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I

The microscopic model of the distorted-wave Born approximation theory for (p,o.') reactions for-
mulated in the isospin representation is compared with a semimicroscopic analysis using cluster
form factors and SU(3) spectroscopic amplitudes. The differential cross sections of a particles emit-
ted in the reaction Al(p, o,) Mg have been measured at the bombarding energies 20, 24, 30.5, and
45 MeV. The microscopic as well as the semimicroscopic distorted-wave Born approximation
analysis reproduces the angular distributions in a large range of incident energies when using
energy-dependent optical potentials. The relative intensities of the transitions to the ground state
and excited states up to E =6 MeV are described quite well in the semimicroscopic analysis.

I. INTRODUCTION

The application of the (p,a) and (a,p) reactions as a
spectroscopic tool requires a semimicroscopic or micro-
scopic description for this type of nuclear reaction. In the
first microscopic analyses, harmonic oscillator single-
particle wave functions were used. ' Falk has
developed a microscopic model which uses the principle
of expanding single-particle wave functions that are gen-
erated in a Woods-Saxon potential in terms of harmonic
oscillator wave functions. Furthermore, a theory of
three-particle transfer reactions which is derived from a
generalization of the Bayman-Kallio method of calculat-
ing the two-nucleon form factor has been presented by
Smith and Bayman et al. The inclusion of finite-range
effects to the microscopic theory has been performed by
Falk et al. and Oberhummer. Furthermore, the micro-
scopic model has been formulated in the isospin represen-
tation by Kunz et al. ' and by Oberhummer et al. "

In the semimicroscopic formulation of three-nucleon
transfer reactions the spectroscopic amplitude is calculat-
ed using the microscopic model, whereas for the form fac-
tor a cluster approximation is used. In this formalism the
form factors are easy to calculate and result generally in
better fits for the angular distributions. ' A semimicro-
scopic model which includes coherence. over configura-
tions and intermediate couplings has been devised by
Smits and Siemssen. ' For nuclei in the Op and 1s Od shell
another semimicroscopic model using the SU(3) scheme
has been developed. ' ' In this method the cluster spec-
troscopic factor is calculated in a simple manner. A num-
ber of (p,a) and (a,p) reactions has been analyzed in this

13, 15, 18, 19

The application of a cluster form factor in the semimi-
croscopic model results in angular distributions indepen-
dent of the specific microscopic configurations. The
shape of the angular distribution is only determined by
the transferred total angular momentum J. This has been

confirmed experimentally in the Op shell. ' ' On the oth-
er hand, in the sd shell some hints of shape differences in
the angular distributions with the same J transfer are
found, ' suggesting an analysis using a microscopic
form factor. Therefore, we have undertaken a series of
(p,a) experiments in the sd-shell mass region. '9 " The
experimental data are compared with results of DWBA
calculations in the microscopic description as well- as in
the semimicroscopic model using the SU(3) scheme. In
order to make a comparison between these two methods
feasible, the same set of shell-model wave functions has
been used.

In this paper we present as a first result an analysis of
the Al(p, a) Mg reaction. Former work on this nucleus
includes investigations of Kost and Hird who have stud-
ied this reaction at 41 MeV with a simple cluster pickup
model. In the work of Oberhummer et al. " this reaction
has been investigated with polarized protons at E~ =34.73
MeV.

In Secs. IIA and IIB we introduce a microscopic for-
mulation of the DWBA theory for (p,a) reactions using
the isospin formalism. We thereby use the method of per-
forming a Talmi-Moshinsky transformation of the three-
nucleon wave function in terms of harmonic-oscillator
wave functions. Further details of the derivation of the
expressions given below can be found in Ref. 11. In Sec.
II C we calculate the transition amplitude using a cluster
form factor and give the assumptions leading to the clus-
ter approximation. In Sec. II D we discuss the calculation
of spectroscopic amplitudes in the shell model and the
SU(3) method of calculating cluster spectroscopic factors.

In Sec. III the experimental results are presented for the
Al(p, a) Mg reaction measured at four energies between

20 and 45 MeV. In Sec. IV the input data required for
the DWBA calculations are summarized: in Sec. IV A the
optical potential parameters are deduced from elastic
scattering data, and in Secs. IV B and IV C the calculation
of the form factors and the spectroscopic amplitudes are
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described. In Sec. V the developed formalism is applied
to the reaction Al(p, a) Mg, and finally, the results are
discussed.

II. FORMULATION OF THE DWBA THEORY

A. Transition amp1itude
with a microscopic form factor

The differential cross section for the reaction A(p, a)B
can be written as

do PpAI a8 ka 1

dQ (2~)2 kp (2s~+1)(2J~+ 1)

M M~M~
I T(p, )(~») I'.

The quantities ppz and p ~ are the reduced masses in the
entrance and exit channel, and kp and k~ are the relative
momenta in these channels. The spin and magnetic quan-

I

FIG. 1. Coordinates used in the three-nucleon transfer reac-
tion.

turn numbers of the projectile nucleon are sp and Mp,
respectively, whereas Mz and Mz are the magnetic quan-
tum numbers of the target and residual nucleus.

The transition matrix is given in the 0%'BA by

T1„1 (A,B)=I f dRdr x' '*(k, r~B)&Q~QB I
v

I 1t~g~ &'x'+'(k~, r~~) . (2)

In the expression for the transition amplitude the integra-
tion is carried out over the center-of-mass coordinate
R= —,

'
( r1+ r 2+ r 3) and the relative coordinate

r = —,
'

( r1+ r 2+ r 3)—r 4 between the projectile nucleon la-
beled 4 and the center of mass of the three transferred nu-
cleons labeled 1, 2, and 3. The optical wave functions
X'+'(k~, r~z) and X' '(k, r~B) in the entrance and exit
channels are functions of the relative coordinates
r~~ =(mB/m~)R —r and r B ——R—(m~/m )r in these
channels (see Fig. 1).

The antisymmetrized nuclear matrix element with the
superscript a

& 0A'
I
v

I @ 0 &'=(')'"(")'"&O'O'
I
v

I W,W' &

depends on the internal wave function of the projectile 1t~,
the ejectile g, the target nucleus gz, and the residual nu-
cleus gB. The binominal coefficients

(4)1/2

3
V= + V~q(r;4), (4)

which is a sum over the effective nucleon-nucleon poten-
tials V;4(r;4) between the projectile nucleon 4 and the
three transferred nucleons 1, 2, and 3. Also we need the
antisymmetrized wave functions for the a particle, which
can be split up into a space and spin isospin part

L =0
g(g]pe&g3yg4) = q ~( r 1, r2& r3 r4)~~ —Q

a

S =T =0
XX~( I

& 2& 3&4)M =N =0s a

stem from the antisymmetrization procedure.
In order to calculate the nuclear matrix element (3) we

need the interaction potential responsible for the three-
nucleon transfer

and

(A)1/2
3

The wave function of the target nucleus Pz can be ex-
panded in the JT representation with the wave functions
of the residual nucleus and the three transferred nucleons

1/2 gPg(gg )M~N~ =(3 g g S~B (PJT)[PB(gB) Xgx'(g»g2, g'3) ]M N
JJ~ p
TTg

where the cross product is defined as

l 4(4B ) + Px(41&42&43) ]M~N~ = g g & JB~B~~
I J~~~ & & TB~BT~

I T~~~ &

MJ MN~N

+WB(kB )MBNB1lx(41~42~43)MN
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f~x(gl, g2, $3)Mlv =N(p)Z(p)p„(g„g2, $3)Mx

where N(p) and Z(p) are the normalization and antisymmetrization factors given in Ref. 11. The three-particle wave
function can be split up into a space and spin-isospin dependent part by transforming from the jj to the LS representa-
tion using two 9j symbols

L12 S12 J12j1
Qg(gl g2 $3)mdiv

—p Q ( J I3 —,
'

j3 [%„(r 1, r2, r3) Xp (,2, 3) ]~&
LS Ll2S)2

L12 S12 J12

By inserting (5)—(9) into the expression for the nuclear matrix element (3), we can split up this matrix element into a
space part and a spin-isospin part. The spin-isospin part can be calculated using spin algebra. In this way we obtain for
the transition amplitude

and p represents all internal quantum numbers necessary to characterize the three transferred nucleons. The gq and $21

are the internal coordinates of the target nucleus A and the residual nucleus 8. The g;=(r;,o;,r;) with i =1, 2, and 3
are the space, spin, and isospin single-particle coordinates of the three nucleons with r; having their origins in the center
of mass of the core B. The expansion coefficients S~g(pJT) are the spectroscopic amplitudes as discussed in Sec. II D.

The antisymmetrized three-particle wave function can be written as

T(p ) (A,B)=(3)' g (JgM21JM
l JgMg)(T21N~ , ( ——, )

l —TgNg)
JM

Xg (L (M+M ) ( —M )
l
JM ) ( —M, —( —M )

l
Oo~ ~ ( — )

l
o»

L

I1

Xrf 2 ( 1)
2

~s +T, , lg(p) I2
p L)2S)2

L&2

T j2
S12 J12

p

L 12 S12 J12

l3 —,
'

j3 S„'g(pJT)

L —,
' J

X f f dRdr X' '(k~, r~21)FQ (R, r)X'+'(kz, rzz),

where the configuration factor g (p) comes from the antisymmetrization and normalization procedure. "

B. Microscopic form factor

The form factor FQ (R, r ) is defined as the space part of the nuclear matrix element

3

pgf (R, l)= p (1 i, lg, p3, r4)0 X pl4~pi4) p (pl, l2, i3rM li=1

In order to calculate this form factor we have to transform from the coordinates ( r 1, r2, r3, r4) to the new coordinates
R, r, r12 ——r2 —rl and r123 13 2 (rl+r2) shown in Fig. l.

The a-particle wave function is assumed to have a Gaussian form

y (rl, r2, r3 14)0— 1 exp qg (r; rJ—)—
1T

' i&J
(12)

with a size parameter g =0.233 fm, which is correlated to the equivalent harmonic oscillator constant v =0.434 fm
by g = —,v~ and to the rms radius of the a particle by (r ) '~ =3/gq = 1.61 fm. Performing the coordinate transforma-
tion we obtain

' 3/4

exp[ —v~( —', r 2)]
3~2

-+ ~ ~ ~ O (1) ~ (2) ~ -+
%a( 1 2p 3 4)0 g ( )g0n ( r12p r 123)

3/4

P[ v ( 4 12+ T 123)]
2 & 2 (13)

The interacting potential is also assumed to have a Gaussian form
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3 3

g V;4(r;4) = Uo Q exp[ —P (r4 —r;) ], (14)

with Uo ——70 MeV and P=0.632 fm '. For this potential we transform to the new coordinates by performing the
Chant-Mangelson approximation in the (p,a) case

12 123) V ( ) V ( 12 123)

=3UO exp( —p'1') I —, exp[ —p'( —,112+ 91123)]+—,
'

exp[ —l3'( —,
'

1'123)] I

and in the Glendenning approximation,

V( r, r12, rl23)= V"'(r) =3Uo exp( P—r ) .

The space part of the three-nucleon wave function is given as

( I 2 3)M~=I['p( 1) 'XV( 2) 'j " "XV(r3) IMI

with single-particle wave functions

j
y(r;) '= —u(r;)„1, Y' (r;)

(15)

(16)

(17)

which are calculated in a Woods-Saxon potential. In order to transform this wave function (17) to the new coordinates,
we expand the single-particle wave functions p(r;) ' in terms of harmonic oscillator wave functions with the harmonic
oscillator constant v. The expansion coefficients are denoted by az, where p; is the radial quantum number of the corre-

l

sponding harmonic oscillator wave function. We then can transform the three-nucleon wave function to the above-
mentioned coordinates using the generalized Talmi-Moshinsky brackets ( n 1l1n 2 l2.A,

~ p 11M2
~

NL n l:A, ) .
Inserting y„(R, r12, r123), V(r, r12, r123), and p (r, r12, r123) into (1 1), the form factor split up into three terms, each de-

pending on R, r, and (r12, r123), respectively. Integrating now over the internal coordinates r12 and r123 we obtain

+gy, (R, r)=D(r) y y ~p, ~ppp, (p]l1p2l2. L12
~ pp ~NI2L12n'0: 12)

X X»~&~2&3
n'n"

X (N12L12p3l3 ..L
~

21Mp
~

N''Ln "0:L)I„„-N~ (R)

with the r-dependent finite range normalization factor

D'1' '(r)=y'"(r)V"'(r)
V —Va

v+v

'n' 4v +713 —v

v~+ , l3 +v—4 2

3Va
=3Up

4m

3/4

exp[ —r (13 + 8 v )] . (19)

@M (R)= H~ L (3vR —) YM(R ) .
R

(20)

The overlap In n- is the integral over the internal coordi-
nates r12 and r123. Using the Chant-Mangelson approxi-
mation for the potential (15) we get

The radial form factor @M (R) is the spherical harmonic
oscillator function

3[(v +v)(v + —,P +v)j' ' (21)

Va —V
X(v.+v)-'

Va+ V
(22)

In the zero-range approximation the normalization factor
(19) is given as

In the case of the Glendenning approximation (16) we ob-
tain

1/2

( )3/2 (2n'+ 1)!!(2n"+ 1)!!
n'&n"

n'+n"

v +P —v
2

X va+P +v

n' 1v +TP —v

v + —,'P +v

3[(v~+P +v)(v + —,'13 +v)j /

1/2

( )3/2 (2n'+ 1 )!!(2n"+ 1 )!!
n'tn

n lt

D'1' '(r)=y'"(r)V"'(r)=DO~' '5(r) .

The value of Dp ' ' can be calculated by

D '~' ' = f d r q&" '( r ) V' "(r )r ga

( —', ~v. )3/4
=3Up

( —,
' +P')'/'

(23)

(24)

With the values for Uo, v, and /3 given already, we obtain
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(Dq~' ') =2.56&&10 MeV fm (25)

In the projectile form factor (23) we use a Gaussian
nucleon-nucleon interaction and a Gaussian o.-, particle
wave function. With the same assumptions, but with an
rms radius of the a particle (r )'~ =1.45 fm, Kunz

et al. ' obtain a theoretical value Do~' ' ——436 MeVfm
The same projectile form factor is needed in ( He, a) reac-
tions. For this type of reaction Shepard et aI. ' give

(3He a)Do ' ' ——275—500 MeVfm ~ . The different theoretical
values are due to varying assumptions for the nucleon-
nucleon interaction and n-particle wave function.

C. Transition amplitude with a cluster form factor

In the cluster approximation the expressions (4)—(6) are replaced by

(26)

(27)

JJB TTB LS
(28)

with the wave functions given in the LSJT representation and the cluster space, spin, and isospin coordinates
g, = (R,cr„r,). Performing the spin algebra we get for the transition matrix

T(p~) (A,B)=(3)' y (JgMgJM
I JISM/)(TAN/ —,( ——, )

I TAN/)
JM

&(y (L(M+M, ) —,'( M, )
I
J—M)( —,'Mp —,'( —Mp) I00&( —,

'
—,
'

—,'( ——,') I00)

XS z~ (L ,
' J ,

'
) f f d R d r—X—' '*(k, r z )FI (R, r )X'+ '( k~, p„z ), (29)

where the form factor FM (R, r) is given as
L

FM, (R, r)=&g~"(rC
I ~I,,(r)

I qt«)~, &

=D ( r )y,(R)M (30)

with the radial wave function qr, (R)M calculated in a Woods-Saxon potential between B and t.
L

The cluster ansatz for the form factor (30) can be founded in the microscopic formulation when one makes the follow-
ing assumptions:

(i) a harmonic oscillator potential for the single-nucleon states in the microscopic model, i.e., a~ ~5~ „(i=1,2, 3) in
(18);

(ii) the Glendenning approximation (16); and
(iii) the same harmonic oscillator constants for the target nucleus and the a particle, i.e., v=v~.
With these assumptions one finds that the microscopic form factor (18) factorizes into a structure part and a dynami-

cal part

FQ, (R, r)= (n, lin2l2:L12
I pp Ni2Li200L12)

+ (N12L 12n 3~3.L
I 2pp I

NL 00 L )D ( r )@M (R) (31)

The radial quantum number is now restricted to its maximum value N, which is given by the conservation of oscillator
quanta in the Talmi-Moshinsky transformation

3

Q=2N+L = g (2n;+I;)—= g qi . (32)

D. Spectroscopic factors

The inversion of the relation (6) gives for the spectroscopic amplitude in the microscopic description

&'"(pJ»=(")'"&[0;(4 )
' 'xf„(k,k, ky ']~„&„I 0;(k, )~„~„&.
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In order to use the results of shell-model calculations we have to transform the nuclear wave functions P(g) to shell-
model wave functions 'p(g). This can be accomplished by using the cluster ansatz for the microscopic form factor
described in Sec. II C. %'e obtain in analogy to Ref. 14

Q/2

s ' (PJ»=(")'" — ([+ (g, )
' ' x q „(g„g„g,)1'"] " „"

I
% ', (g„ )

" " ) . (34)

Next we expand the wave functions of the target nucleus
A and residual nucleus 8 using pure shell-model configu-
rations

Sl/2( J» (A)1/2
Aa P

Q/2

BT~
) =g bp I PI3Jg TI3 ), (35)

where the p's characterize the different configurations.
The coefficients az and bz denote the amplitudes of the

Pg

different shell-model configurations of the target nucleus
3 and residual nucleus B, respectively. Then we obtain
for the spectroscopic amphtude

PaPa

pJ+) are the spectroscopic amp]1

for the pure shell model configurations.
There are two methods to obtain the transition ampli-

tude in a semimicroscopic model. In the first one' ' the
transition amplitude (10) can be determined by inserting
the form factor in the cluster approximation (31). In the
second one, applicable to light nuclei with 3 (40, the
SU(3) cluster model can be used which will be described in
the following.

In this model we obtain for the spectroscopic ampli-
tude, by inverting (28) and using the transformation to
shell-model wave functions,

s (LSJT)=( )'/
AB A —3

(37)

Now we aPPly the coefficient of fractional Parentage technique to Vz (gz )M )v and obtain

Q/2

s '"(LsJ»=(')'"AB 2 —3 g & +a +P I I +~ & & +~(P()M'(q'
I
+P(01 02 03) & * (38)

where the %2)(g),(2,$3) form a complete set of three-
particle shell-model wave functions with ](l being all the
quantum numbers necessary to specify the states.

In order to calculate the overlap

&+1(01)M')v
I +p(0) 4 4)&

I

we have to make the following assumptions about the tri-
ton wave function.

(i) The three-particle cluster is transferred in a fully
spatially symmetric Os state.

(ii) The center-of-mass motion of the triton cluster with
respect to the center of the shell-model potential is
described by a harmonic oscillator wave function.

(iii) The harmonic oscillator size parameters of the
internal and the center-of-mass motion are the same.

Then the three-particle shell-model wave functions
0 p( gl g2 g3 ) are assumed to be specified by wave func-
tions in the SU(3) representation

IA —3
(@ qggU(3)

with the overlap factor

6=
& +((41)M)v'I +p~""'(0) 4 4)

]. /2

(40)

(41)

if the three transferred particles are taken from the same
oscillator shell. The oscillator quantum numbers Q and
q are defined by (32) The SU(3) wave function I'p""' ln
the ( Q 0) representation is given by

(A,p) the Elliot SU(3) quantum numbers, and q all the ad-
ditional quantum numbers needed to characterize the
SU(3) state. With these assumptions we obtain' '

Q/2

I
+p( 01& N2~ 03 ) ) I +[f](2p)qLsJTMX( kl & ~2& ~3 ) &

SU(3) SU(3) SU{3)
+p +[3](QO)L1/211/2M)V(gl~02~03) (42)

with [f] being the space symmetry quantum numbers, and is in this case independent of the additional quantum
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numbers q introduced in (39). In order to calculate the
coefficient of fractional parentage (%&%&~

' '
I I+& ) we

make the following expansions using pure shell-model
functions in analogy to (35):

I
+~" "&=pe,„ I p~J~T~ &,

S zz(LSJT) =6 g cz Szg(JT), (44)

I+a &=gbp, I paJaTa&,
Ps

I

qggU(3)) y JT
I

JT)
P

Inserting (43) into (40) and using (36), the cluster spectro-
scopic amplitude can be expressed in terms of the micro-
scopic spectroscopic amplitudes and of the coefficients

P

+

CJl I

I I

'I(

O ~ g)i
(g) 100 . m+ I+

+
ED'~ + e-

I

50 aiI

200 300

+

C4

400

(a)
At(p, g, ) Mg

E p =20 MeY

8...=3S'

+
CV

c

500 600 700

"At{p, OI, )"Mg

Ep =4,5 MeV

8 =22'lab

(b)

CHANNEL NUMBER

with

JT ( @QU(3)
I

JT )P P (45)

III. EXPERIMENTAL PROCEDURE

The (p,a) experiments on Al were carried out at four
energies between 20 and 45 MeV. The proton beam with
an energy of 20 and 24 MeV was provided by the MP-
tandem accelerator of the Max-Planck-Institut (MPI),
Heidelberg. The target consisted of a self-supporting
aluminum foil of a thickness of about 90 )Mg/cm . The
absolute cross section derived from this experiment is in
fair agreement with the Mg(a, p) Al data at the 28.8
MeV o,'energy of August et a/. The error in the abso-
lute cross section is estimated to be less than 15%. The
outgoing a particles were detected using nuclear track
plates positioned in the focal plane of the Heidelberg mul-
tigap magnetic spectrograph. The gaps cover the angular
range between 5.5' and 172.5 in steps of 3.5 degrees at an-
gles less than 90' and in steps of 7 degrees at backward
angles. The:good energy resolution of about 30 keV full
width at half maximum of forward angles and the broad
energy range of the spectrograph allowed the evaluation
of transitions to states in Mg up to an excitation energy
of 9 MeV. Figure 2(a) shows a typical spectrum of the

Al(p, a) Mg reactions at E~ =20 MeV and 0),b ——36'.
The experiments at Ez ——30.5 and 45 MeV were per-

formed using the proton beam of the isochronous cyclo-
tron JULIC of the Kernforschungsanlage KFA-Julich.
The target consisted of a rolled aluminum foil of a thick-
ness of about 600 )Mg/cm . The outgoing o, particles were
detected by up to five Si-surface barrier detectors placed
in a 1 m diam scattering chamber. The scattered protons
were detected at an angle of 30 using a Cxe(Li) detector
positioned outside of the scattering chamber. These count
rates were used to monitor the beam and to correct for in-

For reactions between nuclei of the same oscilla, tor shell
this overlap integral (45) is independent of the quantum
numbers of the target nucleus A and the residual nucleus
B.

LLI

150
O
V)

100
C3

na

c

I

ui

l..A
500 600300 400 700

CHANNEL

FIG. 2. The a-particle spectrum of
Al(p, a) Mg (a) at E„=20MeV and for 0=36;

MeV and for 0=22'.

th

l

800 900

NUMBER

the reaction
(b) at E,=45

I 1
I

I I
I

I I
I

1 5
I

i f
I

I I

Af(pa} Mg 7.55 x2000-

1O4- 50

10

C:a
h
~10

10 I

C:1O2

O
1 — 8.65

10

200

x15

0.5

xQ. Q

x0. 2

0.025

I I I i I » I i i I i s I I l

30 60 90 120 150 1B00

Oc.m.

I I I I I I \ fl I I I I I I

30 60 90 120 150 180o

Oc.m,

FIG. 3. Angular distributions for the reaction Al(p, a) "Mg
at E~ =20 MeV leading to the ground state and to excited states-
up to E„=9MeV. Solid lines are Legendre polynomial fits.
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I i
l

I I [ I

2 p $ (p ~) 2%kg

10

1D

1D

XP

1 O
o I I I I I I I l I I I I I I I I I

30 60 90 )20 150 180

ec.m.
FIG. 4. Same as Fig. 3, but at E~ =30.5 MeV leading to the

ground state and to excited states up to E„=6MeV. Solid lines
are Legendre polynomial fits.

sitions to excited states at E~=30.5 and 45 MeV have
been calculated using the D&BA. In order to achieve a
description of the (p,a) reaction without adjusting any pa-
rameters to the reaction itself, we first started a search
procedure for the optical potential parameters using the
computer code aoMFII. . This program allows one to fit
elastic data with energy-dependent optical potentials.

The experimental data for the proton elastic scattering
on Al are taken from the work of Sandhu. To fit these
data in the energy range between 24.5 and 61.2 MeV we
started with the optical model parameters of the global
potential of Becchetti and Greenlees. Then the
geometry parameters have been kept fixed and only the
depth of the potential well and its energy dependence have
been varied. The result of this procedure is shown togeth-
er with the experimental data in Fig. 5(a). The resulting
parameter set is listed in Table I and labeled with Pot P.

For the elastic scattering of a particles on Mg, experi-
mental data at 22.2, 28, 42, and 50.1 MeV have been
used. Since an u energy of 50 MeV corresponds
quite well to the energy of the o; particles in the

Al(p, a) Mg reaction at a proton energy of 45 MeV,
first of all a fit with an energy-independent potential was
performed at the energy of 50.1 MeV. The parameters of
this potential are listed in Table I as Pot A1 and the re-
sulting fit to the elastic data is shown in Fig. 5(b) as a
dashed line.

Starting with the parameters of this potential we tried
to fit all the data in the energy range between 22.2 and
50.1 MeV. Several families of a-optical potentials have
been found which give similarly fair fits to the elastic

homogeneities in the target. The detector signals were
amplified and registered by means of standard nuclear
electronics. Due to the small cross section of the reaction
an unanalyzed beam of about 1 pA was used. This result-
ed, combined with the target thickness, in an energy reso-
lution of about 250 keV full width at half maximum. At
the proton energy of 30.5 MeV the Al(p, a) Mg reaction
was measured in steps of 5 degrees at angles between 15'
and 150' and at Ez ——45 MeV in the range between 12'
and 85'. Figure 2(b) shows a spectrum for this reaction at
E~ =45 MeV and O~,b

——22'.
The angular distributions for the reaction

Al(p, a) Mg are shown in Figs. 3 and 4. The errors in-
dicated are only the statistical errors, the solid lines corre-
spond to Legendre-polynomial fits to the data. At 20
MeV proton energy 18 transitions to excited states in

Mg have been analyzed separately. The worse energy
resolution in the experiments using the scattering chamber
only allowed the analysis of five transitions at 30.5 and 45
MeV proton energy, respectively. For these energies the
doublet at 4.12/4. 24 MeV excitation energy could not be
resolved.
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IV. DWBA CALCULATIONS

A. Optical potentials

The differential cross sections for the ground state tran-
sitions at Ez ——24, 30.5, 35, and 45 MeV and for the tran-

FIG. 5. Differential cross sections for elastic scattering pro-
cesses together with optical potential fits. (a) The reaction

Al(p, p) Al at Ez between 24.5 and 61.2 MeV. The optical po-
tential parameters are given in Table I as Pot P. (b) The reac-
tion Mg(a, a) Mg at E~ between 22.2 and 50.1 MeV. Solid
lines and the dashed line are the result of using optical poten-
tials Pot A2 and Pot A1 of Table I, respectively.
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TABLE I. Optical-model parameters used in the DWBA calculations. For the optical potentials the definition of Percy and Percy
(Ref. 62) is used. The energy dependence is signed by

l
V(E)

l
=

l
V

l +kE),b.

Type
l

Vg l/(MeV) ro~/(fm) a~/(fm}
l

VI
l
/(MeV) rpl/(fm} al/(fm) rpg/(fm)

Pot P

Pot A1
Pot A2

Vol.
so
Vol.
Vol.

55.61
6.63

202.7
274. 1

—0.331

—0.936

1.17
1.01
1.32
1.225

0.75
0.75
0.565
0.65.

9.48

36.49
5.68

+ 0.04

+ 0.976

1.32

1.414
1.236

0.51

0.58
0.72

1.2

1.3
1.35

data. But only with one set of parameters was a descrip-
tion of the (p,a) reaction possible. The parameters of this
energy-dependent a potential are given in Table I, labeled
with Pot A2. The fits to the elastic data are shown in Fig.
5(b) as solid lines. For the lower energy the agreement is
unsatisfactory. This may be caused by the assumption of
a Woods-Saxon potential which is inadequate to repro-
duce u-scattering data at low energies. This has also been
found by Michel et al. for the elastic a-' 0 scattering.

B. Form factors

To calculate the microscopic form factors, the single-
particle wave functions of the transferred d5/2, s~/2, and
d 3/2 nucleons are required. The computer code BOUND
(Ref. 41) allows one to calculate these wave functions in a
Woods-Saxon potential, the binding energy of the parti-
cles, and the expansions in a series of harmonic oscillator
wave functions. For our calculations two parameter sets
of single-particle potentials have been used, listed in Table
II as Pot 1 and Pot 2. They are taken from the systemat-
ics of Bear and Hodgson and of Malaguti and

Hodgson. The depth of the potential well was deter-
mined from the separation energy of the nucleons. It was
assumed to be SN ———,

' (S,+B,), with S, being the separa-
tion energy of the triton cluster and 8, the triton binding
energy. The width of the harmonic oscillator is given by
v=(0 9A ' +0 7) ' fm

The microscopic form factor Eq. (18) was calculated
with these single-particle wave functions by the aid of the
codes FORM (Ref. 45) in zero-range approximation and
FFR (Ref. 46) in finite-range formulation. In the zero-
range calculations the Glendenning approximation [Eq.
(22)] is used and in the finite-range calculations the
Chant-Mangelson approximation [Eq. (21)] is used. The
resulting microscopic form factors FQ (R, r) are multi-

plied with the spectroscopic amplitudes Szs (pJT) and
with the factor g(p), and then summed up coherently
over p [see Eq. (10)]. Since the shell-model spectroscopic
amplitudes are given in jj coupling, a transformation
from jj to LS coupling has to be performed prior to the
multiplication. Then we obtain the weighted microscopic
form factor fM (R),

l)
D(r)fM, (R)=~2(TgNgTN

l T„N~ ) g g ( —1)
p L)2S)2

T J2
1

S)2 J)2 L, J

Xg (p)Sgg (pJT)F~ (R, r ) . (46)

Due to the difference between the sum of the separation
energies of the three nucleons in their respective single-
particle states and the separation energy for a triton, the
microscopic form factor does not have the correct asymp-
totic behavior. As usual, we replace it in the external re-
gion by the tail of the triton cluster form factor which is

TABLE II. Woods-Saxon potentials for the bound states of
the single particles (Pot 1, 2) and the triton cluster (Pot 1a, 2a).
The potential depth V was calculated from the given separation
energy.

rp/(fm) a/(fm) Vl.ql(MeV) rL,z/(fm) aI.q/(fm)

calculated for the separation energy S,. The parameter
sets of the %'oods-Saxon potential needed for the smooth
joining of exterior and interior form factors are listed in
Table II as Pot 1a and Pot 2a, respectively. In this way,
so-called hybrid form factors are obtained using the
bound-state potentials Pot 1/la or Pot 2/2a. The point
of junction is taken as the point where the logarithmic
derivations of the two functions are equal. To obtain a
comparable expression to the weighted microscopic form
factor [Eq. (46)], the cluster form factor [Eq. (30)] like-
wise is multiplied with the cluster spectroscopic amplitude
giving the weighted cluster form factor f~ (R),

Pot 1

Pot 1a
Pot 2
Pot 2a

1.236
1.05
1.35
1.1

0.62
0.55
0.52
0.55

1.10 0.65

1.236 0.65

&(S ~~('LSJT)+M (R, r) . (47)
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Since both the microscopic and the SU(3) cluster spec-
troscopic amplitudes are based on the same shell-model
calculation, the absolute values of both the weighted mi-
croscopic and cluster form factors are similar within 10%
to each other in the region of the nuclear surface.

C. Spectroscopic amplitudes

The three-nucleon transfer spectroscopic amplitude as
given by Eq. (36) is proportional to the reduced matrix
element of the transferred group between initial and final
states4'

g 1/2( JT) (
3

)
1/2

A8 P 3

Q/2

PaPa
'Q/2 '

1/2

((sd)Js Ts i i i
P(sd)~z.

i i
i(sd)g' =5/2 T„=1/2) (48)

where the triple-reduced matrix elements of the three-. nucleon creation operator W(sd)&T reduced both in ordinary and

isospin spaces are calculated between the ( J~T~) final states in Mg and the ( —,
'

—, ) ground state of Al for each of the

created (sd)z/T components. These matrix elements were calculated by Chung~s with the wave functions of Chung and
Wildenthal. In Table III the values of the calculated matrix elements are given for the ground state transition to "Mg.
As one can see, the transition strength of the three seniority-one components contains about 50%%uo of the total transition
strength.

The SU(3) cluster spectroscopic amplitude is based on the same shell-model wave function as the microscopic one
and is given by Eq. (44). Together with Eq. (48) it can be written as

' Q/2

S gg(LSJT) =
A —3

Gp JT (49)

with the parentage amplitude for a given ( JT) transfer between the initial state ( J~ ———,, T~ = —,') and the final state

( JgTg),

PJT 1

(2JA +1)(2' + 1) gcz ((sd)/~xiii@'(sd)qzriii(sd)J' 5/2T„ t/2) .
P

(50)

For the Al(p, a) Mg reaction the numbers of oscillator
quanta are given by qi ——q2 ——q3 ——2 and Q =6. There-
fore, the G factor, Eq. (41), has the value G =(—„)' . In
order to get the coefficients cz, Eq. (45), the wave
functions 4" ' have been calculated by Chung in the.

leading (Ap, ) =(60)—representation of SU(3) by diagonal-
izing the quadrupole-quadrupole interaction ' with an
admixture of O. l%%uo of the Chung-Wildenthal interaction,
whereas for

i pJT) the three-particle configurations of
' F are used. In Table IV the values of the parentage am-
plitudes P calculated by Chung are given for some

(p,a) transitions to the residual nucleus Mg. The second
column lists the calculated excitation energies, the last
column lists the sum over J of the squared amplitudes for
each final state, which is a rough measure of the expected
cross section.

D. Calculation of the differential cross section

As described in Sec. II, the microscopic form factor is
separated in the variables r and R, corresponding to the
relative motion of the center of mass of the three

TABLE III. Reduced matrix elements M = ( (sd)ooi i i W(sd)z~s/2I~|/z~
~ i i(sd)t5/2H i/2~ ).

(J2) ~1/2i (J3) d3/2 ~

(ji ) =dS/2~

Configuration

P

(j3)'
(j2)(j3)2i
(j2)(j3)3P
(j2) ip( j3)
(ji )(j3)01
(J 1 )(J3 )IO

(ji )(j3)2i
(J i )(j 3 )3O

(J iJ2)2p(j3)
(JiJ2)21(j3)
(jiJ2)3O(j3)

Seniority
V

0.0426
—0.0966
—0.0190
—0.1186
—0.5434
—0.1087

0.0054
—0.0394
—0.0262
—0.0902
—0.0791

Configuration

P

(J iJ2)31(J3)
(ji)(j2)pi
(ji)(j2)ip
(Ji )&p(j3)

(J i )2i(j3)
(J i )3p(J3)
(J 1 )41(J3)
(J i )21(J2)
(j] )3p(j2 )

(ji)'
(ji)'

Seniority
V

3
1

3
3
3
3
3
3
3
1

3

0.0712
—0.5430

0.2159
—0.0089
—0.0918
—0.0604
—0.1510

0.0987
—0.1524
—0.6607
—0.1327
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TABLE IV. SU(3) parentage amplitudes P =(—,'2 )'~ pc~ ((sd)J r ~~~6(sd)~r~)~(sd)I5qz, ~~q2&) and calculated excitation energies
P

E ~ for the reaction ~~A1(p,n)~4Mg. (SUMSQ denotes the sum of the squared spectroscopic amplitudes. )

TB E
{MeV)

g.s.
7.421

S1/2 D5/2

0.2622
—0.0115

G7/z G9/2 I11/2 113/2 SUMSQ

0.0687
0.0001

7.775 0.0293 0.0214 —0.0076 0.0014

1.564
4.117
7.529
9.262

0.0099
0.0788
0.1773

—0.1362

0.0213
—0.0992

0.0246
—0.0514

—0.3188
—0.0527

0.0965
0.0423

—0.0761
—0.0246

0.0065
0.0184

—0.0706
—0.0769
—0.0751

0.0597

0.1130
0.0253
0.0470
0.0269

5.166 0.1389 —0.0585 —0.0366 —0.0865 —0.1000 —0.0330 0.0426

4.425
5.893
8.795

—0.0265
—0.0019

0.0691

0.2822
—0.1918
—0.3347

0.0882
—0.0931

0.0118

0.1658
—0.0790

0.0838

—0.0459
0.0951

—0.0043

—0.0319
0.1027

—0.0917

0.1187
0.0741
0.1324

7.904

8.472

0.0943 0.0566

0.0232

0.0344

0.1892

—0.0425

—0.0066

0.1006

—0.0685

0.0252

0.0411

dQ
do

&FR dQ DwUcK
(51)

Using the DWBA code DwUCK Iv the experimental cross
section is given by

do ~zR

dQ,„(2s~+1)
Do(p, (x)

1O4
- J

xg (~+1) "+ DwUcv rv

The normalization factors eFR and ezR describe the devia-
tions between experiment and theory in finite-range (FR)
formulation and zero-range (ZR) approximation, respec-
tively.

V. ANALYSIS AND DISCUSSION

A. Microscopic analysis
of the ground state transition

In order to analyze the experimental data, we start with
microscopic DWBA calculations of the ground state tran-

transferred particles with the incoming particle and the
core, respectively. Therefore, the differential cross sec-
tions can be calculated in finite-range formulation by the
use of the DWBA code DWUGK v. In zero-range ap-
proximation we have used the code DwUCK Iv. In both
cases the total microscopic form factors f~ (R) have

been programmed externally. The cluster form factors

f~ (R) were calculated in subroutines provided by the
above DWBA codes.

The experimental cross section is related to the DWBA
cross section calculated with D%'UcK v by

sition at four energies between Ep' 24 and 45 MeV. Us-
ing the hybrid form factors, as they are introduced in Sec.
IVB, and the optical potentials Pot I', Pot A1, and Pot
A2 (see Table I), several DWBA calculations in zero-
range and finite-range approximation have been per-
formed. Some results of calculated angular distributions
are shown in Fig. 6 together with the experimental data.
The data at Et,——35 MeV are taken from the work of
Brunner et al. The normalization factors @FR and ezR
as defined by Eqs. (51) and (52) are listed in Table V.

In Fig. 6(a) the experimental data at 45 MeV are given
together with some theoretical curves calculated with the
energy-independent potential Pot A1. The curves are very
similar to each other and give a fair fit to the data. The
differences between the calculated angular distribution ob-
tained in zero-range and finite-range approximation are
small. But for the absolute normalization a factor of
about 65 is needed in the zero-range calculations, whereas
a normalization factor of about 200 has been found in the
finite-range calculations. These values are in good agree-
ment with the normalization constants given by Brunner
et a/. The factor of 3 between the normalization of the
zero-range and finite-range calculations is attributed to
the more crude Glendenning approximation used in the
zero-range calculations.

As has been shown in Sec. IVA, both the proton and
the alpha elastic scattering can be described by an energy-
dependent optical potential. Using these potentials (Pot
P, Pot A2) we have calculated the ground state transitions
at E~ =24, 30.5, 35, and 45 MeV. In Fig. 6(b) the experi-
mental data are compared with the results of zero-range
calculations. The hybrid form factor used was calculated
with the bound potential using the parameter set of Pot
2/2a.

Comparing the results obtained with the energy-
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FIG. 6. Differential cross sections for the reaction

Al(p, a) Mg(g. s.) at E~=24, 30.5, 35, and 45 MeV together
with the results of microscopic DWBA calculations. (a) Results
at E„=45 MeV. The curves are calculated using Pot A1 (Table
I) and Pot 1/la (Table II) in zero-range and finite-range ap-
proximation and Pot 2/2a (Table II} in zero-range approxima-
tion. (b) Results at E„=24, 30.5, 35, and 45 MeV. The curves
are calculated using Pot A2 (Table I) and Pot 2/2a (Table II) in
zero-range approximation.

independent potential Pot AII and the energy-dependent
potential Pot A2 at E„=45 MeV one finds different
shapes in the theoretical curves. Besides, the normaliza-
tion factors differ by a factor of 1.5. These differences in-
dimte the crucial influence of the choice of the optical cz

potentials.
However, the theoretical curves calculated with the

energy-dependent a-potential Pot A2 fit the data at the
four energies with comparable quality [Fig. 6(b)]. As a
further result, it is remarkable that the value of the nor-
malization factors are nearly independent of the incident
energy (Table V). That means that the cross section of the
ground state transition of the Al(p, a) "Mg reaction can
be reasonably well described in a large range of incident
energies using a microscopic theory.

However, the theoretical cross sections are about two
orders of magnitude too small when compared to the ex-
perimental data. This result has also been obtained in
DWBA analyses of other (p,a) reactions" and a similar
situation is found in (p, t) reactions where the cross sec-
tions are typimlly too small by at least an order of magni-
tude.

This discrepancy may be due to the following reasons:
(1) Contributions from sequential transfer processes

may be of comparable importance and even dominant to
single-step processes. This has been shown already in (p,t)
processes where the inclusion of sequential transfer
enhances the cross section significantly. On the other
hand, the sequential transfer amplitudes are remarkably
similar to simultaneous transfer amplitudes, and this
means that the shape of the angular distributions and the
relative cross sections are not altered by including sequen-
tial transfer processes.

(2) The absolute cross section value is very sensitive to
the choice of the optical a potential. By using shallow
potentials the value of the normalization factor is im-
proved. However, the shapes of the angular distributions
of the cross sections, as well as the analyzing powers, can-
not be reproduced.

(3) For (p, t) reactions the choice of. realistic nucleon-
nucleon potentials and triton wave functions, as well as
the inclusion of two-particle correlations in the bound-
state wave function of the transferred nucleon pair, leads
to agreement with experiment. In (p,a) reactions the
consideration of two-nucleon correlations may also result
in an enhancement of the wave function of the transferred
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nucleons at the nuclear surface. This has already been
shown in (p,t) reactions by using an extended basis shell
model. The center-of-mass correction of the shell-model
wave functions also tends to increase the wave functions
at the nuclear surface. The enhancement caused by
those two effects can be studied in an empirical way by
varying the geometrical parameters of the form factor.
This point will be discussed in the next subsection using
the semimicroscopic model.

B. Semimicroscopic analysis
of the ground state transition

100

10

I I
l

I I
l

I I [ I I
l

I I

Al {p,Q, ) Mg (g.s.)

Ep =45 MeV

We have performed semimicroscopic DWBA calcula-
tions using cluster form factors calculated in a Woods-
Saxon potential and multiplied with the SU(3) spectro-
scopic amplitudes based on the same shell-model wave
functions as the microscopic ones. Some resulting angu-
lar distributions are shown in Fig. 7 together with the ex-
perimental data already given in Fig. 6. The correspond-
ing normalization factors are summarized in Table VI to-
gether with the geometrical parameters of the Woods-
Saxon potentials needed to calculate the cluster form fac-
tors. In our analysis only the radius parameter ro has
been varied.

In Fig. 7(a) the data at E~=45 MeV are analyzed in
zero-range DWBA using the optical a potential Pot Al.
In Fig. 7(b) the results calculated with the optical poten-
tial Pot A2 are shown. As shown in Fig. 7, the calculated
curves show different slopes in the angular distributions
which strongly depend on the radius parameter ro of the
%'oods-Saxon potential used. The normalization factors
ezz show a strong decrease with increasing radius parame-
ter ro (Table VI).

We made three choices for the radius parameter ro of
the cluster bound-state potential. The radius parameter
ro ——1.1 fm was chosen, since in this case the hybrid and
the cluster form factor agree in the region outside the nu-
clear surface. Comparing Figs. 6(a) and 7(a) one can see
that the slope of the resulting angular distribution calcu-
lated with the cluster form factor is different to that cal-

TABLE VI. Normalization factors ezR as defined by Eq. (51)
for the reaction Al(p, cz) Mg(g. s.). Cluster form factor.
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FIG. 7. Same as Fig. 6 but with the results of semimicro-

scopic DWBA calculations. (a) Same as Fig. 6(a), but the curves
are calculated using cluster form factors with different bound-
state radii (Table VI) in zero-range approximation. (b) Same as
Fig. 6(b), but the curves are calculated with cluster form factors
(Table VI) in zero-range approximation.
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culated with the hybrid form factor. These differences,
therefore, indicate the influence of the inner nuclear re-
gion to the (p,a) reaction. The resulting normalization
factors, however, are of the same order of magnitude in
both calculations.

The radius parameter ro ——1.32 fm was chosen, since
this value is similar to that used in the microscopic calcu-
lations of the single-particle wave functions. The result-
ing angular distributions are very similar to those ob-
tained in the microscopic calculations. The best fit to the
experimental 'data at E„=30.5, 35, and 45 MeV is found
using a cluster form factor with ro=1.95 fm. A similar
large value has been required in earlier analyses of (p,a)
reactions on light nuclei. '

Concluding these results, it can be stated that the shape
of the angular distributions can be well fitted by semimi-
croscopic calculations. Using energy-dependent optical
potentials the resulting normalization factors are nearly
constant in a large range of incident energies. But the ad-
justment of the radius parameter gives a large variation of
the theoretical cross sections. Only when the cluster form
factor agrees with the hybrid form factor in the outer nu-
clear region, are the normalization factors in the micro-
scopic and semimicroscopic analyses of the same order of
magnitude.

The enhancement of the cluster form factor at the nu-
clear surface and the outer region caused by a larger ra-
dius parameter I"o tends to decrease the normalization
constant significantly. In the microscopic mode1 such an
enhancement may originate from two-body correlations
and center-of-mass corrections in the bound-state wave
function as already mentioned.

C. Spectroscopic results for transitions to
excited states in Mg

The analysis of the transitions to the excited states of
Mg is rendered more difficult due to the spin —,

' of the
target nucleus Al, since only transitions to spin 0 states
have a unique angular-momentum transfer. To perform
DWBA calculations for the transitions to the excited
states in Mg the components of the individual J transfer
have to be added incoherently. Because of the enormous
number of three-particle configurations involved, no mi-
croscopic calculations have been attempted.

In the zero-range semimicroscopic calculations a
Woods-Saxon potential was used for the cluster bound
state with the parameters ro ——1.35 fm and a =0.55 fm.
The individual J components have been multiplied with
the SU(3) spectroscopic amplitudes given in Table IV.
The optical potentials Pot P and Pot A2 are used in these
calculations.

The results are shown in Fig. 8 for the incident energies
Ep 30.5 and 45 MeV. As one can see from Table VII,
all transitions yield a nearly constant normalization factor
with the exception of the transition to the first excited 2+
state. For this transition the strength given by theory is
underestimated by nearly a factor of 2.

The comparison between the experimental integrated
cross sections and theoretical results is shown for E„=45
MeV in Fig. 9. The open bars represent the experimental
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data integrated between 13' and 84', and the crossed bars
represent the corresponding DWBA values. As shown in
previous investigations of the (p,a) reaction on light nu-
clei, ' the relative intensities can also be described by the
bare SU(3) spectroscopic factors. This is confirmed by
the solid black bars which represent the sum over the
squared spectroscopic amplitudes as given in the last
column of Table IV. The similarity of the D%'BA values
with the sum of the squared SU(3) spectroscopic ampli-
tudes shows the minor importance of the dynamics of the
(p,a) process for the relative transition intensities. This
result becomes still more evident if one compares the re-
sults of the Al( He, Li) Mg reaction ' to the (p,a) reac-
tion. These results have been marked as shaded bars in
Fig. 9. All results have been normalized to the ground
state transition.

As shown by Buck et al. ,
' one expects the reaction

Al(p, a) Mg to be predominantly direct at proton ener-
gies higher than 20 MeV. This result together with the

TABLE VII. Normalization factors ezR as defined by Eq.
{51)and relative normalization constants ezR{rel) =ezR/ezR(g. s.).

E„/(Mev) EzR EzR(rel)

Ep ——45 MeV
&zR &zR(rel)

E~=30.5 MeV

g.s.
1.37
4.12
4.24
5.24
6.01

0+
2+
4+
2+
3+
4+

5.00
8.34

5.78

3.75
4.06

1

1.67

1.16

0.75
0.81

4.53
7.94

5.12

3.16
3.48

1

1.75

1.13

0.70
0.77

a i (» I « l i s )» I s

15 30 45 60 75 90O 15 30 45 60 75 90o

oc.m. ec.m.

FIG. 8. Differential cross sections of the reaction
Al(p, a) Mg at E&——30.5 and 45 MeV leading to the ground

state and to excited states in Mg. The solid lines are the result
of semimicroscopic DWBA calculations using cluster form fac-
tors and SU(3) spectroscopic amplitudes (Table IV).
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result given already also justifies the comparison of the
experimental integrated cross sections with the spectro-
scopic factors at the rather low proton energy of 20 MeV
as shown in Fig. 10. Again the open bars represent the
experimental data and the solid bars the sum of the
squared spectroscopic amplitudes given in Table IV. The
theoretical values are normalized to the ground state. Up
to an excitation energy of 6 MeV, the correspondence be-
tween theory and experiment is as good as at 45 MeV. In
agreement with the theoretical prediction the 0+ state at
6.43 MeV could not be observed in the experiments at
30.5 and 45 MeV. Therefore the observed intensity of this
transition at 20 MeV provides an estimate of the impor-
tance of the compound process at lower energies. With
exception of the 1+ state at 7.75 MeV, one can observe a
fair agreement between experiment and the theoretical
prediction for the strengths of the positive parity states in

Mg also at excitation energies higher than 6 MeV.

F„(~ev)

FIG. 9. Comparison of the experimental cross sections o p

of the reaction Al(p, o. ) Mg at Ep =45 MeV, integrated from
11' to 84 (open bars), the corresponding theoretical values
(crossed bars), the sum of the squared spectroscopic amplitudes
(sohd bars), and the experimental cross sections of the reaction

Al( He, Li) 4Mg integrated between 0 and 90' (shaded bars).
The data are normalized to the ground state transition.

VI. CONCLUSION

The investigation of three-nucleon transfer reactions
can be carried out by either using a microscopic or sem-
imicroscopic analysis. In the microscopic model only pa-
rameters are used, which are taken from general systemat-
ics independent of the transfer reaction discussed. In the
semimicroscopic model considered the SU(3) spectroscop-
ic amplitudes, based on the same shell-model wave func-
tions as the microscopic ones, are combined with cluster
form factors. Since the cluster form factors have adjust-
able geometrical parameters in the bound-state potential,
the shapes of the experimental angular distribution can
usually be better reproduced. Furthermore, cluster form
factors are easier to calculate than microscopic ones. One
aspect of the present paper is to compare the microscopic
and semimicroscopic analyses.

The microscopic as well as the semimicroscopic DWBA
analysis of the reaction Al(p, a) Mg reproduce the an-
gular distributions in the range between 24 and 45 MeV
when energy-dependent optical potentials are used. Like-
wise, the normalization factors are almost energy indepen-
dent.

However, in the microscopic analysis the normalization
factor is about two orders of magnitude too large. This
may be attributed to the neglect of sequential transfer and
of two-nucleon correlations and center-of-mass correc-
tions in the bound-state wave function. It is well known
from (p,t) reactions that the use of realistic bound-state
wave functions enhances the form factor at the nuclear
surface. %'e have simulated this enhancement by increas-
ing the radius parameter in the semimicroscopic model
and have found a significant reduction of the normaliza-
tion factor.

The relative intensities of the transitions to the ground
state and to excited states in Mg can be well described in
the semimicmscopic DWBA using SU(3) spectroscopic
amplitudes. Beyond it, the strengths can be reproduced
by the sum of the spectroscopic amplitudes alone even for
a projectile energy of 20 MeV. This result indicates the
minor importance of the reaction dynamics for the rela-
tive transition intensities.

600 4
1

~Al(p, a) 24M
Q

Ep= 20.0 MeV

Experiment

SU(3) Spectr. factor
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