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A variational trial wave function is used to develop a perturbation expansion for the effective shell
model interaction in the case of a degenerate zero-order basis. The form of this trial function is sug-
gested by the Brillouin-Wigner perturbation procedure, and the Moszkowski-Scott separation
method. Application is made to the low lying levels of °Li. The absolute binding energies obtained
are 4 to 5 MeV short of experimental values. Acceptable agreement with experiment is found for

the energy level spacing.

I. INTRODUCTION

The usual assumption made in applications of the nu-
clear shell model®? (SM) is that one may employ a Hamil-
tonian composed of one- and two-body operators

HSM=2H0(i)+EU,] (1)
i i<j

in a truncated basis of single particle states. For nuclei in

the mass range 5<A4 <16, for example, one considers

only the states provided by the (0s)*0p)4 —* particle con-

figuration, with constant single particle energies and two-

body matrix elements throughout the shell.

The success of this simple procedure has been most re-
markable, despite the fact that realistic nuclear forces are
known to be highly singular and must produce significant
configuration mixing. The earliest attempts to formally
relate the shell model to realistic interactions was in the
context of the Brueckner method.>~> Block and
Horowitz® have performed a separation between the ener-
gies of the core and valence nucleons, such that the shell
model appears to arise naturally out of the perturbation
expansion. Brandow’ later presented a most definitive
study of the linked cluster properties of a degenerate per-
turbation series.

The exact formal solution to the problem is well
known.” It will be convenient to review it here; in order
to compare it with the method presented in Sec. II, and to
define some notation. First the Hamiltonian is written as
the sum of two terms

H=Hy+W, )
where H, has known solutions
Hyp, =€, - (3)
Now when one constructs the eigenfunctions vy of H,
Hyy=Enxyn , 4

one selects a certain number of low lying levels in ¢,.
This may be a degenerate set, or just a “quasidegenerate”
subspace lying so close in energy that one expects consid-
erable mixing among them. This is the “model” subspace,
and we will designate these states by Latin indices (¢;).
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States outside the model space will be designated by Greek
indices (¢,). One may express the exact wave function by
the series

Un=3C'pi+ 3 A4d¢a . (5)

Eden and Francis® define a model operator:

ay=1+3 122l o ©

so that one can write

Yn=QyPy , (7
where
oy=3Cl¢:, (7a)
i

and we choose to normalize the model space wave func-
tion

<¢N|¢N>=2|ciN|2=1. (7b)

Algebraic solution to Egs. (4)—(7) yields the set of rela-
tions:

(Ex—€)C)'= 3 (o |vn | @;)CF , (8)
J
Ey=(®y |Ho+vy |Py) , 9)
where
Uy = WQN . (10)

If H, is chosen to be a sum of single particle operators
[ > Ho(i)], then clearly vy will play the role of the shell
model effective interaction in the model space (¢;) for Eq.
(1). One should note that, in this exact form, the effective
interaction is state dependent through the energy denomi-
nator in Eq. (6).

Although the solution is formally simple, calculations
in the physically interesting examples are clearly not easy.
In general one must be content to do approximate summa-
tions over a in Eq. (6), to include only certain sets of
states or “diagrams.”®°®
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1I. THE VARIATIONAL WAVE FUNCTION

Let us introduce the variational trial wave function

ola| W iy
Yy=3C" ¢>,~+EK,,—————~——¢ |7 (11)
i a,n EN —€q
The energy is to be computed starting from
(Yn |H )
EN: IllN | | ¢N , (12)
(Y | ¥n)

while the C,-N and K, are variational parameters to be
determined by the conditions

dEy 3Ey _

acY ~ oK, 1

The W?" are a set of potential operators, which are to be
chosen through criteria of mathematical convenience and
the variational flexibility in the trial function.

Similar trial wave functions have been previously em-
ployed in a series of papers.!®!! It is a natural refinement
of the trial function used to generate the Brillouin-Wigner
perturbation series.'>!* Equation (11) merely represents
the extension of this function to the case where the zero-
order portion of the unperturbed vector space consists of
either a degenerate set of functions, or else a set lying too
close in energy to rely on perturbation theory to compute
the proper admixture of states. Brandow’ refers to this
latter case as a “quasidegeneracy.”

Substituting ¢ into Eq. (12), and imposing the condi-
tions in Eq. (13) yields:

zng(n)c,-N*ch
L]
=3 CM*CYKLES (n,m)—E (n,m)], (14)

i,j,m

ExCN=3CV (i |H |j)+ S K,Elm) |, (15)
J n

Ey=3CMCN (i |H|jY+K,E[(n)], (16)

iJj

where

Ejm=3 SLH | W) (17
P EN—ea

(2) — (1|W"|a)(a|W”’]j) (18)
Ej (n,m)—% Ey_e, ,
E’_;3)(n’m):2 (i | W”[a)(a] w IB)(Bl Wm|]> . (19)

B (EN'"ea)(E_N'—eﬁ)

Equations (15) and (16) have the appearance of a typical
matrix eigenvalue problem, and one can easily identify the
matrix elements of the shell model Hamiltonian in Eq. (1)
as

(i |Hsy |j)=(i |H |j)+ 3 E%(n)
( H0+W[1+2K {a)a|W"

i)

(20)

EN_ea

This result should now be compared with the exact solu-
tion presented in Sec. I. It is easily seen that the trial
wave function in Eq. (11) is equivalent to approximating
the model operator of Eden and Francis in the form

Qy—1+ EK,,ZM 1)

E N —€q

and then determining the K, to optimize the energy
eigenvalue. Physically, one has chosen a variational form
of the model operator which is capable of precisely repro-
ducing the effect of all two-body excitations out of the
ground state when the W" are restricted to two-body
operators with adequate variational flexibility. The rela-
tionship between this procedure and the Brueckner
method has been discussed in previous papers.!!

The eigenvalue problem can be recast into a much more
compact form. One may define a column matrix K of the
elements K, square matrices E'* and E'® out of

E®(n,m)=3 M CEP (n,m) (22)

and
E®n,m)= CfV*CJNE,-(j3)(n,m) . (23)
ij

In addition, we need column matrices E ’2’ composed of the

elements of E¥(n), and E, out of the elements of
2m=3 cM*CNEIn) . (24)

ij

One can now formally eliminate the variational param-

eters K, from Egs. (14)—(16) by matrix algebra to obtain
the final relations

ExCN=CM (i |H |j)+E,(E®—E®)~'EY],
j
(25)
and
Ey= ECiN*C}V[(i |H |jY+E,E®—E@)-1EY] .
i’j
(26)

One must carefully note that the effective shell model in-
teraction

(i |Hsm |j)=Ci |H|j)+E,[E®

is now state dependent in two respects. First the matrices
EY¥, E®, E® all appear with the final eigenvalue (Ey) in
the energy denominator. This energy dependence has
been well documented previously,’ but in the present work
it takes an especially simple form. In the application of
this method to nondegenerate systems'' the Hamiltonian
was separated into H =Hy+ W in such a way that the en-
ergy denominators were held constant while the energy
eigenvalue was iterated to self-consistency. This was ac-
complished through a uniform displacement, U:

—EP)'EY (27)

HO_)HO—U ’
W—-Ww+U,

(28a)
(28b)
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which can be varied to redefine unperturbed energies (€,).
The object of this ploy was merely mathematical simplici-
ty. The value of U was iterated in order to hold the ener-
gy denominators at a constant value at which many of the
integrals in the perturbation series could be performed in
closed form. There is also the clear added advantage that
each integral only needs to be computed once during the
iteration process.

In this procedure the only way the value of U appears
explicitly in the perturbation series is in the terms like

pVi’::zUozﬁI'V)'é'j _ Wi’IIWZ}
5 (Ey—€,)(Ey —€p) 2’

29
a (EN'"ea 29

which arise in the construction of E®). Now consider the
normalization integral

(I |y =3CV*CY |8+ 3 KaK,NJ™ |, (30)
i,j n,m
where
wrwm
Nm=3 2 31
ij § Ey—e.) (31

One now sees that the energy dependence of the effective
interaction will depend on the variation of the Ey
through a change in U(8U) multiplied by the N;;(n,m)
(which measure the admixture of states beyond the model
spgc):e). All this results in a change in the elements of
E*:

8E[(n,m)=8UN}™ . 32

It is interesting to estimate this effect. If one
suppresses any variation in the C; for the moment then
Eq. (14) will yield a change in the K,, (8K,,) for a small
change 8U approximated by

8K=—8U(E® —E?)~INK ,
E—SU(E(”—E(Z))_IN(E(S)—E(z))—IEZ , (33)

where 6K is a column matrix formed from the 8K,,, and
N is a square matrix composed of the elements of
N(n,m)= 3 N"c™*clV . (34)
i’j
The variation in the shell model matrix elements is then
given as

(i|8Hgy | j)=—8UE,(E® —E?)~IN

X(E® —E)-1EY | (35)

Comparing Eqgs. (27) and (35) we see that the relative size
of the change in Hgy will depend on the size of the ma-
trix elements of

SUE®—EX)~IN . (36)

It should be emphasized that Eq. (35) is only intended
as a crude estimate of the order of magnitude of this ef-
fect, which has been presented for pedagogical purposes.
In the actual calculations it is only proper (and actually
easier once the programs are written) to solve Eqgs. (25)

and (26) self-consistently. Results are discussed in Sec.
III1.
In addition to the energy dependence, the matrix ele-

.ments of Hgy appear to retain a state dependence on the

shell model parameters C;. This effect seems more com-
plex, possibly because it is less familiar. This dependence
will cancel out altogether in the absence of coupling be-
tween the various two-body channels (represented by the
W") in the trial wave function. Since channel coupling is
rather small with the Paris potential,’* one might suspect
that this effect is not too large.

It is easy to recognize the physical origin of this effect.
Consider a specific component (¢;) in the shell model
basis. The question is whether the configuration mixing
associated with this single vector is independent of the
amplitude of the other shell model basis functions. Obvi-
ously it will be only so long as it is not coupled to these
other terms in the perturbation matrices. The effect is
also present in the exact formulation of the effective in-
teraction problem. It is concealed, however, within the
state dependence of the model operator Q. Assuming a
specific trial form for the model operators, as we have
done above, clearly brings this dependence forth.

Thus far in this section we have concentrated on the de-
tails of the method which arise from the degeneracy in the
zero-order wave function. All other details proceed as
described in Ref. 11. In particular the operators W" will
be chosen in the form of a projection operator for a
specific two-body channel multiplied by a Gaussian radial
dependence:

W™i,j) =P, (i,j) exp( —a,r}) . (37

Individual W" will be assigned to each two-body channel
in the trial wave function, with five radial terms having
BulB,=a,/(a,+1)] taking on the values 0.1, 0.3, 0.5,
0.7, and 0.9 in each. This prescription was used previous-
ly'! for the a particle and yielded reasonable results. This
procedure was motivated by the Moszkowski-Scott
separation method.!> The method for performing the in-
tegrals and making the Pauli correction are precisely as
described in Ref. 11.

One note on the Pauli correction is worthwhile. Previ-
ous applications of the method have been to the Os shell,
where the Pauli principle simply forbids scattering of two
nucleons into the same state as in the zero-order wave
function. In application to the Op shell one also must for-
bid terms where two Op nucleons are scattered into the Os
shell; or conversely, where two Os nucleons are scattered
into the occupied orbitals of the Op shell. Such processes
are suppressed automatically through the consistent use of
a wave function which is antisymmetric in the exchange
of any pair of nucleons. Therefore it is, of course, essen-
tial to retain all multiparticle terms in the perturbation
series. The mathematical details for making the Pauli
correction term proceed as before,!! just as if this compli-
cation was not present.

III. EXAMPLE

The simplest example appropriate to degenerate pertur-
bation theory to be found in nuclear structure is in the low
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lying energy levels with 4=6. In particular, SLi has six
levels with well-established shell model properties.> 6~ 18
The interaction used was the Paris potential,14 which is
very easy to work with in this method.!! The oscillator
size parameter was kept at b=1.6X10"13 cm in all cal-
culations.

Results are displayed in Table I. There are three ways
to present the data, and comparisons among them are in-
teresting. The first two data columns compare experi-
mental net binding energies with their computed counter-
part. The computed energies appear short of experiment
by 2 to 3 MeV, but there is another point to be considered.
Coulomb interactions were not included in the calculated
values, and cannot be deducted from the experimental re-
sults in an unambiguous manner. The Coulomb energy in
®Li can be estimated to be somewhere near 1.7 to 2.0 MeV
by theoretical means, so the calculation actually yields
numbers 4 to 5 MeV short of experiment.

The uncertainty can be partially removed by consider-
ing the binding energy of the last two nucleons, which oc-
cupy the Op orbits, relative to the a-particle core. In this
case the Coulomb effect may be deducted from the experi-
mental values by standard shell model procedures.>!617
The results appear in the third and fourth data columns
of Table I. Correspondence between theory and experi-
ment is now considerably better, with most discrepancies
ranging from 0.3 to 0.5 MeV. An exception is the second
J=1, T=0 level which appears at an excitation energy of
6.00 MeV. This state needs special attention, and will be
discussed later in this section. The improved comparison
between theory and experiment is seen for two reasons.
First, the binding energy of the last two nucleons is sim-
ply less sensitive since it involves the interaction of a
smaller number of pairs of particles. More important, the
greatest source of error in the calculation lies in the a-
particle core. The a-particle binding energy was found'!
to be nearly 4 MeV short of experiment, and this
discrepancy comes through in all calculations in the
present work.

The final pair of columns in Table I compares the com-
puted energy level spectrum with experiment. In this case
agreement is very good, discrepancies are only on the or-
der of 0.2 MeV except in the second J=1, T=0 level.

The problem with the J=1, T=0 state at 6.00 MeV is
that it has absolute quantum numbers identical to the
ground state. In a variational calculation a rigorous upper
bound is obtained only when one calculates the ground
state, or when the calculated state is guaranteed to be
orthogonal to all levels lying lower in energy within the
system. There is no problem with the first four excited
states in °Li, since all have different sets of absolute quan-
tum numbers (J,7) and orthogonality is ensured. In or-
der to obtain an upper bound on the 6.00 MeV level one
would have to ensure orthogonality to the true ground
state wave function. In the present example this is clearly
impractical since this true wave function is unknown. An
alternative is to simply require the excited state wave
function to be orthogonal to the approximate ground state
function obtained in the calculation, but this has never
been shown to be generally satisfactory.'®

In the present investigation the second J=1, T=0 state
was simply calculated in two different ways, in order to
estimate the uncertainty in the eigenvalue. First, the shell
model matrix elements obtained in the ground state calcu-
lation were used to compute the second root of the shell
model Hamiltonian in the model space. This ensures that
the model space portions of the wave functions for the
first and second J,T=1,0 levels are orthogonal. Table I
shows that this produces an energy which is 0.72 MeV too

"high in the excitation spectrum. Second, the calculation

for the 6 MeV level was redone self-consistently, that is by

iterating U and the C;. This is clearly the better pro-

cedure of the two, and yielded an energy eigenvalue im-

proved by 0.21 MeV. Neither eigenvalue represents a

rigorous upper bound, and consequently both are suspect.
The effective shell model matrix elements

(Op%LSJT | v} |OpL'S'JT) : (38)

TABLE 1. Calculated results for the low lying energy levels of °Li, compared with experiment. All

energies are in MeV.

Energy eigenvalues

Total binding relative to the Excitation
energies® “He core® energies
JT Exp Calc Exp Calc Exp Calc
10 31.99 29.70 —4.69 —4.20 0 0
30 29.81 27.74 —2.51 —2.24 2.18 - 1.96
01 28.43 26.27 —1.13 —0.77 3.56 3.43
20 27.42 25.30 —0.12 0.20 4.57 4.40
21 26.63 24.47 0.67 1.03 5.36 5.23
10°¢ 25.79 22.98 1.31 2.52 6.00 6.72
(10)° (23.19) (2.31) (6.51)

2Coulomb energy was neglected in the calculation, but cannot be (unambiguously) deducted from the ex-
perimental values. This will enhance disagreement by about 1.7—2.0 MeV.
®Coulomb energy was not included in the calculation, and was deducted from the experimental results

by standard shell model methods.

°The second J, T'=1,0 level was calculated without self-consistent reevaluation of the variational param-

eters.

9The second J, T=1,0 level recalculated self-consistently.
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TABLE II. Comparison of the matrix elements {Op>LSJT | V! |0p2L'S'JT) deduced in the

present work with previous calculations, in MeV.

Cohen- Norton- Tripathi- Sussex Paris

JT LS L'S’ Kurath Goldhammer Goldhammer Group potential
21 D 'D —3.05 —3.40 —3.67 —2.42 —2.58
'D ’p —0.50 —0.35 0.46
p ’p 1.27 0.04 —0.39 0.32 —1.98
11 P P 0.86 2.36 —0.64 —0.29 1.67
01 3p p 4.33 0.22 2.08 1.32 6.93
’p s —0.33 —0.08 —0.21
s s —6.73 —5.65 —5.38 —5.09 —5.36
30 3D D —6.88 —5.57 —5.32 —5.14 —5.02
20 3D 3D —4.23 —6.02 —6.81 —6.06 —6.28
10* D D —5.20 —7.79 —4.22 —5.05 —597
D s —1.33 —1.09 —1.05 —0.82 —1.19
3D p —0.73 —0.19 —0.35
s s —8.81 —9.82 —8.62 —8.66 —8.94
s p —0.30 —0.34 —0.44
p p 0.07 7.13 1.92 0.26 2.86

2These J=1, T=0 matrix elements were deduced from the ground state calculation.

deduced in this calculation are shown in Table II. Com-
parison is made there with the corresponding matrix ele-
ments obtained in the shell model X? fits of Cohen and
Kurath'® and Norton and Goldhammer,!” the G-matrix
calculation of Tripathi and Goldhammer,'® and the per-
turbation calculation of the Sussex® group. Of these, the
Sussex calculation lies the closest in general philosophy to
the present work. Considerable agreement among the
various methods is seen for many of the matrix elements,
but the areas of disagreement are more interesting. The
most prominent of these are in the matrix elements in-
volving the 3P states.

"The reason appears to lie in the very strong spin-orbit
interaction present for odd parity states in the Paris po-
tential. This is an important effect, and some effort was
made to cross check the result. First, the Reid?! potential
was examined. There, as in the Paris potential, one finds
a very strong spin orbit interaction in the odd parity states
as opposed to a relatively weak one in even parity states.
This appears to be characteristic of realistic nuclear
forces. Why did it not appear in the G-matrix calculation

TABLE III. Single particle energies in MeV (obtained for
SHe) for the p;,, and p, , orbitals.

Method €(p3,) €pis)
Cohen-Kurath 1.63 2.27
Norton-Goldhammer 1.31 5.21
Tripathi-Goldhammer 5.4 7.0
Sussex 3.63 5.66
Present work 1.39 5.29
Experiment 0.95 5.0+1.5%

*The experimental position of the p,,, level in *He is not very
well determined, and even the error quoted above is an approxi-
mation gleaned from several experimental papers (Ref. 20).

of Tripathi and Goldhammer with the Hamada-Johnston
potential?'® The problem may lie in the fact that the
two-body spin-orbit interaction is of very short range, and
hence quite sensitive to the behavior of the wave function
as two particles come very near to each other. The hard
core potentials may force the wave function to zero too
fast, thus underestimating the spin orbit interaction.

Table III shows the single particle energies for the p;,,
and p,,, orbitals deduced from the calculation of *He.
The doublet splitting obtained with the Paris potential is
seen to be in good agreement with experiment. The
reason for this fairly large splitting is primarily due to the
strong spin orbit interaction discussed above. The tensor
force in the Paris potential is relatively weak, and conse-
quently accounts for only about 1.3 MeV of this doublet
splitting.

Table IV contrasts shell model matrix elements for a
self-consistent calculation of the ground state, with the
corresponding elements for the excited J=1, T=0 level.
The changes in these matrix elements are seen to be quite
small. The largest alteration is the 3§ state, and is only
0.33 MeV; while the ! P, diagonal matrix element does not
change at all within the accuracy of the calculation. The

TABLE IV. Comparison of matrix elements with J=1, T=0
by self-consistent calculations on the ground state, and then on
the 6.00 MeV excited state. The latter values are in parentheses.
All energies are in MeV.

3s 5p 1p
38 —8.94 —1.19 —0.44
(—8.61) (—1.14) (—0.39)
3p —5.97 —9.35
(—6.19) . (—0.31)
p 2.86
(2.86)
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difference reflects the fact that configuration mixing is far
more important in the S states.

It must be remembered that the shell model matrix ele-
ments are by no means unique. Like any set of potential
matrix elements one can, of course, always make a unitary
transformation to obtain a different set. In the case of an
effective interaction in a truncated model space one has
considerably more latitude. The interaction parameters
will depend on precisely how the model basis is defined.
As a simple example one could change the oscillator size
parameter in the calculation, thereby obtaining a new set
of basis functions with an altered shell model interaction.’
More complex alterations are clearly possible. For exam-
ple, one could take the 1s0d orbitals out of the excited
states in this calculation, and insert them into the model
space. Under such an operation the matrix elements for
the Op orbitals would certainly be altered. It is interesting
that the various shell model interactions shown in Table
II show so much agreement in many of the matrix ele-
ments in spite of these complications.

IV. CONCLUSION

The main source of error in this work appears to lie
within the calculation of the a-particle core. This may be
considered additional evidence that the discrepancies in
the a-particle calculation are due to the absence of three-
body correlations in the wave function and three-body nu-
clear forces in the calculation. These effects will be small-
er in the ®Li spectra, and one may have some cancellation
when energy differences are computed.

The most encouraging feature of the results is that the
generalization of the trial wave function to a degenerate
model space evidently produced no new errors. There is
the problem of calculating a second excited level with the
same absolute quantum numbers of a lower state, but this
is an old difficulty which we did not expect to resolve in
this paper.

A sample of the variational parameters (K;) found for
the ®Li ground state are shown in Table V. The 3S; and
IS, partial waves shown belong to the central perturbed
Os oscillator state, while the 'P; channel parameters per-
turbed the Op state. The values previously'! obtained for
the a particle with the Paris potential are also shown,
merely to show that there is very little change in these pa-
rameters due to the channel coupling introduced by two
additional nucleons in the Op shell. The interesting
feature to be noted in this table is the rapid fall off in
magnitude of the K; with increasing 3 for the !P state as
compared with the S states.

PAUL GOLDHAMMER 31

TABLE V. A sample of the variational parameters (K;) ob-
tained for the ground state of °Li. In the 'S, and 3S, channels
the corresponding parameters previously (Ref. 11) obtained in
the a-particle calculation are shown for comparison.

B K(s)) K('So) K('P))
01 —1762 (—1.539) —1.958 (—1.852)  0.742
0.3 0.934  (1.009) 1.972  (1.980) 0.213
0.5 1.026  (1.182) 0519  (0.517) 0.078
0.7 1491  (1.538) 2.493  (2.500) 0.042
0.9 5009  (5.017) 2.949  (2.953) 0.008

Smaller values of B correspond to low energy excita-
tions. The relatively large values of K; for 8=0.9 in the
S states indicates that one is including a considerable ad-
mixture of very highly excited oscillator orbitals in the
perturbed wave function for those states. This well-
known effect is required in order to force the perturbed
wave function toward zero at small nucleon-nucleon
separations in order to accommodate the strong short
range (high momentum) repulsion in modern interaction
operators.

In the p states, and in states of higher angular momen-
tum, the wave function near the origin is zero from the
start. Consequently, the high energy excitations compose
a much smaller admixture into the perturbed wave func-
tion, and most of the excitations appear to be of 2%iw and
4%iw. No attempt was made to exploit this simplicity in
the present calculations.

There are some obvious ways to improve upon the vari-
ational wave function employed here. One could extend
the model space to include the states excited by 2%w over
the (0s)* (0p)? configuration used in this paper. This will
lead to a very large zero-order basis, however, and seems
to be quite unwieldy. An alternative would be to intro-
duce three-body operators ( Wy ) into the trial wave func-
tion of Eq. (11). This procedure seems much more tract-
able within the procedures developed so far for this
method, but will certainly require considerably more ef-
fort and computer time. It is not likely that definitive re-
sults could be obtained in this manner until three-body
nuclear forces are reasonably well known.

Lastly, there could be room for improvement through
refinement of the two-body operators used in Eq. (11).

This research was supported by the U.S. National Sci-
ence Foundation, Grant No. PHY 8214107.

13. P. Elliott and A. M. Lane, Handbuck der Physik, edited by S.
Flugge (Springer, Berlin, 1957), Vol. 39, p. 241.

2P. Goldhammer, Rev. Mod. Phys. 35, 40 (1963).

3K. A. Brueckner, R. J. Eden, and N. C. Francis, Phys. Rev. 99,
76 (1955). '

4H. A. Bethe, Phys. Rev. 103, 1353 (1956).

SR. J. Eden and C. N. Francis, Phys. Rev. 97, 1366 (1955).

6C. Block and J. Horowitz, Nucl. Phys. 8, 91 (1958).

7B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).

8T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, (1966); A92,
481 (1967). )

9H. Dirim, J. P. Elliott, and J. A. Evans, Nucl. Phys. A244, 301
(1975).

10pP. Goldhammer and E. Feenberg, Phys. Rev. 101, 1233 (1956);
105, 750 (1957).

1P, Goldhammer, Phys. Rev. C 22, 287 (1980); 23, 2700 (1981);
29, 1444 (1984).

121, Brillouin, J. Phys. 4, 1 (1933).



31 RELATIONSHIP BETWEEN EFFECTIVE AND REALISTIC. . . 1539

13E. P. Wigner, Math. U. Naturw. Anz. Ungar. Akad. Wiss. 53,
475 (1935).

14M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J.
Cote, P. Pires, and J. de Tourril, Phys. Rev. C 21, 861 (1980).

155, A. Moszkowski and B. L. Scott, Ann. Phys. (N.Y.) 11, 65
(1960); 14, 109 (1961).

163, Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).

17§, L. Norton and P. Goldhammer, Nucl. Phys. A165, 33

(1971).

18R, K. Tripathi and P. Goldhammer, Phys. Rev. C 6, 101
(1972).

19E. C. Kemble, The Fundamental Principles of Quantum
Mechanics (McGraw-Hill, New York, 1937).

20F. Ajzenberg-Selove, private communication.

2IR. V. Reid, Ann. Phys. (N.Y.) 50, 411 (1968).



