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We show that the S-D subspaces, which are used in the Otsuka-Arima-Iachello microscopic
derivation of the interacting-boson model, form a particle-hole-symmetric family. Consequently,
there exist particle-hole-symmetric prescriptions for determining the structure of the S and D pairs.
This result holds independently of whether the Hamiltonian conserves generalized seniority.
Nevertheless, there are deviations from particle-hole symmetry when boson matrix elements involv-
ing more than two d bosons are calculated in lowest order using the boson mapping procedure of
Otsuka, Arima, and lachello. These deviations are used to estimate the inaccuracies introduced by

the lowest-order mapping.

I. INTRODUCTION

An exact shell-model calculation in a full n-particle
multishell Fock space must give physically equivalent re-
sults whether it is done in particle representation or in
hole representation. However, if the space is truncated,
this need no longer be true. The validity of particle-hole
(p-h) symmetry for truncated spaces is of real practical in-
terest in the Otsuka, Arima, and Iachello (OAI) method!
for microscopic determination of the parameters of the in-
teracting boson model (IBM). Pittel, Duval, and Barrett
(PDB) (Refs. 2 and 3) have shown that in certain cir-
cumstances this method leads to different results depend-
ing on whether the fermion problem is treated in terms of
particles or holes. Talmi has subsequently analyzed the
question of p-h symmetry in the OAI approach to IBM,
and concluded* that the discrepancies disappear if the fer-
mion two-body interaction is constrained to conserve gen-
eralized seniority.’

The present work reinvestigates the question more gen-
erally than is done in Refs. 2—4. As far as possible we
avoid special assumptions about the fermion and boson
Hamiltonians and the dependence of the structure of the
S and D pairs on the number of particles. In Sec. II we
consider the fermion aspects of the problem, and show
that truncation to the S-D space is consistent with p-h
symmetry. Consequently, we find that for the energy-
minimization S-D structure prescription the only surviv-

- ing p-h asymmetries must be entirely due to the approxi-
mate nature of the lowest-order OAI boson mapping. In
Sec. III we use this result to probe the accuracy of the
mapping. Section IV compares our results with those of
PDB, and with Talmi’s analysis. Section V is a brief con-
cluding summary.

II. MULTIFERMION KINEMATICS
AND DYNAMICS

We consider only like nucleons. This is sufficient for
the purposes of the IBM, because one can first discuss dis-
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tinct neutron and proton bosons separately, and then treat
their dynamical coupling. In terms of fermion creation
operator tensor a;, we define pair creation operators as
follows:

§ =3 a;V/0;72[a] xa]§ , ()
J
Apm= zﬁij[aiTXajTlgn ’ (2)

]
where Q; =12j +1)/2 and B;;=(—1) +ij,- by convention.
We define a seniority projection operator P, to project
onto states of good total seniority. As in Ref. 6, we define
v to be the sum of the seniorities of all the shells, i.e., Ra-
cah seniority.” We can list the needed properties of P,,
which probably hold also for such other definitions of v

as the “generalized seniority”® of Talmi.
P}=P,=P}, (3a)
[P,,N]=0, (3b)
[P,,S]1=0, (3¢)
P,|n)=0, (n<v), (3d)
P,=pP, . (3e)

In 3d) | n) is any n-particle state. In (3e) P, is defined
to be constructed from hole operators in the same way
(isomorphically) as P, is constructed from particle opera-
tors. A proof of this relation, based on our definition of
the hole creation operators

Tlp=(—1V""a;_, , (4)

can be found in Ref. 6.
As in Ref. 8, we define seniority-raising pair creation
operators by

D=3 P, 24,P, . (5)
v

An S-D subspace of the n-fermion space (n even) is then
spanned by states of the form
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| SPD?)p=SPD?|0), (p +q=n/2), (6)

where | 0) is the vacuum state with no valence particles.
Here and elsewhere we often omit magnetic quantum
numbers, so that for example D stands for an unspecified
homogeneous polynomial of degree g in the operators D,,
(m =2,1,0,—1,—2). We define hole-pair creation opera-
tors corresponding to Egs. (1), (2), and (5):

S=— 3 a,V;2[a]xa]ls, 7)
J

ZmEZBij[a;rXE;];Zn , (8)

— jo_ _ —

DmE EPU+2AmPu:2PU+2AmPU . (9)
v v

From these we can construct a basis for a hole version of
the S-D space, called the S-D space:

| SPD9);=5°D1|0) . (10)
Here |0) is the state in which all valence shells are filled.
Our main task will be to show that there exists a choice of
the &@; and B;; that makes the S-D space identical to the
S-D space.

We begin by considering some relevant commutators:

[5,51= 3 o;a,(Q; — S afuam) (11)
J m
[4,,,S]=—-2U,, , (12)
[Un,S]=— 3 a;Byalal xa 1%, . (13)
ij

Here U, is a one-body tensor operator of rank 2, given by
U,= zaiBij[aiTXff}]?n . (14)
ij

If we choose

a;=1/a;, (15a)
By =B /() , (15b)
the commutators (11)—(13) simplify as follows:
[S,S']:Q—f\\f, N= Zajt,,ajm R (16a)
jm
[4,,S]1=—2U,, , (16b)
[Un,S]1=—A4p, . (16¢)
For completeness we include also the results
[s,N]=-25, (16d)
[D,.,S1=[Dy,D,]1=0 . (16e)

Talmi* has already shown the equivalence of particle
and hole pictures for cases with at most one D pair. We
can therefore begin by assuming the simplest of his results

ISN>P°< l§N>H > (17)
where

N=Q-N, 0=3 0, . (18)
j

Incidentally, we note that (provided none of the &; van-
ishes) N =Q gives

ST0) [0). (19)

We can now extend Talmi’s results to allow an arbitrary
number of D pairs. From Egs. (16) we can easily show by
induction on p that

[4,,,SP]1=—2pSP~'U,, +p(p —1)SP ~24,, . (20)

Apply Egs. (5) and (9) (the definitions of D,, and D,,) to
Eq. (20), using the fact that P, and S commute [Eq. (3c)],
to get

[D,SV1= 3 P, o[ —2NSV U,
v
+N(N—-1)S¥"24,1P, .

(21)

Now let this result act on any maximum-seniority state,
say | n =v,v) Because U, | n =v,v) has only v particles,
the contribution of the term in U,, will be annihilated by
P, ,,. Hence,

[D,,,SM|n=v,0)=N(N-1S¥2D,, |n=v0) . (22)

Moreover, since D,, | n =v,v) =0, because D, raises the
seniority while lowering the particle number,

D, SV |n=v,0)=N(N-1SV¥=2D, |n=v,v) . (23)
We now prove by induction on g that
|S¥-9D 1)y « | S¥ D), , (24)

beginning with the ¢=0 result, Eq. (17). If Eq. (24) holds

for a given value of g,
|§N—“1+”B(‘1+”)Hocl_) |§N—q—15q)H ,
«D|SN—1+1p9), ,
< (DSN—9+thpe|0) . (25)

[In the first step Egs. (10) and (16e) were used.] Now
D?|0) is a maximum-seniority state, so Eq. (23) applies.
We get

|gﬁ—(q+l)ﬁ(q+1>)HOCSN—q—1Dq+1 10) ,

OCSN—(q+I)D(q—f-l)lo) , (26)

so that Eq. (24) holds for g + 1 if it holds for g. This
completes the proof of Eq. (24), which is our basic new re-
sult.

Equation (23) shows that the particle and hole (p and h)
pictures are kinematically equivalent; the S-D basis and
the S-D basis are simply different parametrizations of the
same family of bases. For any given S-D basis, character-
ized by the values of @; and B;;, there is a corresponding
S-D basis, with values of &@; and jB;; given by Eq. (15), and
this S-D basis and S-D basis span the same space. In
fact, corresponding vectors in the two bases are equal up
to a multiplicative scalar.

It is now easy to see that a large class of methods for
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determining the structure amplitudes o; and f;; will lead
to physically equivalent results in p and h pictures, pro-
vided that the same Hamiltonian is used in both pictures.
For example, suppose «; is determined by minimizing the
expectation value, i.e.,

8(Ey)=0, (Eo)=(SY|H |SV)p/(SN|SV) . (27a)
The result is a certain state in S-D space. Since this same
state can be written either as | SY)p, and parametrlzed by
a;, or as |S™)y, and parametrized by @&;, | SV)p and
| S¥)y will both minimize (E,). Next suppose we find
Bij by the rule

8(E,)=0,
(27b)
(E)=(S""'D |H |SY~'D)p/(SV~'D |SV D), ,

where the parameters of D are varied while those of S are
fixed. Again this leads to a certain state, which can be
parametrized equivalently in either of two ways (p or h),
both corresponding to the same minimum value of (E,).
Moreover, all S-D space states constructed from these S
and D operators will be physically equivalent. These vari-
ational prescriptions (27) for obtaining o; and B;; are
jointly designated “MIN” in Ref. 6.

Obviously the p-h symmetry depends on our using the
same fermion Hamiltonian

H= zelalmaJM+ 2 tu[[ar Xag ]Fx[az Xa, ]1"]0
‘ o 28)

in p and h pictures. In the h picture one would in practice
use a different normal ordering

H=8+ 3 & jnljm

jm

+ 3 Whalla!xal 1 x[a,xa,17 13 (292)
rstu
with single-hole energies
& =—e,— 2r‘:-1 %(21‘+1)‘/2W,§m (29b)
and a modified zero of energy
%= ze, 2r+1)—23S WL, . (29¢)

s

Of course Eqs. (28) and (29) merely exhibit different forms
of the same operator.

The p-h symmetry of the MIN prescription immediately
generalizes to include every method that determines the
structure coefficients by a rule expressible in the form

8.F =0, F =5 |V),H] ’ (30)

where & is a definite functional of an S-D space state
| W). For example, one might seck a stationary-energy
state by varying

F=(V|H |¥) ' 31

subject to (¥ |W¥)=1, with |V¥) in the S-D family of
subspaces but otherwise unconstrained. Another example
is suggested by the trace-variational principle of Klein’
and others, which they discuss in the context of a boson

problem obtained by boson mapping. If we instead apply
their method to the S-D space, we obtain a trace generali-
zation of the rule (31), which obviously must share its p-h
symmetry properties.

In contrast, the generalized open-shell Tamm-Dancoff
approximation (TDA) method of Johnson and Vincent? is
not of the type (30). Supposing that a; has already been
determined by the rule (27a), the TDA rule for determin-
ing the fB;; can be written '

8%,=0

_ 1 (s¥|20HQ"—00"H —HQQ'|sY)
—2 (sV| 0ot |sY)

Here Q‘r is a seniority-raising one-body quadrupole opera-
tor, contammg the unknown coefficients a; and B;;. The
terms QQ "H and HQQ prevent the direct apphcatlon of
the p -h symmetry result (24), because for example
QQ | S¥) (which depends on Bij) generally lies outside
the S-D family of subspaces. Consequently the p-h sym-
metry properties of the Tamm-Dancoff approximation
(TDA) method are still undecided. This illustrates some
of the subtlety of the dynamical p-h symmetry question.

&

III. PARTICLE-HOLE SYMMETRIES INDUCED
BY APPROXIMATE MAPPING

We will show that even if there is kinematical and
dynamical equivalence between calculations done in the p
and h pictures, physical discrepancies are still produced
(except at midshell) when the fermion problem is mapped
into a boson space using the approximate OAI method.

Recall the general nature of the OAI mapping.! The
states | SPD?) of the S-D space are normalized to unity
and put into one-to-one correspondence with abstract bo-
son states

|s7d9) =(s"w(d")9| 0B ) /(OB | d%sP(sY(a")7| 0B ))1 /2
33)
where
[5,5T1=1, [dm>dmy1=8pm ,
[s,d"1=[s,d]=0, L)

s |0B)=d |0B)=0,

in terms of boson annihilation operators s, d,,
(m 2 1,0,—1,—2), and their Hermman conjugates
s d . As for the D operators, (d")? denotes an unspeci-
fle;rd homogeneous polynomial of degree g in the operators
dy,.

Consider some restrictions related to the Pauli princi-
ple. The maximum seniority attainable with n =2N par-
ticles is v =2min(N,N). It follows that only states
with at most v.,, /2 D pairs can be admitted into the S-D
space, regardless of the choice (p or h) of picture. We as-
sume that all such states of the form (6) are linearly in-
de¥>ende Then it follows that a boson state

)‘1108> possesses a fermion counterpart if and
only 1f g <min(N,N). We say that such states belong to
the physical subspace of boson space; in contrast we desig-
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nate as spurious all boson states that lack fermion coun-
terparts.

For exact OAI mapping to all orders, the spurious bo-
son states cause no difficulty, because they can be com-
pletely decoupled from the physical boson subspace sim-

ply by setting equal to zero all boson matrix elements that
|

connect the physical and spurious subspaces.

In practice one must use an approximate mapping. A
standard choice is the “lowest order” OAI mapping. For
reference we give the results of this mapping for the Ham-
iltonian and the quadrupole operator. The boson image of
the fermion Hamiltonian is

HB =€p+€4 2 d dp+~5 2 2 C.(2L +1)1/2[[dTXdT]LX[dXd]L]Q—i-F{[[dTXdT]ZXdS]O—{-H c.}

m=-2

G{[dTXdT]Oss +H.c.} .

The lowest order OAI mapping expresses the parameters
in terms of fermion matrix elements, as follows:

e={(SV|H |SV),

€a=(SV"'D |H |S¥"'D)—¢,

Cr=(SV2D2L |H |S¥ DL ) —2¢;—€, (36)
F=[%(N——1)]—1’2(SN"1D |H |SN-—2D2) ,
G=[2N(N —1)]""2(sN-2p2|H |SV) .

We see that the parameters of HS' depend on N, the
number of fermion pairs, both explicitly and through «;
and S;;. Similarly the boson image of the one-body quad-
rupole operator Q,, can be written approximately as

0F =Qu(s'd, +5d})+5-120uld ' xd s . (37

The parameters are given by the lowest-order OAI map-
ping as

Qu={(SM||Q||S¥~'D) /(5N)'/?,
Qu={(S""'D||Q||IS"~'D) .

Equations (36) and (38) assume that the particle picture is
used, so that the S-D states | SPD?) are mapped onto bo-
son states s’d?|0B) with p =N —gq; we call this “p map-
ping.” Alternatively we can use the hole picture and map
the S-D states | S”D?) onto boson states s’d?|0B ) with
p =N —g; we call this option “h mapping.” For h map-
ping one must replace S by S, D by D, and N by N in
Egs. (36) and (38), to define new parameters €0, €4, CL, F,
G, Oy, and Q4. Both in p mapping and in h mapping
the physical subspace of boson space is limited by
q<Q/2.

If the lowest-order boson Hamiltonian HS' is taken
literally and diagonalized in the full boson space, contam-
ination of the eigenstates by spurious parts cannot be
avoided (assuming of course that F and G do not both
vanish). This is because its form [Ec% (35)] implies
nonzero g-changing matrix elements of H ) between mul-

(38)

J

Rp= <squ|Hg”|sﬂ—1dq+1>/(spd‘1|HB’”;sP—IdH‘)—

Ro=(sPd?|H’ | s?~2d1+?) /(sPd?| H

|sp 2d9+2) —

(35)

r
tiboson states, and these matrix elements will always cou-
ple (at least) the highest-g states of the physical subspace
to the spurious subspace. Fortunately it is easy to restrict
H{" to the physical boson subspace, simply by imposing
the limitation g < {1/2 on the basis states (for both p map-
ping and h mapping). The spurious contammatnons are
then of no concern. The eigenvalues of Hj' can be re-
garded as approximations to the results of diagonalizing
H in the S-D space. (Indeed the OAI method can be
thought of as a technique for extrapolating low-seniority
matrix elements to higher seniorities.) The errors of the
approximation must-then be entirely due to the effects of
the mapping procedure, since contaminations by spurious
states are precluded.

Assume that one fermion Hamiltonian has been con-
sistently used, and that the structure amplitudes have been
determined by a method with dynamical p-h symmetry,
such as MIN. Then some estimate of these mapping errors
can be obtained by comparing the approximate p mapping
and h mapping results for the (unknown) multifermion
S-D space matrix elements. These approximations are
just the multiboson matrlx elements of the p mapped and
h mapped versions of HS". From Egs. (36) and (38) it is
clear that p mapping and h mapping will give different re-
sults for the g-changing IBM parameters F, G, and Qgy,
because the fermion matrix elements in these equations
are p-h symmetric, while explicit N dependences occur in
their relation to F, G, and Q. In fact

F/F=V/(N—1)/(N -1),
G/G=VN(N—1)/N(N—-1), 39
Qsd/ésd=L N/N .

However, the differences between the p and h versions
of F, G, and Qg parameters do not have direct physical
significance. Instead, one should compare the values of
the multiboson matrix elements that result from p map-
ping and h mapping. We find the following ratios:

172 — | 172
Fip _ | (N—1)(N—q) (40a)
F|p (N—g)(N —1)
— — 172
N N—1 N—gN-1—¢g
‘ gN—1-g N N_1 , (40b)
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Ro=(sPdIL | QP |s?~'d9*IL") /(sPdL | QW |sP~1d9+!L") = [

Here
P=N—q=Q—N—q=Q—2N+p 41)

and |sPd?) is defined in Eq. (33), while L and L’
represent the multiboson angular momentum, where
necessary. In all three cases, the parts of the matrix ele-
ments involving only d bosons cancel out.

The ratios (40) are all close to 1 when g is small. And
at “midshell” (N =Q/2=N), dynamical p-h symmetry
trivially guarantees that both mappings will lead to equal
matrix elements, so the ratios are also 1 when N =Q/2.
Table I shows the ratios for valence shells corresponding
to the tin isotopes, whose Q=16. Only results for N=7
(i.e., one pair away from midshell) are shown. If q is
comparable with p, the ratios depart considerably from 1.
This shows that the p mappings and h mappings give ap-
preciably different approximations to the N dependence
of matrix elements involving high-seniority states. The
importance of this is that the advantage of the OAI boson
mapping scheme over direct shell-model calculations,
truncated at low seniority, depends on its ability to simu-
late the high-seniority matrix elements.

If the errors of the p- and h-mapping results are equal,
the exact result must lie either midway between them or
very far from both. It seems reasonable to assume that p
and h errors are at least roughly equal if, say,
N —N=2<«<Q. Then either the error of, say, the p-
mapping result, must be about half the distance between
the p- and h-mapping results [e.g., for Qg this is
(1—0.982)/2=0.9%)], or else both mappings are in error
by much more than this. More simply, one may say that
the error of either mapping is at least about 0.9%. An er-
ror of this magnitude would not be large enough to have a
serious effect on comparison with experiment—but of
course the error may be larger.

IV. COMPARISON WITH OTHER TREATMENTS
OF p-h SYMMETRY

PDB (Ref. 2) point out that standard OAI prescriptions
do not always lead to p-h symmetry for observables. For
example, they determine ¢; and 3; by particle and hole
versions of the favored-pair method. First, they diagonal-
ize the two-particle matrix of the surface-delta interaction
(SDI) plus midshell phenomenological single-particle
(MSSP) energies €, (“MSSP prescription”). Next, they ob-
tain @; and JB; by diagonalizing the two-hole matrix of the
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— 12
N—gqg N

N N_q (40c¢)

same surface-delta interaction with midshell single-hole
(MSSH) energies & =const. —¢, (“MSSH prescription”).
Of course the resulting structure coefficients are indepen-
dent of N. The two prescriptions use fermion Hamiltoni-
ans that differ at most by an additive constant, because
the SDI has the special property'® that the Hartree-Fock
term of Eq. (29b) does not affect the spacing of the
single-hole energies. In spite of this, PDB find that the
occupancies of individual shells is the multiparticle states
of the forms (6) and (10) with g <1 differ considerably in
the two prescriptions. In our language, this shows that
these two prescriptions lack dynamical particle-hole sym-
metry. This is not surprising, because requiring the struc-
ture coefficients to be independent of N prevents applica-
tion of minimization principles such as Eq. (27). PDB
emphasize the possibility of restoring p-h symmetry by in-
cluding renormalization effects from outside the S-D
space. This idea is made plausible by the fact that p-h
symmetry always results if one exactly treats the same fer-
mion Hamiltonian in particle and hole pictures. While we
agree that this possibility exists, we would emphasize in-
stead that p-h symmetry is restored more generally and
quite simply if one allows a and B to depend on N,
through appropriate energy minimization. PDB also find
p-h asymmetries in the boson parameters Q. and Quy.
They use min(N,N) in place of N in our Eq. (40), thus ex-
cluding the possibility of mapping-induced p-h asym-
metries.

Talmi, in discussing the results of Ref. 2, has already
proved Eq. (24), though only for the cases g <1 that are
needed to discuss the PDB calculation. He uses general-
ized seniority projection rather than Racah-seniority pro-
jection to define the S-D space; however, this distinction
disappears if there is no more than one D pair. His main
conclusion (regarding p-h symmetry) is that even if the
structure coefficients are constrained to be independent of
N, p-h symmetry will still result, provided that the fer-
mion Hamiltonian conserves generalized seniority.” This
is certainly true, because for a Hamiltonian that conserves
generalized seniority the states (6) and (10) are exact
eigenvectors, and the same eigenvectors must result in
both p and h pictures. Thus Talmi agrees with PDB in
suggesting that conformity to p-h symmetry is most ap-
propriately obtained by ensuring that the S-D states are
eigenstates of the Hamiltonian; however, Talmi’s prefer-
ence is to bring this about by using a generalized-
seniority-conser\/ling fermion Hamiltonian. In contrast,

TABLE I. Particle-hole ratios of N-boson matrix elements of lowest-order boson images [Eq. (40)].

All results correspond to =16, N=7.

q 0 1 2 3 4 5 6 7
Ry 1.000 0.976 0.943 0.894 0.816 0.667 0
Rg 1.000 0.958 0.904 0.828 0.717 0.535 0
Ro 1.000 0.982 0.958 0.926 0.878 0.802 0.655 0
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we would prefer to regard the OAI method as having
some general domain of applicability, and not as limited
to one type of Hamiltonian. Therefore, again we em-
phasize the possibility of obtaining p-h symmetry by free-
ing a and B to depend on N through a suitable variational
principle.

V. CONCLUSIONS

We have extended Talmi’s result on the kinematic p-h
symmetry of the family of S-D states to an arbitrary
number of D pairs. In agreement with Talmi we find that
the discrepancy between the nondegenerate multishell re-
sults calculated in the particle and hole pictures by PDB
can be explained by their use of N-independent structure
coefficients with a Hamiltonian for which the S-D states
are not eigenstates. We show that the kinematic p-h sym-
metry of S-D spaces allows one to restore dynamical p-h
symmetry without requiring the S-D states to be eigen-
states of the Hamiltonian. This is achieved by making use
of an appropriate variational principle to determine the
structure of the S and D pairs, which must of course be
allowed to depend on N. Since our proof of kinematical
p-h symmetry applies for any number of D pairs, p-h
symmetry is now available for Fermion states of arbitrary
seniority. In numerical work described elsewhere,® we
have actually exploited the computational convenience of
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p-h symmetry for two D pairs, after verifying its validity
in specific cases.

Some p-h asymmetries in calculated IBM parameters
can arise even if the underlying Fermion calculation has
exact p-h symmetry. Such “mapping asymmetries” can
be revealed only by considering in particle (hole) formal-
ism cases where the valence shell is more than half-filled
with particles (holes). (PDB avoid mapping asymmetries
by a special prescription.) We exploit the mapping asym-
metries to obtain rough lower limits, of the order of 1%,
on the errors of the lowest-order OAI mapping for the
Hamiltonian and the quadrupole operator.

Our estimates of the mapping errors are only lower lim-
its, and unfortunately relate only to the N dependence of
matrix elements that involve high seniorities. It would be
useful to have exact calculations of the high-seniority fer-
mion matrix elements for comparison with the predictions
of the lowest-order-OAI boson mapping. An excellent
study of this question in the single-shell case has already
been reported in Ref. 1.
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