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Reactions between heavy ions at medium energy are calculated using the Boltzmann-Uehling-
Uhlenbeck equation. This equation incorporates the effects of a mean field as well as Pauli b]ocking
of the nucleon-nucleon collisions. The numerical solution for two light systems, ' O+' C at 253
MeV bombarding energy and ' C+' C at 844 MeV bombarding energy, is presented and discussed
in detail. In tne absence of nucleon-nucleon collisions, the theory reduces to classical mean-field

physics and agrees well with the quantal time-dependent Hartree-Pock theory. With collisions, the
system is driven toward equilibrium even at the lower bombarding energy. The final state nucleon
distribution is compared to single-particle spectra and is found-to agree quite well in shape.

I. INTRODUCTION

The study of collisions between heavy ions at medium
energy is a subject which is still poorly understood. At
low energy, the time-dependent Hartree-Fock (TDHF)
theory' provides a powerful tool for describing single-
particle observables. At high energies, nucleon-nucleon
collisions dominate the dynamics, and the intranuclear
cascade (INC) models are applicable. ' Unfortunately,
the approximations in these methods are not valid in the
medium energy regime. Hartree-Fock theory requires
that the residual interaction be neglected in comparison to
the mean field generated by the nucleons. At low energy
the residual interactions have small effects because of
Pauli blocking. However, at medium energy the available
phase space is enlarged and the residua1 interactions are
important, producing collisions between the nucleons.

Attempts have been made to include a collision term in
TDHF calculations in order to extend the range of appli-
cability to higher energies. Due to the enormous
mathematical complexity, these calculations have not yet
produced useful results for interpretation of the experi-
mental data. It should also be mentioned that the repre-
sentation of quantum corrections to the mean-field theory
by a collision integral may not even be well justified under
the conditions found in medium-energy nucleus-nucleus
collisions. In deriving a collision integral, one must as-
sume that the time scale for the mean-field evolution is
long compared with the time scale of the collisions. How-
ever, a more general approach without the collision ap-
proximation gives a theory which is even more difficult
to solve numerically.

Despite the theoretical uncertainties, we feel it is
worthwhile to make further approximations in order to
arrive at a computationally feasible theory. It appears
that a manageable description from a computational point

of view is obtained from a classical treatment of the
single-particle density in the quantum transport equation.
First numerical results were obtained by the Michigan
State University group. ' The theory is essentially the
Boltzmann equation for the single-particle distribution
function, which includes both a force term, given by the
gradient of the mean field, and also a collision integral of
the Uehling-Uhlenbeck form. The theory has the satisfy-
ing attributes of reducing to mean-field theory at low en-
ergies and to the INC model at high energies. It has been
shown in one-dimensional calculations' that the classical
mean-field theory retains most of the physics of the
TDHF theory. In this work we shall extend the numeri-
cal study of the three-dimensional BUU equation to lower
energies than studied in Refs. 7 and 8, and compare with

- TDHF as well as with some experimental single-particle
spectra. The classical reduction works well for the mean-
field dynamics, as we will see below.

In the next section we will review our numerical tech-
nique, which basically follows the structure of the INC
method. Several modifications of the method described in
Ref. 7 were necessary to apply the technique to collisions
at energies below 1002 MeV. Our tests to assess the va-
lidity of the numerical techniques are described in Sec.
III. In Secs. IV and V we apply the theory to the reac-
tions ' 0 + ' C and ' C + ' C at bombarding energies of
253 MeV and 843 MeV, respectively, and compare with
TDHF and experimental proton spectra.

II. THEORY

For derivations of the Boltzmann-Uehling-Uhlenbeck
equation (BUU) the reader is referred to Refs. 11 and 12.
The equation describes time evolution of the single-
particle phase space distribution function f (p, r) and reads
as follows:

crv~2[f ~f2(1 f~ )(1 f2 ) —f~ f2 (1 f&)(—1 f, )—]——cjft +v V„f, VUV' f, = —j-d'
(2~)'

&&(2')'6'(p+p, p, p, ) . ——
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Here U is the mean-field potential, which will be a speci-
fied function of the local density. With the left-hand side
set to zero, the equation is the Vlasov equation, which de-
scribes the single-particle distribution evolved by a self-
consistent mean field. Interpreting f(p, r) as the Wigner
transform of the quantum mechanical density matrix, the
Vlasov equation can be derived from TDHF in the limit
of smoothly varying potentials.

We need to specify both the mean-field function and
the collision cross section before proceeding to the numer-
ical details. In principle, these should be calculated by the
methods of many-particle quantum mechanics, but we
prefer to adopt a more heuristic approach. In the energy
domain of interest, the nucleon-nucleon scattering is well
described by an attractive intermediate range potential to-
gether with a hard core scattering cross section. Roughly
speaking, the attractive potential gives rise to the mean
field, and the hard core scattering is treated with the col-
lision integral. We demand of the mean-field potential
that it reproduce nuclear matter saturation properties and
give a compressibility coefficient of %=200 MeV. It is
not possible to achieve this with a simple-functional form
for the interaction; we use the following:

U(p) = —356p/pa+ 303(p/po) (MeV) .

As with the mean field, the collisional cross section ap-
propriate for Eq. (1) might be quite different from the free
cross section. The Pauli blocking of rescattering certainly
reduces the effective cross section at low energies where
the wavelength of the nucleons governs the magntiude of
the coss section. Even at high energy there might be sub-
stantial differences. In one recent work, ' for example,
the collisional rate was found to be reduced by higher-
order many-particle effects not included in Eq. (1) com-
puted with free cross sections. In this work we use a con-
stant isotropic cross section of 40 mb in Eq. (1), which we
feel reasonably represents the effects of the many-particle
influences.

We now outline the numerical method, which is essen-
tially the particle-in-cell method of hydrodynamics. The
phase space distribution function is represented by a col-
lection of test particles, whose coordinates are evolved in-
dividually. For evaluation of quantities requiring the
phase space density such as the potential field or the Pauli
operator, the number of test particles in a cell is counted.
For an accurate calculation of the potential field, the cell
size should be large enough to contain many test particles.
On the other hand, if the cells are too large, the nuclei
would not preserve their spherical shape under the field
dynamics. %'e found a good compromise between these
conflicting demands was to take 100 test particles per nu-
cleon and a cell size of 1 fm . With these numerical pa-
rameters, there are about 16 test particles in a cell at nor-
mal nuclear matter density, giving a statistical fluctuation
of 25%.

Evolving the test particles by Newtonian mechanics is
equivalent to solving the Vlasov equation. We use a
discrete mesh in time, with a time step of 0.2 fm/c. We
use first-order difference equations for the evolution of
momentum and position, which actually have second-
order accuracy when the momentum is evaluated at time

points halfway between the times of the position deter-
minations:

Xn Pn (1/2)~t +Xn —1

Pn+(1/2) ~+n~t +Pn —(1/2) .
(3)

(4)

/V

f(p, r)= gn;, (5)

where N=100 is the total number of simulations, n; is
the number of particles in that volume in the ith simula-
tion, and 0 is the phase space volume. The collision is
blocked with a probability P given

P = 1 —max[0, 1 f ( I)]max[0, 1 —f (—2) ] . (6)

The average number of particles in this phase space
volume is around 40 for low momentum in the interior of
a nucleus, so the statistical Auctuations do not cause a
serious error. However, the phase space volume is too
large to describe the Pauli blocking at the nuclear surface
properly. In order to deal with the surface more realisti-
cally, we changed the blocking prescription in two
respects. First, we divide the coordinate space sphere into
halves along each coordinate plane. If the difference in
the number of nucleons in pairs of half spheres exceeds
the statistically expected variance, we use the more occu-
pied of the two half spheres to determine P. Second, we
distinguish projectile and target nucleons in, the beginning
and only allow a particle s first collision to be with a par-
ticle from the other nucleus.

III. NUMERICAL TESTS

We describe here the tests we made on the numerical
method to give us confidence that we could represent the

For the initial conditions we assume that the particles are
distributed uniformly in spheres with a radius parameter
of ro =1.12 fm. The momentum distribution is given by a
local Fermi gas approximation. The collision integral is
treated by dividing the ensemble of test particles into indi-
vidual INC simulations. Collisions are allowed between
particles only in the same INC group.

The collision integral is treated in a stochastic way, al-
lowing test particles to undergo collisions with a probabil-
ity proportional to the Pauli-corrected cross section. For
each time step the collisions which occur are determined
as follows. The particles 1 and 2 collide in this time step
if

(a) the particles pass the point of closest approach;
(b) the distance at nearest approach is smaller than

+~~NN»
(c) they are not Pauli blocked.
The main numerical problem at low energies is the

evaluation of the Pauli blocking factors (1 f) in the co—l-
lision integral. The occupation factor f is determined by
examining the neighborhood of the final state phase space
whenever a collision would otherwise occur. We count
the number of particles in a sphere centered at the final
phase space coordinates of the colliding pair. The sphere
has a radius of 1 fm ' in momentum space and 1.1 fm in
coordinate space. The occupation factor is thus deter-
mined by
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physics of the BUU equation at energies under 1003
MeV. One problem that immediately appears is that the
longer reaction time at lower energies makes ' higher
demands on the model to reproduce static nuclear proper-
ties. So we first examine the properties of the nuclei in
their ground state by studying collisions at very large im-
-pact parameter, where nothing should change. Basically,
we would like the distribution of particles in position
(with respect to c.m. ) and momentum to remain un-
changed. One possibility to test the stability is to count
the number of emitted particles. A particle is considered
as emitted if first it is bound by less than 10 MeV and
second, no other particle of the same simulation is closer
than 2 fm. Under pure mean-field dynamics the emitted
particles correspond to less than one physical particle.
Allowing nucleon-nucleon collisions within each nucleus,
we find that, on the average, 1.7 physical particles are
emitted from the ' Q + ' C system evolved for a time of
160 fm/c. Many of these particles have scattered near the
surface, where the Pauli blocker is least effective. We ex-
pect therefore that the number of artificially evaporated
particles is reduced because in the actual calculations the
nucleon-nucleon collisions between nucleons of the same
nucleus are initially turned off. We also find that the nu-
cleus holds its shape and rms radius very well for this
time period. This tests the consistency of the assumed po-
tential function as well as the accuracy of the numerical
method.

Angular momentum conservation is important at the
low energies where nuclei can stick together, but our col-
lisional prescription does not guarantee it. However, we
found that no additional effort to conserve angular
momentum was required; in typical collisions the angular
momentum is conserved to better than 94% on average,
varying between 86% and 97%. The Pauli blocking
prescription is found to be 96% effective for noncolliding
nuclei. We interpret this to mean that we can apply the
method to collisions in which the Pauli blocking is expect-
ed to be less than 85%; for lower energy collisions our
method is not accurate enough to separate true collisions
from noise. While the Pauli-blocking technique is effec-
tive in the sense of preventing nearly all collisions in a
cold system, it does allow the momentum distribution to
smear somewhat. However, the average kinetic energy
remains close to the initial value.

Iy. THE REACTION ' O+ ' C
AT 252 MeV

We first study the reaction ' 0+ ' C at 254 MeV bom-
barding energy, which has recently been studied by
Cielbke et aJ'. ' The average Pauli blocking factor at 258
MeV is 0.84, to be compared with the blocking factor of
0.96 for noninteracting nuclei. Since one out of four col-
lisions is an artifact of the numerical method, this energy
is at the lower bound of applicability of our model.

For our calculations on this system, we follow the sys-
tern for a time interval of 160 fm/c, examining various
impact parameters. Each impact parameter calculation
requires 4 h of CPU time on a VAX 780 computer. Fig-
ure 1 shows the density profiles for a range of impact pa-

rameters. The vertical frames show the system at time in-
tervals of 20 fm/c.

We see a clear separation between three domains: a re-
gion of inelastic scattering at small and large impact pa-
rameters, separated by a fusion region at intermediate im-
pact parameters.

The collisions at the lower impact parameter show
complete momentum transfer without fusion. Much of
the dissipation takes place already in the first stage of the
reaction. At 20 fm/c 30% of the linear momentum is
transferred, and the central density in the central region
has increased to 1.3po. At 40 fm/c 700 collisions have oc-
curred, and the scattered particles have an increased kinet-
ic energy (measured with respect to their local rest frame)
by about 20%. This causes the system to expand in coor-
dinate space. The density decreases to 0.80 nuclear matter
density at 60 fm/c. However, the potential field at the
surface is still quite attractive and most of the particles
are pulled back, restoring the residues to normal nuclear
matter density after 140 fm/c. After 160 fm/c the nuclei
are clearly separated, having exchanged 25% of their nu-
cleons. 77% of the nucleons remain in the residues with
an excitation energy of 41 MeV. The others are free parti-
cles with a spherically symmetric momentum distribution.
Thus we see a distribution of emitted particles similar to
the thermal source models, although the system does not
fuse. Fusion occurs for impact parameters starting with
b=2.8 fm. Thus there is an analogy in the BUU physics
to the fusion window found in TI3HF calculations at low
energy. Comparing with the lower impact parameter col-
lision, there are 10% less nucleon-nucleon collisions but
more interchange of nucleons in the b=2.8 fm collision.
After 160 fm/c, projectile and target nucleons have also
the same distribution in coordinate space. Although the
system is not spherical at that time, one sees clearly the
transition from a prolate towards a spherical shape. The
system rotates, sharing some of the initial angular
momentum with most of the angular momentum carried
off by the emitted particles. The residue appears to have
very little angular momentum, but the lack of complete
angular mome~turn conservation in our model does not
allow a small residual angular momentum to be reliably
calculated. The transition from fusion to deep inelastic
scattering is found at b=4.2 fm. Although initially the
time evolution is very similar to the b= 3.8 fm reactions,
the neck between the nuclei decreases as a function of
time. The system develops into two nuclei joined by a
neck which are nearly at rest. If Coulomb and centrifugal
forces are present, the nuclei would separate with very low
kinetic energy. Finally, at an impact parameter of b=4.9
fm, we are in the regime of peripheral reactions. The re-
action is still highly inelastic, with 50% momentum
transfer, but both remnants remain spherical, have normal
nuclear matter density, and emerge at a deflection angle
of —52'.

One observable directly calculable from these runs is
the fusion cross section. Since the boundaries for fusion
are in between 2.2 fm& b &2.8 fm and 3.8 fm& b&4.2
fm, the predicted fusion cross section is in between 200
and 400 mb.

It is of interest to compare the classical collisionless
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FIG. 1. Overview of the numerical simulation of the reaction ' 0+ ' C at 252 MeV bombarding energy. The coordinates of all
2800 particles are projected onto the xy plane, where z is the beam axis and x the direction of the impact parameter. For five impact
parameters ( b = 1.3, 2.8, 3.8, 4.2, and 4.9 fm) the reaction is displayed in time intervals of 20 fm/c.
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FIG. 2. Density projection of the ' 0+ ' C system, comparing the mean field theory Eq. (3a) with THDF results. For five dif-
ferent impact parameters ( b = 1.3, 2.8, 3.8, 4.2, and 4.9 fm) the final results of both calculations are displayed.

dynamics with TDHF theory, which does the same phys-
ics quantum mechanically. In Fig. 2 we show the Vlasov
results at varying impact parameters compared with
TDHF results provided by Stoecker and Cusson. ' Fusion
is absent in both theories and the predictions of energy
loss and deflection angles are quite similar. Thus the con-
clusions of comparisons between quantum and classical
mean-field theories in one dimension' extend to realistic
three-dimensional calculations as well.

Another simple experimental observable is the single-
particle spectra of particles emitted from the reaction sys-
tem. In many circumstances the single-particle spectra
can be described by a thermal source, which assumes that
the energy and the momentum are shared statistically
among a group of nucleons. The angular distribution is
then isotropic in the frame of the source and the energy
spectrum is exponential with a characteristic temperature

determined from energy conservation. We will now ex-
amine how well these features show up in our model. Fig-
ure 3 compares the theoretical proton spectra (in the lab)
compared to measurements of Gelbke. ' We see that the
slope agrees well with the data at all angles except for the
most forward. The fact that the theoretical distributions
approach exponential shows that not many collisions are
necessary to thermalize the system, as far as can be deter-
mined from the single-particle spectra. The magnitude of
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FIG. 3. The proton spectra in the reaction ' 0+ ' C at 253
MeV, comparing theory with experimental data of Gelbke et al.
(Ref. 14). The curves show the energy spectra at angles of 18',

' 40, 70, 130, and 160 with curves displayed by a factor of 10
for clarity in the figure.

FIG. 4. Angular distribution of the emitted particles as a
function of time in steps of 20 fm//c. The particles emitted in
the first time interval are shown on the bottom curve and the
higher curves show the accumulated particle distribution at suc-
cessive steps of time.
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TABLE I. Final kinetic energy of the fragments and deAection angle for TDHF, Vlasov, and BUU
equations for five impact parameters (b=1.3, 2.8, 3.8, 4.2, and 4.9 fm} for the reaction 253 MeV
16O + 12C

Impact parameter (fm) 1.3 2.8 3.8 4.2 49

THDF

Vlassov

BUU

E frag (MeV)
theta
E frag (MeV)
theta
E frag (MeV)
theta

75
—28

37
—43'

—58'
55

—68'
at rest

47
—80

32
—84

29
—90'

26
—111'

39
—91'

50
—66'

44
—52'

the theoretical cross section is systematically too high ex-
cept at the most forward angle at low energies. This
discrepancy is undoubtedly due to the inadequate treat-
ment of clusters in mean-field theory. The theory predicts
that essentially all emitted particles are free, but experi-
mentally many particles form clusters on their way out.
Thus the experimentally measured proton cross section is
reduced. At low energy and the most foiward angles the
theory has the opposite tendency, underpredicting the
cross section. This is probably due to the emission of nu-
cleons in the final state from the excited nuclei in the exit
channel. We find that the average excitation energy in the
system at 160 fm/c is 40 MeV, so several nucleons could
easily be emitted.

The angular distribution of emitted particles in the c.m.
system is shown as a function of time in Fig. 4. At early
times, shown in the bottom of the figure, the distribution
is peaked along the beam axis. The distribution becomes
nearly isotropic for particles emitted at later times. Also,
the out-of-plane correlation is moderate; we find
o.(/=90')/o. (/=0') =0.73. As would be expected with a
system evolving toward equilibrium, the earliest particles
are most energetic on the average. The later isotropic
component has a lower energy, consistent with the
thermal source estimates.

The question of whether the thermal source is spatially
localized in the geometric overlap region between the two
nuclei has. caused much discussion. ' ' In this picture
the nucleons in the overlap region between target and pro-
jectile form a highly excited subsystem. In our calcula-
tion we find that the emitted particles arise from other re-
gions of the nuclei as well as from the overlap region.
This shows that the system considered is too small, in re-
lation to the interaction range, to show a geometrically lo-
calized hot spot.

The dependence of multiplicity on impact parameter
has been a useful quantity for interpreting collision at
higher energies, so we examined this dependence at 254
MeV in our model. We find there is no strong depen-
dence on impact parameter. The charge multiplicity
varies from (Z) =3.2 for head-on collisions to 2.5 for
peripheral collisions at b=5.2 fm. However, it should be
mentioned that after 160 fm/c, the reaction products still
have a substantial excitation energy which will give rise to
further evaporation.

Finally, we examine the energy loss and the deflection
of fragments in the final state. As mentioned earlier, the
BUU equation predicts complete momentum transfer up
to impact parameters of 3.8—4.2 fm. Above that, there is

nuclear scattering with large energy loss and deflection
angle. We display these quantities in Table I. However,
as may be seen from Table I, also in the mean-field
theories the nuclei lose a considerable amount of their ini-
tial energy.

V. THE REACTION ' C+ ' C
AT 84A MeV

Collisions of ' C + ' C at 842 MeV have been studied
in several experiments at CERN. ' ' The BUU model
of the dynamics should be more reliable at this higher en-
ergy, because the Pauli blocking is less critical, and also
because the greater phase space available will make the
collision approximation more accurate. As for the previ-
ous system, we will examine the density profile as a func-
tion of time and impact parameters and calculated the
single-particle observables predicted by the model. Figure
5 shows the density profiles for the two impact parame-
ters, b= 1 and 2.8 fm, plotted at 20 fm/c time intervals.

At the lower impact parameter there are many
nucleon-nucleon collisions in the early stage of the reac-
tion. By 20 fm/c 900 collisions have already occurred,
despite 60% blocking due to the Pauli principle. The sys-
tems becomes quite spherical, and more than 50% of the
momentum is transferred. The kinetic energy of scattered
particles is twice as large in the c.m. frame compared to
that of those which have not scattered. The central densi-
ty is normal nuclear matter density at 20 fm/c, but the
system continues to expand as time goes on. By 120 fm/c
the system has disassembled and dispersed. On the aver-
age, 14.5 particles are evaporated. Although there ap-
pears to be concentration of particles in the figure, in fact
the density never exceeds —,

' of nuclear matter density. In
all likelihood, there would be much clustering in the final
state, but that is not calculable in our model. There is a
transition at b=2 fm from a spherical disassembly to a
peripheral reaction with participant-spectator characteris-
tics, without a region of deep inelastic scattering in be-
tween. In other words, the nuclei have too much energy
to be simply slowed down without becoming completely
destroyed. An example of peripheral reactions is shown
for b=2.8 fm. One sees a behavior similar to that found
in high energy reactions: There is a separation between
targetlike and projectilelike fragments and an overlap re-
gion that is a source of particle emission. At 20 fm/c,
some fast particles have already emerged in forward-
backward directions. By 60 fm/c the spectator remnants
are already well separated, and have normal density by 80
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0 136
10 3 I

34 68 102 170
ENERGY (MeV)

FIG. 7. The proton spectrum in the reaction ' C + ' C at 844
MeV, comparing theory with the data of Refs. 20 and 21. The
curve shows the energy spectrum at angles of 32', 54, 90, and
120 .
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transferred. Hence ' C nuclei at 848 MeV are not able to
completely stop each other. In contrast to the 254 MeV
' 0+ ' C reaction, the 844 MeV ' C+ ' C system shows
a strong impact parameter dependence of the multiplicity
of the evaporated particles. It varies from 14.5 at 6= 1

fm to 3.6 at 6=4.9 fm.

VI. CONCLUSIONS
C)

t3

b

QO 180
8

FIG. 8. Angular distribution of emitted particles in the reac-
tion ' C+ ' C at 844 MeV. The -curve shows the calculated
center-of-mass angular distribution of emitted partic'les at 120
fm/c.

with the data of Jakobsson et al. ' ' at four angles they
measured between 32' and 120'. However, the overall nor-
malization of that data is 1.5 lower than those of Ref. 19,
and so our calculation overpredicts the data. As men-
tioned earlier, the theory does not properly treat cluster-
ing, and therefore we expect a larger cross section. To ad-
dress the question of equilibrium emission, we shown in
Fig. 8 the angular distribution of the emitted particles in
the c.m. frame. The particles around 90 deg arise mainly
from small impact parameters and have suffered on the
average more collisions than those contributing to the
forward/backward spectra, which also have a higher aver-
age kinetic energy. Also here we do not find a strong
dependence on the out-of-plane angle. The ratio of emis-
sion probability at /=90' to /=0' is 0.84.

The ratio of the final to the initial momentum I'z asso-
ciated with one of the reaction partners is displayed in
Fig. 9. For central collisions 75% of the momentum is
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E

o 0
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FIG. 9. The graph shows the ratio of the final to initial

momentum p, associated with particles of one of the reaction
partners.

Our study of the classical mean-field theory with the
Uehling-Uhlenbeck collision integral shows two general
features that make the theory appear to be very useful for
analyzing single-particle observables in medium-energy
heavy-ion collisions. First, we found that the collisionless
mean-field theory reproduced the results of TDHF quite
well at 25M MeV, and the agreement is even better at 844
MeV.

This confirms and extends comparisons made in one di-
mension, ' and shows that the quantum physics is not
really important for the mean-field behavior, once the ini-
tial single-particle distribution is properly specified. At
253 MeV, the Uehling-Uhlenbeck equation predicts fusion
for intermediate impact parameter reactions, whereas in
mean-field theory there is complete transparency for all
impact parameters at this energy. The single-particle
spectra show two components: an early preequilibrium
component which is strongly peaked in forward-backward
direction from the first particles emitted and a nearly iso-
tropic thermal component of the later particles, which
gives most of the cross section at 258 MeV. The energy
distribution of the particles approximates an exponential,
which, however, varies in slope depending on the angle in
the center of mass. Thus the theory predicts definite
differences from the thermal source models that postulate
complete equilibrium. At higher energies the nuclei can-
not transfer enough momentum to fuse, but there is still a
very large linear momentum transfer and kinetic energy
loss of the final state nuclei. So far this domain has not
been studied very well experimentally; measurements of
linear momentum transfer on heavy targets show that
linear momentum transfer is complete at low energies and
falls off smoothly to energies of the order to 1002 MeV.

There is also a large momentum loss in the mean-field
theory, but it is not nearly as complete as we find it with
the BUU equation. The basis question is the degree of
equilibration in collisions at these intermediate energies,
and while our method appears to be a useful tool for
studying this question, some cautions should be noted.
The intrinsic and numerical approximations in our
description could bias the conclusions in either direction.
The actual quantum physics might be more dissipative be-
cause the many-particle wave function has correlations al-
ready in the initial state which are neglected in the BUU
equation. Expressed in different language, the off-shell
propagation of particles could lead to additional energy
loss mechanisms not calculated in our on-shell theory. On
the other hand, the classical BUU equation is likely to
overestimate the dissipation as compared with the extend-
ed TDHF calculations because the continuum approxima-
tion to phase space in classical physics allows transitions
that would be quantum mechanically forbidden. Finally,
on a purely numerical level, the Pauli blocking technique
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is less than perfect. We feel it is adequate but have no
way of checking beyond examining the fraction of col-
lisions blocked. We are currently extending the calcula-
tion to larger target masses, where the distinction between
the emission source and the spectator matter should be
clearer. Also much more detailed data are available for
larger targets.
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