'0;) and find Sp=+(1—Cy —C,—Cp),
using the Jacob-Wick phase conventions. With the above
expressions we obtain Sp= | E |2/I(0), as might be ex-
pected from the organization of the transition matrix in
Eq. (11), from which it is apparent that E is the singlet
amplitude. Triplet and coupled-state “fractions” could
also be defined in this way.

We now proceed to a determination of the basic transi-
tion amplitudes, including initial and final state interac-
tions, and use them to calculate the observables described
above.

C. Calculation of exchange amplitudes

As mentioned earlier, we include in the t-channel ex-
change calculation the strangeness — 1 mesons K, K*, and
K**. The properties of these mesons, their propagators,
and the vertex couplings used in the calculation, are given
in Table I. Values of some of the coupling constants and
guidance to the literature may be found in Ref. 24; further
information was obtained from Rosenthal.?> We note that
there are phase changes associated with the antiparticle
vertex couplings; these, and the phase of each state must
be treated with great care (see Appendix B). What results
is that the internal signs of each exchange term are deter-
mined by time reversal and parity, while the relative sign

J

2 ar2 , 01 1 — 01
with M, and M, given by
M,=(A'|R(—7—0)R (1) | ) =d}{}(0) ,
- _ ‘ 27)
M,,:(—MR(B)\—)U =d'Z_5.(0).

The product of these two d functions is proportional to
w(0)  (see Ref. 27, p. 147). The quantity

of each meson with respect to the others is determined by
the Feynman rules and the Jacob and Wick phase conven-
tions. (See Appendix B.) A point essential to our later
discussion is the resulting destructive interference between
the K* and K** meson exchanges. This situation is rem-
iniscent of the discovery of the repulsive nature of vector
meson exchange in the NN interaction.

In order to calculate the transition amplitude associated
with each meson in the helicity basis, we first write the
helicity spinors for particles (1) and antiparticles (v):

Particles: u(p,A)=NGp)Z)*P),
- (24)
Antiparticles: v(p,A)=N( 711’)77;ﬁ@1 A(P) .
Here N=[(€—|—m)/2m]1/2 P=p/(e+m),
771=(—)V2‘M2, and the c@k (p) are, with ¢=0, for

A=+1and —1, respectively,
2=, 2UH=(7).

There are implicit spinor indices on the quantities u, v,
and & in Eq. (24). These states have momentum p
(along polar angle 8) and helicity label A==+1. The quan-
tities ¢ and s are, respectively, cos(6/2) and sin(6/2). In
what follows we use the conventions established by Bjork-
en and Drell?® for the metric ¥ matrices and overall nor-
malization (Tu =1= —7ov).

We now calculate the amplitude Tx for z-channel ex-
change of a pseudoscalar K~ meson. It is of the form

(see Figs. 1 and 3)
T (0)=(gk /Am)NT )y sup )(Tyysvz ) mgk —1) =L, (25)

The product of vertex functions in the numerator is

) ]MuMU ) . (26)

Q=q/le+mp)and Ny=[(e+mp)/2m 1'%

Equation (26) is then evaluated for each possible helici-
ty combination. The results are used with Eq. (14) to ob-
tain the amplitudes 47(6) to E!(6), which are given in
Table II. We have here incorporated the phase convention
of Jacob and Wick*? for the helicity state of “particle 2”;
in this case the incoming proton and outgoing lambda.
(See Appendix B.)

TABLE I. Forms for the vertex couplings used in the present work. Here m, is the proton mass; €,
and €, are the spin functions for spin-one and spin-two particles. As described in Sec. III, the K**
coupling was adjusted to give a good fit to the data. The other values are taken from Refs. 24 and 25.
See the text.

Coupling constants

Meson Vertex coupling (g2/4m)
K (494) gKYs 13.7
K* (892 + iS0) 8 x Ve 8.77
K** (1430 + i100) {(g1/mp)[(Pa+Py)y#+(Pp+P,)Fy"] g3 /4m=3.356
+(g2/m(PA+P M PA+PE]} €S, g3 /47 =0
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TABLE II. The amplitudes of Eq. (15). The terms multiplied by 4 (8) are due to pseudoscalar K exchange; terms multiplied by
h*(0) are due to vector K* exchange. The quantity A (9)—\6(g1( /4TIN N (m 2 —1)~% h*(0) is the same expression evaluated for
the K*. Here ¢ =cos(68/2), s =sin(6/2), and all other symbols are defmed in the text. Amplitudes B, C, E, and F incorporate the

Jacob-Wick phase convention for “particle two.”

ANO)={—(P—Q)*h(0)—[R(PQ — 1)} (P +Q)*+(PQ +171h*(0)}c?

BUO)={+(P +Q’h(6)+[R(PQ +1)*4+(P —Q)*+(PQ —

ClO)=C%(0)c*+CL(0)s?
DX0)={—(P2—QYh(0)—
E’(9>:E’+(6)c2+E’ (9)s
Fl(0)={+(P*—0Q")h

[R(P?Q?—1)4+(P*Q*—1)+(P?

—[R(P*Q*—1)+(P*Q*—1)—

1)*1h*(6)}s?
—Q0H1h*(0)}2cs

—QH]h*(6))2es

—PQ)?—2(P +Q)*]h*(6)

Cl(O)={+(P—Q)Vh( 9)——[R(1—PQ)2+(P+Q)2+(1+PQ —2(P—Q)*]h*(0)
c’ (6)={—(P+Q)2h(0)+[R(1+PQ)2+(P QP 4(1—

LO)={+
E’ (8)={

5
+(P—Q)*h(0)—[R (1—PQ)Y+(P +Q)+(14+PQ)*+2(P —Q)*1h*(6)}
+(P+Q)Vh(0)—[R (14+PQ)*+(P —Q)*+(1—PQ)*+2(P +Q)1h*(8)}

The projections into partial waves of isospin I and an-
gular momentum J to obtain the amplitudes for use in
Eq. (15) can now be made. These partial wave decomposi-
tions are necessary if one wishes to insert appropriate
damping in the low partial waves. This procedure, origi-
nally used by Sopkovich® and extended by others,?*~% is
discussed further in Sec II E. Since the invariant momen-
tum transfer t = —p? —q 24 2pq cosh, we may expand the
propagator (m% —¢)~! in terms of Legendre functions of
the first and second kind:3!

[mk —t]"'=(2pq)~! 2 (21 +1)P)(cos0)Q;(z) , (28)
with z=(p%>+q>+m¥%)/(2pq). Here p and q are the
magnitudes of three-vectors. We then invert Egs. (13) to
obtain the partial wave amplitudes, using the relation®’

B C||l4 B C

d g (0)diy () = a b oclla b o |de(O).

S @C+1)
C

As an example, we obtain for 4% (including only pseu-
doscalar K exchange)

AV =2(g% /4mINZN2(4pg)~!

J
(aJ—bJ)+2J—+1(a_/+1+bJ+1) ‘
T+1 o, 46, 0]. (29)

2J +1
: |

Here a;=—(P—0)*Q;(z) and b;=+(P+Q)?Q,(z).
The other amplitudes are obtained in similar fashion. '

Calculation of the exchange of the K* vector (J¥=1")
meson is straightforward. The matrix element for vector
coupling is written as

Tyx(0)= gK* /477)2 Ty utt 2 Ty 07)

X e*(s)e” (s)

X(mygs—07", (30)
where we ignore the possibility of a magnetic coupling
0:»"€*. When the spin sums in the propagator are per-
formed we find:

T (0)=—(gxu /Am)(m b —1)!

X [R (@ )(Tyv7.)

—(ﬁk’yuuk)(ﬁi?’”vw)] . (31)
Here R =[(mp—mp)/m 1>. We expand the propagator
as in Eq. (28), allowing now the K* mass to be complex in
order to account partly for the K* decay. The realization
of Eq. (31) in the helicity basis leads to the expression

T #(0)=(g%s /4T NAN ) [ — (AP + X' Q)AP + X' Q)S (K, A'M)S(k, — A —1)

+(1+AVQPN1+AXQPY; 57 d 5 5. Wm%e —) 71 . (32)

Here the functions S'(k) are given by S(k)={(A"| oy |1);

the products S (k)S(k) are summed on k. These are given
in Table III. As in the K case, both the product of the d
functions and the sum over S(k)S(k) can be combined
with the P; function in the propagator to yield a single d
function. In this way, Eq. (13) can again be used to iden-
I

tify the amplitudes. These are given in Table II.

We turn now to the evaluation of the t-channel K**
(JP=2%) diagram. The appropriate vertex couplings are
taken from Refs. 24 and 25; using the nomenclature in
Fig. 3, we have

VEV={(g1/myVAT)(Py+ Pp)"y* +(Py+Ppy¥ 14 (g, /mEVAT)(Py+Pp (P + Py} lls) .



At the antiparticle vertex, the g; terms are multiplied by
—1. The spin-two functions €,,(s) are constructed from
the spin-one functions €, as described by Refs. 32 and 33.
The meson propagator will involve the following sum
over polarizations:

Py =, €u(8)€py(s)
s
= %(P#M'PW'—*—PMV'PV[L')—%P[L‘VP;I.”V/ ’ (33)

with P,,=-—g,,+P,P,/m f(**. Here P, is the four-
momentum carried by the exchanged meson, m .« is the

exchanged mass, and g, is the metric tensor.?® The re-
sulting amplitude is

T xs (0)=— (g7 /4mm ) @p: VFup (% ws — 1)
X (B3 VEY 03 )P ey - (34)
The evaluation of this amplitude is tedious, with result of
the form
Tyun(0)=—2(g3 /4mm )N XN 237
X[D(x)f (x)+S (x)g (X)) (mpaue —D 7"
(35)

The quantity in square brackets depends on x =cos6 and
the initial and final state helicities. The functions D (x)
and S(x) are the same products of d functions and prod-
ucts of S (k)S(k) given in Table III. For f(x) and g(x)
we have

f(x)=f0+f1P1(x)+f2P2(x) ,
(36)
g(x)=go+g&1Pi(x),

where the P;(x) are Legendre polynomials; the f; and g;
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TABLE III. Helicity matrix of 3,S(k,AL")S(k, —A—X").
The matrix for the d-function products is the same except for
the lower right corner which is

! c? —5?

—s? ¢

In this table ¢ =cos(6/2) and s =sin(0/2).

+— —+ ++ ——
+— c? 52 —sc —sc
—+ s? c? sc sc
++ sc —sc —(1+5?) (1+c?)
- sc —sc (14-¢?) —(145%)

quantities (which depend on helicity and kinematics) are
given in Table IV. We note that in the equivalent expres-
sions for the K and K*, f and g were independent of an-
gle. .
We now expand the propagator as in Eq. (28), and com-
bine the Legendre polynomials appearing there with those
in Eq. (36). We obtain, using Ref. 25,

T ax(0)=—2[g} /4mm 3 (2pq) INAN 22X’

X |D(x)3, (2¢ +Da P(x)+S (x)

X ¥ (2¢ +1)B.P.(x)|, (37)
[4
with
a;=f0010+1Q11+/ 2012
and
B =goélo+glén .
We have for the O functions:

TABLE IV. Algebraic quantities necessary for the evaluation of the K** (tensor) exchange amplitude. The momenta p and g are

given in the text, as are the definitions of z, P, and Q.

M=mp+m,

R =—g2/glmp
e€=p>+ml=g*+m3

a =4 +p*+q>+M?*A?
a1=462___p2__q2_M2A2

a=e(aR —MX)

B=M?X*4(1—XY)a +3a’R*—+W?

Ao=16€*+a Bo=2pq
A,=8a B;=16pqeR
Ay =P+58 B,=2pqy
Az=—a By=—2pq
C,=3%8

fo=A¢Ho+A\H+ A,H,
f1=BoHo+BH,+B,H,

f2=C2H2

A=(mp—m,)/mg

X=1-A2
Y =1+2MR
5=3p’q’

W =2MX +a'R
y=aR*+(1—XY)++RW

Ho=(1+AAPQ)(1+A1'PQ)
Hy=(1—ANKA'P2Q?)
H,=(1—AAPQ)(1—XX'PQ)
H3;=(AP +AM'Q)AP+X'Q)
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010=04(2) ,
0= EII?QI‘I(Z)+QIIJ-;11—QI+‘(Z) ,
TR

3 (U+DU+2)
iy &

No Q; functions with / <O are allowed. The results for
each of the six required amplitudes can now be obtained
using Eq. (37) and Tables III and IV.

D. Checks on the calculation

In a calculation as detailed as this one, it is very useful
to have available ways to check for algebraic errors and
general physical consistency. We have principally used
two such methods: one based on a parity argument, and
one based on time reversal.

The time reversal check is based on the following: we
note that in the nucleon-nucleon elastic scattering case,
time reversal invariance requires that the amplitudes D
and F of Eq. (12) be equal. (Thus, NN elastic scattering
requires only five amplitudes.) In the case of Pp—AA,
the time-reversed process is not equal to the original one,
‘but is related to it by the reciprocity theorem. Thus, the
amplitudes D and F can be checked using time reversal
ideas in the following way: If we interchange the masses
my and mp, and the associated momenta g and p, then
the amplitudes D and F are also interchanged. In this
way each of these pieces of the meson exchanges can be
checked via “time reversal reciprocity.” Several errors in
previous works were found in terms which were negligible
at high energy but significant for our calculation.

The use of parity conservation provided another power-
ful check of our amplitudes, since two of the mesons ex-
changed are natural parity exchanges (17,2%), while the
third has unnatural parity (0~). Because of this, the total
cross section calculated in Born approximation for unpo-
larized beam and target should show no interference be-
tween K and K* exchange or between K and K**. On the
other hand, K* and K** do interfere with each other. The
rule is proved (in Born approximation and spin averaged
cases only) by noting that any interference terms between
natural and unnatural parity exchanges will involve prod-
ucts of ¥ matrices, whose associated trace sums vanish for
the natural-unnatural exchange interference terms. This
rule proved very useful in checking our detailed ampli-
tudes. When final/initial state interactions are included,
however, interference effects will be generated.

Finally, we compared our results for the K and K* ex-
changes to those of other authors.®~!> In cases of
disagreement, our time-reversal and parity checks resolved
the issue. Since our calculations pertain to the AA thresh-
old region, we have not invoked several approximations
suitable for higher energies that have been used in some
other calculations.

E. Improvements on the Born approximation

In order to make a calculation with realistic predictive
power, the Born approximation results of the previous
sections must be modified. For example, the predicted
polarizations of Eq. (18) will be zero in the model as it
stands, because the strict Born approximation produces
purely real amplitudes. The discussion so far has not yet
taken into account the large absorption present in the in-
cident pp channel, and has not dealt with the possibility
of short-range cutoffs of the various meson-exchange dia-
grams. We also wish to examine the effects of the finite
width for strong decay which is present in the K* and
K** masses.

We begin with a discussion of the cutoff procedure used
to eliminate the singular behavior of the meson exchange
diagrams at short range. Such cutoffs have their origin in
the dynamics occurring at the pAK vertices, and ultimate-
ly are related to underlying quark wave functions. Such
ideas suggest use of rather short-range exponential or
Gaussian form factors; for simplicity we introduce multi-
ple Yukawa forms.

In momentum space we invoke the cutoff by modifying
the usual Yukawa propagator 1/(q>+m?) for the ex-
changed particle of mass m by multiplying by the form
factor Aj/(q>+A?}. Thus

1 AL A 11
q2+m2 q2+A% A%_mZ q2+m2 qZ_*_A%

(38)

The partial-wave decomposition of this expression will
thus be modified, the Q;(z) of Eq. (28) being replaced by
0,(2)=F,[Q)(z2)—Q)(z;)], with F;=A%/(A2—m?) and
z1=(p*+q*+A})/2pg. The cutoff mass A, is taken to be
Ay=E&m. For the 0~ meson a single cutoff is used. How-
ever, since the y* coupling appears for the K*, we need at
least two cutoffs for that meson. For the K** the y*9,
coupling suggests using four multiplicative cutoffs. (The
9,0, term indicates use of six cutoffs for the g3* cou-
pling.) To simulate even faster falloff, more multiplica-
tions can be included; a simple rule indicates how to
proceed. For two and three cutoffs the expressions are

» 01(2)=F1F,[Q1(2) =G, Q)(z,)— G 1,Q4(2,)]

and

Q1(2)=F1F,F3[Q)(2) — G5, G3,Q:(z¢)
—G13G,0/(2,) -GG 130(23)] ,

with Gijz(Af—mz)/(A,g—Ajz-). Extension to other cases
is straightforward. (Note that for A— o the above Q;
functions return to the original irregular Legendre func-
tions Q;.) Use of these forms requires that the A values
must each be distinct; for example, we have chosen for the
four-cutoff case A;=E&mwx,Ay=A;(1+7), and so on.
To keep the number of parameters to a minimum, we
have taken £=5 and 7=0.001 in all cases. The effect of
these cutoffs is discussed in Sec. III.

In order to study the effect of the finite widths for
strong decay existing in the K* and K** cases, we have al-



lowed their masses to assume the complex values given in
Table 1. However, the A values for the cutoff masses
were kept as real numbers. The effect of the finite widths
is to make the argument z and hence the amplitudes
slightly complex. Numerical results are given in Sec. III.

We turn now to our treatment of the initial and final-

state interactions. For the Pp initial state, annihilation to
multipion final states is a process that is about as large as
elastic scattering and significantly larger than the charge
exchange process. It is usual to account for this large de-
pletion of flux in a phenomenological way, often by intro-
ducing absorptive potentials that are used in an optical
model or coupled-channels approach. The existing elastic
data'®!” could be used to generate such a potential; how-
ever, such a detailed treatment may not be warranted at
this stage due to the almost complete uncertainty regard-
ing the final state interaction. We thus have opted to use,
with appropriate extensions, a procedure originated by
Sopkovich.®

In Sopkovich’s theory, a model based in geometric op-
tics is used to calculate the transition matrix element for
each partial wave in a situation where the initial and final
state, each described by an absorbing potential, are linked
by a coupling potential given here by the meson ex-
changes. The development of these ideas® leads to this
form for the modified T matrix:

T 4(0)=V'SH) TH(0)V S () . (39)

Here T is the transition matrix from the Born approxi-
mation and the S7 are the matrices describing the initial
and final state elastic scatterings. Due to the strong ab-
sorption in the initial state, it is clear that the T-matrix
elements for the low partial waves will be the most strong-
ly affected. We recognize that the derivation of Eq. (39)
relies on high-energy eikonal ideas, while we are dealing at
least for the final AA state with low (indeed threshold) en-
ergies. Nevertheless, the effects of the post and prior mul-
tipliers are to dampen waves. We could (and in the future
shall) use proper initial and final state wave functions
with associated integrations. In lieu of that, we simply
use Eq. (39) and see what effect the damping of selected
partial waves has on our set of observables.

In describing the incident channel we use the parametri- -

zation of Eisenhandler et al.,'® which was obtained for pp
elastic data taken over the range 690—2430 MeV/c.
Their data are parametrized using the prescription of
Daum et al.,'” which is based on a strong absorption
(Frahn-Venter) model containing a central and a spin-
orbit piece: V=V_,+VS'l. This model, due originally
to Fermi, will give rise to significant polarization in the
elastic scattering because of the absorption and surface-
peaked spin-orbit term. Spin-spin effects are ignored and
the scattering matrix is given by M =f(0)
+g(0)o+0) 1A, for which

f<o>=%2 [+ DR} 41 +IRy; 1 1Py(x)
and

g(0)=§l;2(R1,T1+1 —R_)P}x) .
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Here the R} values are the partial-wave amplitudes for
scattering in the triplet state, with J =I/+1. These are re-
lated to the complex amplitudes =;,; via R,,T,il
=(nf1+1—1)/2i, with

Reny+1=h(t)+e[1—h(1)],
(40)
dh (1)
dt

The exPression for h(t) is a continuous function of
t =]+ 5 and is given by

h(t)={1+exp[(kR —1)/kd]}~" .

We take R, d, and € to be independent of [ and J, as ad-
vocated by Daum et al.V’

The connection between these amplitudes and the
number-basis amplitudes in this paper are obtained from
Eq. (2.24) of Bystricky et al. (Ref. 34) and our Eq. (13):

Immn;e1=p4+

1
v_ T RS, 14+ +1DR], ]

=Rjy=RCL;_.),

U UR g+ T+ DRI T,
cl— le+1 [(J+ DRI 1 +JRF 11, @D
DIJ=—‘2{3J_T__L_1"1")”(RJT—I,J_RJT+1,J)=F” )
EV— [T+ DREy 1 +IR]; 1]
=R('L;_;).

The model thus specifies the singlet ('L;_;) and triplet
(L, _;) amplitudes in terms of triplet *L;_; ., ampli-
tudes. Equations (40) are used to form the incident-
channel S matrix needed for Eq. (39). Since the final state
S matrices can be diagonalized by unitary matrices, the
square root needed in Eq. (39) is readily constructed.
Equation (40) reduces to the Sopkovich choice by simply
taking R/} to be independent of 1.

We turn now to a discussion of the final state. No data
or theoretical predictions are available in the literature for
the AA interaction near threshold; as a beginning ansatz
we will make use of the above model, but with adjustable
parameters R and d. We also vary the AA spin-orbit
strengths p 4 using the Pp case at the associated energies
as a guide for our initial guesses. Our fits to the data are
given below.

III. COMPARISON TO DATA

In order to investigate fully the effect of each of the
meson exchanges included in our description of Pp—AA,
we have used the data given in Refs. 35—38 to constrain
our model. The data set used included some total cross
section information®> from near threshold to above 6
GeV/c incident p laboratory momentum (see Fig. 4) and
also differential cross section information (Refs. 36—38)
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at 1.85, 3.6, and 6.0 GeV/c.

In the calculations, the coupling constants for the K
and K* were taken from Refs. 24 and 25, while the cou-
pling for the K** was adjusted for best fit, as described
below. The “global” value obtained is listed in Table I.
For incident p laboratory momenta up to 2.2 GeV/c, the
S-matrix elements obtained for elastic Pp scattering ob-
tained by Eisenhandler er al.!® were taken over directly
and used in Eq. (39) to distort the incoming P waves (see
Table V). For our fits to the data at 3.6 and 6.0 GeV/c,
other total cross section data®® for Pp were used to obtain
parameters for use in the Eisenhandler ansatz. In all of
the analysis, the final state AA S matrix (also using the
Eisenhandler form) was adjusted, using a least squares
‘search, to give a good fit to the data. The parameters ob-
tained for these final states are given in Table V. The ver-
tex form factors used are as described in Sec. II and were
not adjusted; in addition, the real masses as given in Table
I were used for the exchanged mesons. The sensitivity of
our results to changes in the K* and K** cutoffs (A* and
A**) prove to be quite significant. For example, at 6
GeV/c the differential cross section was quite insensitive
to A*, but halving A** increased o(6) by a factor of 9,
while doubling A** decreased o(6) by about 40%. Since
decreasing A** cuts off higher momenta, the above
behavior indicates a high sensitivity of o(8) to short-
distance properties. On the other hand, the polarization
and spin correlations proved to be quite insensitive to both
A* and A**, which suggests that they are not sensitive to
large g; perhaps because they are surface-dominated ef-
fects. Similar remarks hold for lower momenta. The use
of the complex masses in Table I was an insignificant ef-
fect.

Figure 5 shows the resulting fits to the differential cross

180 —

ol N{ H |

oyt (1D

60 [ -

plub(GeV/c)

FIG. 4. The available total cross-section data for the process
pp— AA (Ref. 35) plotted as a function of p laboratory momen-
tum. The data used to obtain the final state ‘“‘distortion” param-
eters for Eq. (40) are given by the heavy dots. See Table V. The
data points at 3.6 and 6 GeV/ ¢ also required a fit to the incident
Pp channel, as the elastic data of Ref. 16 do not extend that
high.

section data at 1.85, 3.6, and 6.0 GeV/c. The fits were
obtained by making a global adjustment to the value of
f:foe (i.e., the same value was used for all fits), followed
by a case-by-case adjustment of the final state S-matrix
parameters R, d, €, and p [see Eq. (39) and Table V].
We are encouraged by the fact that these values as a
whole follow a smooth trend; it may or may not be sig-
nificant that they do not differ substantially from the
Eisenhandler values'® for the Pp incident channel, Having

TABLE V. The parameters of Eq. (4) for the initial pp (denoted by I) and final AA (denoted by F)
state interactions appropriate to the cases analyzed in this paper. The incident p laboratory momentum
is given in the leftmost column, while the predicted total cross section is in the rightmost column.

Diab Otot
(GeV/c) Channel R d By Hu_ € (ub)

1.45 I 1.1187 0.1289 0.6631 —0.00337 0.03717 5.5
F 4.6 0.117 0.95 1.08 0

1.50 I 1.1074 0.1272 0.701 —0.0258 0.0531 24
F 2.52 0.10 1.211 0.866 0

1.65 1 1.0735 0.1220 0.8146 —0.0931 0.1009 109
F 1.90 0.08 0.95 1.08 0

1.85 I 1.06 0.1166 0.8395 —0.06946 0.1444 98
F 1.624 0.079 0.95 1.08 0

2.06 I 1.06 0.1115 0.8088 0.00634 0.1798 130
F 1.5 0.075 0.95 1.08 0

3.6 I 1.09 0.104 0.53 0.466 0.197 62
F 1.858 0.131 1.0 0.92 0

6.0 I 0.8 0.08 1.1 1.0 0 42
F 1.91 0.15 1.211 0.866 0
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FIG. 5. Differential cross section and polarization data for the pp— A A processes at 1.85, 3.6, and 6.0 GeV/c incident p laborato-
ry momenta, compared to our calculations. The data were obtained from Refs. 36—38, respectively. The 1.85 and 3.6 GeV/c sets
shown here were obtained from functional forms given by the authors; we assigned a uniform 10% error bar to each point. The
quantity ¢’ along the abscissa is given by ¢'=t —f,;,. The solid curve in each plot represents our full calculation, including the K,
K*, and K** mesons and the initial and final state distortions. The dashed curves result if the K meson is left out; the dash-dot
curves are obtained if the K and K** are omitted. At 3.6 and 6.0 GeV/c the dashed curves are almost indistinguishable from the

solid ones.

no guidance as to the size of the spin-orbit strength for
the AA channel, our initial guesses for p. and € were
based on those for pp at the corresponding energy. As
can be seen from Fig. 5, the resulting curves are in quite
reasonable agreement with experiment. If the R and d
values were allowed to depend on J, better fits would be
possible.

Figure 5 also shows quite clearly the effect of each of
the mesons exchanged. It has been known for some time
(Refs. 6—15 and 18—22) that the effects of K (494) ex-
change are relatively unimportant compared to the K*;
this is seen clearly in the figure, where it is apparent that
the K (494) can be neglected at the higher energies. At
the energies nearer the threshold, however, the K retains
some importance for the differential cross section and
especially for the polarization and spin correlation coeffi-
cients (Fig. 6). At the higher energies both the K* and
K** play very important roles; in fact it is their destruc-
tive interference which allows a reasonable description of
the data to be obtained. As described earlier, the relative
phase is mandated by the quantum mechanics of the situ-
ation. (Without it, no reasonable value of the K** cou-
pling constant or final-state interaction parameters could

be found to bring the calculation even close to the data.)
Indeed, the forward peaking shown in the data could not
be duplicated without a suitable adjustment of the K**
coupling constant. We also note that the present model
does a reasonable job of describing the rather large mea-
sured polarization®® at 6 GeV/c. Figures 5 and 6 also
clearly show that the K** plays an important role even
near the threshold. For this reason, we conclude that
short-range interactions, and thus very likely the quark
degrees of freedom, are an important part of the dynamics
of this problem. We note in passing that even at thresh-
old the momentum transfer involved in the process is
quite substantial (~3F 1),

Figures 6 and 7 show the behavior of the spin correla-
tion parameters C;; as a function of incident p energy and
as.a function of the exchanged mesons. Very near thresh-
old, where an s-wave interaction could be expected to
dominate and the resulting amplitudes are very simple,
the spin correlation coefficients are seen to be symmetric,
or reflection symmetric, about 90°. As the energy in-
creases, the curves depart from this simple behavior as
more partial waves come into play. The interaction can
also be modified by altering the basic meson exchanges;
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FIG. 6. Predictions for the spin correlation coefficients at 1.85, 3.6, and 6.0 GeV/c. The top row contains the results of the full
calculation, the middle row has the results leaving out the K meson, and the bottom row has the result of leaving out the K and K**

mesons. . See also Fig. 5.

this is shown in the middle and bottom panels of Fig. 6.
As the various mesons are turned on and off the C;; are
changed radically in both shape and sign. It is somewhat
surprising that the K meson plays as important a role as it
seems to. It is clear that these coefficients (and the polari-
zation) are extremely sensitive to the dynamical content of
the reaction mechanism.

The purpose of Fig. 7 is to show that in the energy re-
gion where the recent LEAR experiments have been done
(1.480 and 1.507 GeV/c laboratory p momentum), the po-
larization and the spin correlations are sizable. While it is
true that as the threshold for the reaction is approached
the polarization must vanish, the spin correlations need
not. (It is because of parity conservation® that the correla-
tion coefficients C, =C,, =C,,=C,,=0.) _

Figure 8 shows the behavior with energy of the ampli-

tudes given by Eq. (15). At low energies all of the ampli-
tudes are significantly different from each other, and all
are important, although in different regions of z. The
non-helicity-flip amplitudes (4,C +E) are moderately
forward peaked. As the energy increases, the picture sim-
plifies considerably; the amplitudes corresponding to dou-
ble helicity flip- (B,C —E) are greatly diminished, while
the single-flip amplitudes (D,F) remain of moderate size,
and the non-helicity-flip amplitudes (4,C +E) are very
large in the forward direction. This behavior has been ob-
served previously in Regge pole treatments!'®—22 of this re-
action; however, as our analysis shows, it would be wrong
to extend their conclusions (which are after all based on a
high-energy model) to the threshold regime.

Figure 9 shows the contributions of each meson to the
partial-wave projected amplitudes of Eq. (15). To make
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FIG. 7. Predictions of the full calculation for the differential
cross section, the polarization, and the spin correlation coeffi-
cients at 1.50 GeV/c, just above the reaction threshold at 1.435
GeV/c laboratory momentum. See also Fig. 5.

T

more explicit contact with other models of strong nuclear
forces, these amplitudes are given in the L-S basis. We
see that in the case of the K meson the strength ordering
of the amplitudes follows that of a tensor force; this is to
be expected because the structure of the (pseudoscalar)
one-kaon exchange potential (OKEP) is identical to the
one-pion exchange potential (OPEP) model. On the other
hand, the exchange of K* and K** mesons, with their vec-
tor and tensor characters, gives rise to potential structures
with strong LS components. This is observed in Fig. 9
in the ordering of the strengths of their amplitudes, which
follow that of an L -S force.

As we have indicated earlier, the role of initial and final
state interactions in this problem is an extremely impor-
tant one. This is true for at least two reasons: (1) the
strong absorption present in both the initial and final state
makes the strict Born approximation useless for obtaining

REAL PAR
1.2 T —T

IMAGINARY PART

AMPLITUDES

1
.80 000 0.60 120 1.80
-t(GeV/c)?

0.00 060 120
-t (GeV/c)?

FIG. 8. The real and imaginary parts of the amplitudes of
Eq. (15), shown here as a function of invariant momentum
transfer squared, for incident p momentum of 1.85, 3.6, and 6.0
GeV/c. Amplitudes 4 and C +E represent no helicity flip, D
and F are single helicity flip, while B and C —E correspond to
double helicity flip. See also Fig. 5.

the proper magnitude for the cross sections; and (2) within
the model used here the only way to generate sizable po-
larization is through absorptive entrance- and exit-channel
spin-orbit forces. (The use of complex masses to simulate
the decay of the exchanged K* and K** mesons has only a
very minor effect on either of these questions.) Thus,
while the magnitude of the polarization induced by the in-
itial and final state can be strongly modified by the nature
of the meson exchange mechanism, it would be identically
zero in our model without the initial and final state in-
teractions and the small effect of the complex exchanged
meson mass. This is not true of the spin-correlations Cj;,
as they do not require any initial or final state interaction
to generate them. They can also be sizable at threshold,
where the polarization vanishes.

The effect on the cross section magnitudes is equally
dramatic. Figure 10 shows the result of turning off the
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FIG. 9. The contribution of each meson to some of the
partial-wave-projected amplitudes of Eq. (15). Initial and final
state interactions are turned off. The results are expressed in
the L-S basis, as a function of a laboratory momentum. Note
that the K meson contributions are ordered as would be expect-
ed from a tensor force, while the K* and K** contributions are
ordered in the sequence of an L-S force. Also note that the K*
and K** are of opposite sign, and hence interfere destructively.

initial and final state interactions in Eq. (39); it is seen
that for the energies studied in this paper the initial state
interaction can make between a factor of 2 and a factor of
10 difference in cross section size. The final state interac-
tion, which takes place between particles having consider-
ably less relative speed, affects the size by a factor of
about 1000. At present, there are few data other than
those referenced here to constrain the outgoing AA final
state interaction, about which almost nothing is known.
Thus, our model will not be fully tested until both the ini-
tial and final state interactions are circumscribed by other,
independent, reactions.

IV. A SIMPLE
ONE-GLUON EXCHANGE MECHANISM

We turn our attention briefly to the possibility of
describing the Pp—AA reaction by means of a simple
one-gluon exchange, as diagrammed in Fig. 1(b). In such
a model the G and gq pairs present in the 7 and p (ud
and ud, respectively) act only as spectators. We use as the
gluon propagator the form:*

—i8u[g*+(E—1)p*p”/(p>+ie)/(p*+ie) .  (42)

Here & is a parameter responsible for fixing the appropri-
ate gauge, while 8, is a Kronecker delta that operates in
color space. Except for the appearance of the latter quan-
tity, Eq. (42) is identical to the photon propagator. It is
then used in a calculation paralleling those outlined in
Sec. IIC above to obtain the transition matrix 7, from
which we may calculate the usual observables. The form
of Eq. (42) indicates that the result of calculating the po-
larization Tr(ToT") will be identically zero. This result is
contrary to experiments®® done at incident momentum of
6 GeV/c. While a model based on Eq. (42) is most ap-
propriate for the very high energy regime, it indicates the
necessity for much more detailed quantum chromo-
dynamics (QCD) calculations at the energies under discus-
sion here.

Of course, large polarizations could be generated using
initial and final state interactions, as was done above for
the K-exchange model. It would, however, be much more
interesting to be able to obtain them from a mechanism
that involved quarks directly. Further work on this idea
is in progress.

V. SUMMARY AND CONCLUSIONS

In the work described above, we have calculated the
Pp—AA process as a sum of r-channel strangeness-
changing kaon exchanges. The K, K*, and K** mesons

- thus accounted for the detailed dynamics of our problem,

while largely phenomenological initial and final state in-
teractions were used to mitigate the effects of the strict
Born approximation. In this way, we were able to account
quite well for the data that exists on this reaction, and to
make predictions to compare with the forthcoming high
precision data’® from the LEAR facility. In our calcula-
tions, only the K** coupling constant and the final state
AA interaction parameters were adjusted. While the AA
interaction was found to be energy dependent, the K**
coupling constant was fixed globally for all fits.

It is clear from our work that the K** exchange plays a
dramatic role in this process all the way down to thresh-
old. This may occur simply because the process intrinsi-
cally involves high-momentum transfers; in any case it is
a clear indication of the importance of short-range effects,
especially the spin dynamics, and perhaps quark degrees
of freedom. It was found that a delicate conspiracy exists
between the K* and K**, and that the predicted quantum
mechanical destructive interference between them is
necessary to obtain agreement with the data. It is also
clear from the above that while K exchange plays only a
very small role at high energies, it does remain important
near threshold. The calculation of the polarization and



Piob =1.85 GeV/c

31 \ MESON EXCHANGE CALCULATION OF THE pp—~AA REACTION

Piab =3.60 GeV/c
T T

1871

Piab=6.00 GeV/c

107 T T 107 T 108 — — .
3 V555 =1
4 108f 3 108F TR
'~ :
>
o 104 E I04E E
~N 3
Q .3 3
3 10 10°k
—
T 42 1 102
~ 10 {6}
b 3
‘©
10! 4 10"
1 1 i " L " A i n N
0.0 0.4 0.8 0.0 0.6 1.2 1.8 0.0 0.6 1.2 1.8
-t'(GeV/c)? -t'(GeV/c)? -t'(Gev/c)?

FIG. 10. The effects of the initial and final state interactions on the magnitude of the cross sections at 1.85, 3.6, and 6.0 GeV/c.
The curves labeled \/E, =1 have no initial state interaction, the ones with V'S;=1 have no final state interaction, while the ones la-
beled V'S;Sy=1 have neither initial nor final state interactions. See Eq. (39). Due to the low momentum of the A’s in the final state,

neglect of their interaction has a large effect. See also Fig. 5.

spin correlation parameters is extremely sensitive to the
detailed nature of the meson exchanges.

The initial and final state interactions were an impor-
tant ingredient of our model, for they are responsible for
generating the necessary large polarizations (via spin-orbit
forces) and for damping the Born approximation cross
section to the experimentally observed levels. In the ab-
sence of independent experimental information to con-
strain these interactions, the test of our meson exchange
model was not as rigorous as it could have been. On the
other hand, the available data may in fact now provide a
useful piece of information about the K** coupling con-
stant, and the strength of the final state AA interaction.
We eagerly await new data to test these ideas further.

Note added in proof: The polarization data of Atherton
et al’" at 3.6 GeV/c was subsequently described by in-
creasing the difference between i, and pu_ for the AA in-
teraction.
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APPENDIX A: EMPIRICAL DETERMINATION
OF THE POLARIZATIONS
AND SPIN CORRELATIONS

We indicate below how to obtain several experimental
observables from the basic amplitudes. We begin with a
density matrix description of the initial uncorrelated beam
and target, which we represent by a separable (outer)
product: :

psp=1(1+0P)(1+0°P), .

After the interaction we have a density matrix describing
the AA system:

pan=T(0)pg, T (),

with T(0) the strong interaction transition matrix [see
Eq. (14)]. The matrix pz, is not separable in general.
However, as a 4 X4 matrix it can be spanned by the basis
set of 4x4 matrices Uﬁaﬁ obtained from outer products
of the Pauli matrices (0,,0,,0,) and the 2X2 unit matrix
oo. We find

par=+1(6) 1X1A+U'PK1A+1X0’PA+2Ck1‘7§‘7;\ ,
&l

A
=+1(0)Cy,0n0) .

Here _(u,v=0,x,y,z) and (k,/=x,y,z), while Cy
=(1,P2, P} P and Co,=(1,P2, P} P}). The quantities
Cy; are the correlation coefficients C,,, etc. The dynam-
ics of the strong interaction is thus contained in the polar-
izations and spin correlation coefficients and the quality
1(0); i.e., the differential cross section. .
We now wish to calculate p after both A particles un
dergo weak decay. Since each of these decays is indepen-
dent, the weak decay transition matrix will be a product:
T"i:“;mm =F amFum- _The transition matrices F for the in-
dividual decays of A and A will differ by a phase due to
charge conjugation. They can each be written as a prod-
uct of a Wigner & function and a radial weak decay ma-
trix element f’ wr €8s
9ii1 172
LN G (6,6, —6)fu -

Fum= 47

Here 6 and ¢ refer to the outgoing proton in the rest
frame of the A. For spin 5 particles we have explicitly

cf s*f
—sg g

oLl
2T

’
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with ¢ =cosf/2 and s =e'%sinf/2. Quantities f and g

represent the weak decay matrix elements f,,,, and

f—_1,2, respectively. Using these definitions we find for

the density matrix after both weak decays:
pop=11(0)C,(Foh F ) FopF') .

We use the convention that repeated indices are summed

over. The matrices (Fo,, F') are

2
(o= ”;I |g0|2 :
(F ¥ 1 | f ] ZCOSGk ay

orF )ZE aj — | g | *cosby
(k =x,y,z) .

These forms are found after identifying the direction
cosines with respect to the x .and y axes in the A particle
rest frame: cosf, =sinfcos¢ and cosf, =sinfsing. The
a; values are various products of ¢, s, f, and g; their ex-
act form is not important here since only the traces of the
matrices enter into the final result. Thus we obtain for
the double differential cross section

d% M _ i = A
———=—— |14+a Y PicosO,+a > Pi'cosb
dQda  (2n) 2 Piccosti+a 3 Ficcost
+aa& Y, Cyycosbycosh; |,
Kl
with a=(|f >~ |g|))/(|f|*+|g|? and a the same

quantity for f and g Here =(|f|*
+1g || f|?+ |g|?. The angular dlStI‘lbutIOI‘l is easily
obtained from this expression.

The normalization of Eq. (7) is found, by integrating
over both  and p solid angles, to be (167%)~!. For the
case of no initial polarization, the above expression
reduces to Eq. (7) in the text. To obtain the angular dis-
tribution for just one of the decays, we integrate the above
over the solid angle of the unobserved particle, and find,
for example:

1
W(0)= E( 14+aP COSGy) .

From this we calculate the expectation value of cosé:
(cosf)=aP /3. We thus obtain an expression for the po-
larization in terms of n experimentally measured quanti-
ties: P=(3/an)d,’_cosh;. Using the same method to
calculate the average of the product cosf;cos; we find
for the correlation coefficients Cy;:

Cy= :9~ {cosB;cosb; )
da

n —_—
_9 > (cosBycos;);
aan ;-1

In the above cases, when no initial polarization is present,
the “experimental” values of cosf are all measured with
respect to the normal to the reaction plane in the rest
frame of the particle. In order to find these quantities
from the decay angles measured in the laboratory, a
Lorentz transformation must be performed.

APPENDIX B:
CREATION OPERATOR FORMULATION
OF THE NN STATES

In this appendix we present the NN states using the
language of creation and annihilation operators for the
case of helicity states defined according to the phase con-
ventions of Jacob and Wick.> The symmetry properties of
parity, charge conjugation, and G parity are described and
invoked to obtain the form of the amplitude given in Eq.
(11). The relation between the helicity states of total an-
gular momentum J and the states in the L-S coupling
representation is displayed; each has its own particular
usefulness.

The single particle plane-wave helicity states

The helicity state |p,A) is obtained by rotating the
state | pZ,A) defined along the fixed Z axis into the direc-
tion P. In terms of the corresponding creation operators,
we have

291/2 )b;m

and (B1)
dip= 29”2 () pm,

for nucleon and antinucleon creation, respectively. Thus

we have

bia10Y=|pAY= (m; |R(P)|A) |pmy)

ms

—R(p)|p27) .

Clearly, the above forms (and those for b, and dp)
preserve the usual anticommutation relations for such
operators. Indeed, this canonical transformation permits
us to describe the nucleon field operator in either a pmy
or pA (helicity) basis as

#x=3 f d)mx/' E (4D, 11,)b . € P+ 0Dy, ) by €771

—E f (2w )3/2 (V'm /E)[u(p,Mbpre P +v(p,A

)dTLe'px]
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where px =PoXo—P'X and

u(p,A)=3 D 5®ulp,my)

m

1

Ap

=N |—= ‘9+A(ﬁ)>

v(p,A)= 2 @”2 A(Pv(p,myg)

N |22\ 2 pm, .
(0]
1

In the above, we identify the particle and antiparticle
spinors

1
u(p,mg)=N "—(UR Xom,
and |
v(p,ms)=N %U'—E X—msnms’
1
where w=e+m, N=[(e+m)/2m]'’?, and

=(—1)/2=*2_ From these the above helicity spinors fol-
low. It is important to note for our later derivation that
the operators b;k and d Iﬁ» have a significant spinor prop-
erty due to the appearance of the Wigner & function
Z'XP). That spinor property is

T—pk I -p= b +pA
and

dtpk | - =“d:-px ’
where we have bpk | _p—b_px and dph | _p—d_pl, etc.

The above minus sign arises from the (—1)¥ factor
contained in the 2/ P) under two reversals

p— —p— +p. In contrast, the quantity b o, evaluated -

at p— —p gives simply b_pm | —p= +bpm , etc. This
spinor property and the phase factors 7, permit us to re-
cover all of the Jacob and Wick results using the creation
operator formalism.

The NN states

Having defined the helicity creation operators for N
and N we now describe the product states for the NN sys-
tem. These plane-wave helicity states in the center-of-
momentum frame, including the Jacob-Wick phases,’ are
defined by

| PAA) =madfa b, [0), ma=(—)1/27472

|pIMM) =N, [ Ty ®ldpmdpablm, [0,

=N; 3 [ Zia®dpm, 243, PID 77 (— P)dly b

MM,

Here we take p;= —p,=p. The individual hellclty states
are defined to satlsfy

(o pl)operlpl}\'l):}\'].pl | piA1)

and therefore
[3(o +02) Ploper | PAIA2) = 7P (A —22) | pAidy)

The NN states are consequently eigenstates of the total
helicity operator (S:p)/ | p| with eigenvalue (A, —21,)/2.

The parity property of the above states is deduced from-
the parity properties of the individual N and N operators,
which are

Dbl P = s 2oL P = b,
and
2dl, Pt=ndtl,,; 2dl, 7= dt
pm 1IN —pmy> pPA NN -8 —p—2 -

Here yny= —7x=+1 are the nucleon and antinucleon in-
trinsic parities. Using these relations leads to the result

Z | phihy) =R -1, | —P—A1—2A2)

for plane-wave NN helicity states.

To study the operation of & on eigenstates of total an-
gular momentum in the helicity basis, we first form these
states by using the projection operator @m A(P) on
| pAA,). We have, with Ny =[(2J +1)/47]'/?

|PIMMASY =Ny [ D AB)B|phika) ;
a direct application of & to this state yields

P | pIMAA) = — 1) 2T pIM =0 —1s)
where one needs to use the spinor property of the b' and
dt operators. This result shows that the state
| PJMAA,) is not an eigenstate of parity. Eigenstates of
good JM and parity can easily be formed. One way to
write such states is to use

| £ = | PIMAAL)

im\ﬂm(——l)l—s'“s2 |pJM — A —Ay)

and thus obtain & | )3, ==% | £ ) ;5. The eigenstates of
parity used in this work are given in Eq. (9); they are sim-
ply related to the above choice.

When examining the physical content of our results,
especially near threshold, it is helpful to link the helicity
basis states to the L-S coupling scheme. We do this
by writing the state | PJMAAy) in terms of the creation
operators b and d for helicity states, and then using Eq.
(B1) to expand them:

“‘PMs' |O) .
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By comparison, the L-S basis state | pJMLS') is

|pPJMLS)=N; S (JM |LSM; M, ){SM, | + + MM, ) f @ﬁ{lo(fwdf)dngbT_pMs, |0),

=3 (IM |LSM M) [ Yiy, 3)apd]xbT s [0) .

Rather straightforward manipulation of these forms gives
the final standard result:

| pIMA L)Y =S CY(AA, | LS) | pLSIM ) ,
LS
with
CI(MAy | LS)=(++A—A; | SAY(LSOA | JA)

1/2
2L +1
2J +1 ’

Evaluation of the above coefficient leads to Eq. (13) given
in the text. The connection between helicity states and LS
states for a few cases of interest to our problem are given
in Table V.

We turn now to the last of the symmetries needed for
our problem: G parity. The operator for G parity con-
sists of charge conjugation (C) followed by a rotation by 7
in isospin space about the isospin y-component axis. G
parity is conserved in strong interactions. Thus,
G =¢'"?C. In the conventions used below, C operating
on the physical nucleon states gives C |p)=|p)
and C|n)=|f). However, the operators by,

and dp,, create states of good isospin T and projection
m: b;hmf |0)= |NpAm,) and d;xm, |0)= | NpAm,).
The relation of these states to the physical nucleon states
is as follows:

INpA3)=|p), [NpA—3)=[n),
|NpA+)=—|0), |NpA—3)=|P).

Thus, the creation operators obey the following transfor-

mation rules:
A A 1/2—m,.
Colhim CF=(—)"""al,

1/72—m

Cdlim C1=—(—) bl

Using this result it follows that the G-parity operator acts
in the following way:

G |NpAim.,)=|Npatm,),

_ 2_ 1:(_)21

To investigate the effect of G on the NN states, we first
form a two-particle state of good isospin:

| RNpIMA I Y =N, [ Dia®)dpm,
i t
X(dpkl ><l?_pk2)113 ( 0).
Application of C to this state yields
C | NNpJMAMAIT ) =(—) /()
X | NNpJMMA I —15) .

I—14

Note the interchange of helicity labels. On the other

hand, the full G operator gives
G | NNpIMAMII 3 ) =( =)+ | NNpIMAAIT ) .

The G parity of the | nJ) basis set [Eq. (9)] is now easily
determined to be (— )’ ! for n =2,3,4 and —(—)’+ for
n =1. Thus, if the T matrix is G-parity conserving, we
find that n =2,3,4 states may connect to each other, but
not to n =1. From the structure developed earlier, we see
also that based on parity alone, states n =1 and n =4
could connect to each other but not to n =2,3. These
rules therefore account for the matrix form given in Eq.
(11). Using the parity, time reversal, and G-parity proper-
ties of these helicity states, one can deduce directly Eq.
(14).
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