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Theory is given for momentum transfer to an ensemble of particles by incident neutrinos or an-
tineutrinos in such a way that subsequent measurements cannot reveal the detailed characteristics of
this transfer. It is shown that large scattering cross sections may be obtained, proportional to the

square of the number of scatterers.

INTRODUCTION

Large numbers of interacting particles and long obser-
vation times have been required for weak interaction ex-
periments at low energies. Total cross sections are pro-
portional to the number of scatterers.

For the scattering of electromagnetic waves by macro-
scopic quantities of matter, the total cross sections in the
X ray region are also proportional to the number of
scatterers.”> However, for wavelengths large in compar-
ison with dimensions of a macroscopic volume of scatter-
ers, the total cross section may be proportional to the
square’ of the number of scatterers.

Research reported here explores a new method for ob-
taining weak interaction cross sections proportional to the
square of the number of scatterers. In order to under-
stand how this might be accomplished, we consider first
the nonrelativistic theory of scattering by a two-dimen-
sional array of scattering potentials.

SCATTERING BY A PLANAR ARRAY

Let us imagine that there are N scatterers equally
spaced along the x and y directions (Fig. 1). The x and y
scatterer spacing is length b. A beam of particles has in-
cident momentum P;o and momentum P;r after elastic
scattering. The interactions occur in a volume V. In-
cident and scattered particles are represented by the wave
functions
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respectively.

Let the scattering potential be U(T). The interaction

matrix element is then

H= iV e TPy () PO T A3y )

Suppose that each scatterer interacts via a delta func-
tion potential with integrated value B. Then U(T) is given
by

ne=N1/2 m, —N1/2
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For (3), H' is evaluated as
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In (4), (Pro —P1r)x and (Pro — —Pyr), are the x and y com-
ponents of Pro — P, respectively.

Fermi’s golden rule gives a transition probability W
with '

“T\H' | %(E) . (5)
The density of states p(E) is computed by noting that in

a range dE the total number of states for the outgoing
particles is, for solid angle d(Q,
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FIG. 1. A two-dimensional array of delta function potential
scatterers.
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For zero rest mass particles, dE =cdp. Expression (6)

then gives
plE)=—"— | pir |2d Q2 , %)
C(27Tﬁ)3 PIr .
J
with

The incident particle velocity ¢ and normalization imply
an incident particle flux
c
£ (8)
4
The interaction matrix element (4) is the product of two
geometric progressions which are readily summed. The
scattering cross section o is the quotient of (5) and (8),
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The differential cross section in (9) has a maximum
value proportional to N2, given by

_ |pro | *B*N?
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do
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max

For Pjo in a direction normal to the array, in the z
direction, (10) corresponds to forward scattering with P;r
also in the z direction. For the forward scattering peak,
the solid angle dQ) is determined by the first zeros of the
integrand of (9). These occur for

— — 27h
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Equation (11) gives a solid angle
2
dQ~m |2 (12)
N ""“bpro

The total cross section associated with this forward
scattering peak is the product of (10) and (12), Ao, given

(13)

A study of (9) indicates that there are other peaks in addi-
tion to the forward peak.

There will be a peak for each value of ;o —P;r Which
gives a zero in the denominator of (9). These occur at-in-
tervals defined by

21m#
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zero
" (14)
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The total number of peaks n, is the number of cells of

Q. 9
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area (8px8Py)denominator zero CONtained within the circle in

the xy momentum space plane with elastic scattering
momentum radius p;r,

bszZF
ny=—"r .
P 4nt?
The total cross section, 0,1, is then given approximately
by the product of (15) and (13) as

|Pro | ’B°N
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Equation (16) is proportional to N in consequence of
the fact that the peak values (10) in the differential cross
section are multiplied by a solid angle for each peak, in-
versely proportional to N. A similar result is obtained for
one- and three-dimensional scatterer arrays.

Expressions (9) and (13) are given in the literature and
describe the scattering* of x rays very well.

(15)

(16)

O'total =

A METHOD OF OBTAINING
CROSS SECTIONS PROPORTIONAL TO N?

In order to obtain a total cross section proportional to
N2, a method is required which does not lead to the very
small solid angles of (12).

Each scatterer should be represented by a wave function
and exchange of momentum with the scatterer must be
taken into account. If a scatterer exchanges momentum
AP, the expectation value of its momentum after scatter-
ing is altered by Ap. This requires the scatterer wave
function g after scattering to be related to the wave
function 5, before scattering by

Ysr=1soe PR, (17)
For such exchange by the nth scatterer, the integral of (2)

would therefore contain a term

o (P10 —Pip —B)T, /A

(18)
Equation (18) suggests that the solid angle Eq. (12) will
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be modified. To explore this possibility and for later ap-
plications, we employ the relativistic quantum mechanics.

INTERACTION OF FOUR-CURRENT DENSITIES

Let us consider the S matrix for interaction of two
four-current densities™® given by

S=o= [ (F|sTsBi=0,|0)d* (19)

| F) is the final state, |0) is the original state. ¥g is a
creation operator for scatterer S, ; is a creation operator
for incident particle I. g and v, are the corresponding
annihilation operators. I" and E are position independent
operators.

The operators s and 9; are represented’ by the follow-
ing expansions:

Ps=3 3 W (T—T,)a), (20)
nj
vr= le7 S Upee ™"PH7g] (21)
k

Here T is again the position three vector and ajt, is a
creation operator for the state with wave function ¢§j,,; as
before, n refers to the nth scattering site. dj is a creation
operator for an incident particle with known momentum
P Up is an incident particle spinor.

We consider N scatterers in a solid. For the states ¥g;,,
harmonic oscillator states are selected. For a harmonic
oscillator wave function centered at radius vector T,,
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In (22), K specifies the volume of each scatterer. For the
N scatterers, the original state is taken to be

t bt t '
201402403 " " * AoN | sare ) - (23)
For nuclei in a solid, the wave functions of different
scatterers will not overlap to a significant degree, and the
symmetry of the many particle wave function need not be
considered.

Let us assume now that the scatterer position probabili-
ty distribution ¢’§j,, ¥sjn is not changed by the scattering,

=( ¢§jn ¢Sjn )after . (24)

scattering

(¢§jn ¢Sjn )before
scattering
Equation (24) implies that each final scatterer state
(Ysjn )r may be related to the original state by

i(Ap,),xt /%

(Ysjn)r=Psjn)oe (25)

Equation (25) implies that each component in the momen-
tum decomposition of the nth scatterer is shifted by the
momentum (Ap,),, corresponding to momentum ex-
change Ap,,.

Suppose there is exchange of momentum (Ap, ), at the
nth site, from (25), 95 in (19) must then be replaced by

T —i(Ap,), xH /%
¢ S= 2 ¢'§On agn e Pun . (26)
n

Expressions (20)—(26) are employed to evaluate the S
matrix (19) for initial and final scatterer states which are

3/ —3s4 —(K2/2)|T—T, |2 (22) harmonic osqillator ground states. Let us now consider
Yson =K"""m e . the case of spin zero scatterers, T =1.
J
UipEUpp 2N —K2|F=F, |24+ (i /H)pjo —pyp—Bp, ) 1P
S=—IECI0 [US Kipm2a RN B et b @

n=1

SCATTERING CROSS SECTIONS

Suppose now that we have scatterers in a cubic crystal with N identical cells, each with length 5. For these assump-
tions the S matrix (27) is integrated over the crystal volume, and over the time interval —7/2 to +7/2. 7is a time long
compared with any relevant energy level periods. The result is

= 1
S=UppEUpXYZT |— |,
m=Ujo v
with
X:"=§1/3e(i/ﬁ)(ﬁlo —P1r—AP, )x X, —(1/K)[(Bro —P;p— AP /25]2
n=1
In (29), X,, =nb, with corresponding definitions for Y and Z.
. | (Erp—Eo+Esp—Eso)T
sin
2%
T:
Eip—Ejp+Esp—Eso
2%

(28)

(29)

(30)

Ejr and Egp are the final state energies of the incident particle and ensemble of scatterers, respectively, E 10 and Egp

are the corresponding original energies.
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— J | UrEU0XYZT | dpsdp; . (31)

In (31), dPs is the element of momentum space for the final state of the ensemble of scatterers, dp; is the element of

momentum space for the final state of the incident particle. T in (28)—

(31) is a function of the momentum variables in

X, Y, and Z. The integration is carried out in the following way.
The length L of the crystal is given by L =N!/3p; to evaluate (31) we must make an assumption regarding Ap,. Let

us assume that each scatterer exchanges an equal amount of momentum Ap,.

gives for certain integrals the approximate value

N'b(Bro —Prr — APa)x

sin

P is therefore a function of Ap,. This

2

e — /K)o —Prp— AB,) /25]?

L f 27— L 2#
5 ) Xdpsx= f
i 2mhi b(B1o —Pir — APo)s
2%
=N2/3

The integration (32) is exact in the limit K— « and an

excellent approximation for expected values of K—108,

Integrations over Ps, and Ps, give similar results.
Combining (31) and (32) then gives

N? _ _
=WI(U1F:U10T)2(1P1

2
=ﬁ— [ (UwEUioTpr? l |dEdQ,, (33)

with E=E;+E,, dQ; is the element of solid angle into
which the incident particle is scattered.
In the center of mass system’

dlpr]| __ ErEs (34)
dE ¢*pi(Erp+Esp)
Equation (34) is integrated over E first
(UpEUp)*P1ErE,
f =Ur )" PrLgr SFdQI ' (35)

(Er+Esr)

Suppose that the incident beam of particles is again in
the Z direction. The solid angle associated w1th the for-
ward peak is given by the first zeros of sin’[+N'/*b(P0

417c

— Bir— APo)x /%] and sin[ +N2b (P10 —Brr — ABa)y /Al

These give

N6 (B0 —PBir — APa)x /Ai=T

and
$N'b(Pro —Bir — APa)y /A=
and
2 2
| Bro—Prr | *= Nﬁb + APax ] + [;;n;fb +Apay} )

dpsx

(32)

[

therefore

dQ=~m|Pro—bir |2/ |Pro |

21/|§10|2-

(36

2mh -
+[ N1/3b +Apay

Since momentum is conserved, and each scatterer was
assumed to transfer equal momentum in a single scatter-
ing, it follows that

NAPpa=Pi10 —Pir - (37
For large N, AP, is very small and the term 2#%7/N'/3b in
(36) will be much larger. The solid angle implied by (36)
will therefore be very small and the total cross section Eq.
(35) will be very small.

MOMENTUM EXCHANGE POSSIBILITIES

Any number of scatterers may exchange momentum in
a scattering process. The total cross section must consider
all possibilities. If the scatterers are electrons, as in the
case of x rays, each scatterer is usually bound to a particu-
lar site and the coupling of electrons on different sites
with each other is small. Under these conditions each
electron may be expected to exchange any amount of
momentum. If such exchange is a random process, each
electron would exchange approximately App with

AP~ ~—————p"i/__;”’ . (38)

For large N, (38) is so small that the momentum
transfer does not play a significant role. The total cross
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section has the very small value implied by the small solid
angle into which an incident particle is scattered.

Suppose that the nuclei of a solid are the scatterers.
These may be very tightly coupled to each other. If the
incident particles have very low energy, the following pro-
cess may occur. All of the momentum may be exchanged
at a single nucleus. The tight binding of that nucleus to
other nuclei would result in the momentum being quickly
transferred to the entire lattice. (Tight binding implies
scatterer quantum states with well-defined positions. In
Appendix A it is shown that scatterer states of well-
defined momenta give small total cross sections.)

For exchange of momentum at a single scatterer at site
T,, Eq. (26) will be replaced by

—ilAp, xt/# % +
T Y Ysoiaor -
i#n

D sn =Vhonadne (26a)

Equation (26a) may Tbe written in a more illuminating
form by adding %y, a/, to the last term and subtracting
it from the first term to give

T * 1 —iAp xH/#
Ysn=Vsonaonle T *

-D+3 ¢§0ia(§i .

all n

(26b)

In (26b) the last term gives a probability amplitude for
the possible process where no momentum is exchanged at
any site. The first term then represents the contribution
to the amplitude for exchange of momentum at the nth

site. We assume strong coupling of nuclei to each other -

with no possible way of identifying the scattering site.
Therefore, we must sum only the first term in (26b) over
all possible sites. Carrying out this sum then gives

Js"=2 ¢§Oja$je
J

—ibp,xt/h (26¢)

Equation (26c) gives a solid angle

2%
N1/3b

2%
Nl/3b

dQ~=m | |Apx+ + |Ap, +

(39)
If P;o is sufficiently small, a total momentum transfer
with Ap—2p;0 is possible without the momentum
transfer changing the coupled scatterer wave function
enough to permit identifying that scatterer after scatter-
ing.
Under these conditions, Eq. (39) may approach 47 and
Eq. (35) may approach the value

| UipEUyo | *EfpN?
. (40)
mhtct

The large cross section Eq. (40) implies that the
kinematics of the exchange does not restrict the value of
the solid angle into which an incident particle is scattered.
In Appendix B it is shown that this is indeed the case.

We may also imagine processes in which two, three, or
any number of unidentified scatterers exchange all the
momentum. In Appendix C these possibilities are con-
sidered, and it is shown that the single unidentifiable
scatterer case gives the largest cross section.

~

/lpmr2.

LIMITS OF VALIDITY OF THE FORMULA
FOR THE TOTAL CROSS SECTION

A crystal would have to be infinitely stiff for every in-
cident particle to be scattered with the large cross section
Eq. (40).

Available crystals might be expected to have cross sec-
tions approaching Eq. (40) if: (a) the energy of interaction
of an incident particle with a scatterer is small compared
with the binding energy of each scatterer to other scatter-
ers; (b) the recoil energy of each scatterer is small com-
pared with the “Debye” temperature energy kT pepye-
This follows from the theory® 10 of the Mdssbauer effect.
This theory gives the fraction of gamma ray emissions
which results in recoil of the crystal as a whole, and the
fraction which results in recoil of the emitting nucleus ex-
citing lattice vibrations. Clearly the recoil of the crystal
as a whole corresponds to the infinite stiffness case dis-
cussed here. The same theory must apply for momentum
transfer by an incident scatterer.

At temperature T small compared with the Debye tem-
perature T'peyye, the fraction of Mossbauer gamma ray
emissions which results in recoil of the entire crystal is
calculated to be f with!©

f=e—(ER/kTDebye)[(3/2)+(

In (41), Ey is the recoil energy given in terms of the in-
dividual scatterer mass ug by (Ap)*/2us.

If Eq. (41) approaches unity this is clearly sufficient to
guarantee a very large total cross section. It is not certain
that this is necessary.

In the Mdssbauer effect, the narrow line widths are as-
sociated with the recoil of the entire crystal with no pho-
non excitation. If phonons are excited, each gamma ray
would have energy shared with a given type of phonon ex-
citation. Since there are many ways of exciting the lattice,
this will give a larger line breadth than excitation of no
phonons.

For the single scatterer momentum exchange discussed
here, it is only necessary that after scattering, the single
scatterer wave function should not be changed so much
that its identity may be established by subsequent mea-
surements. It remains to be proved that this can or can-
not be done if phonons are excited.

Another issue is the possibility of processes in which ng
unidentified nuclei exchange all of the momentum as dis-
cussed in Appendix C. The ng particle exchange leads to
a cross section smaller than for the one particle exchange.

vZTZ/le)ebye}] @1)

, However the recoil momentum is reduced by the factor

1/ng and the recoil energy is reduced by a factor 1/n2.
Therefore the reduction in cross section is approximately
compensated by an increased factor f in (41). For these
reasons it is expected that the cross section will not de-
crease with exchange of momentum as rapidly as implied
by Eq. (41) for a one particle exchange process.

COHERENT, INELASTIC SCATTERING

The Copenhagen interpretation of quantum mechanics
permits a coherent scattering process in which all of the
momentum is exchanged by certain unidentified scatterers
while other unidentified scatterers may exchange energy.
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COHERENT SCATTERING OF NEUTRINOS AND ANTINEUTRINOS

Let us apply Eq. (40) to the scattering of neutrinos and antineutrinos. The neutral current interaction then gives

G¥N?

o=—0
gmititct

It is possible to show that!!
Usrv®(1+7v5) U0 UyrYol1+75)Uso
= —Uspy*(1+v5)UsoUpp¥ ol 1+75)U,o - (43)

In “spinor” representation

—-10f _ |0 -7
All elements here are 2 X 2 matrices
s 0 —27
F(1+y7)= 0 0 (45)
Let
Rg n,
Us= X5 U,= X, 5 (46)
n and X are two-component spinors
Us7(1+y5)Us= —2Xi5Xs , @D
Usy%(14v5)Us =2X{X; , (48)

therefore,

Gy — —
—5 Usr"1+75)U, Uyyal14+75)Us

AGy
V2

(XgFXSOXIFXvO —X;FEXSOXIFE'XVO) .

(49)

For unpolarized scatterers, the last (spin terms) in (49)
average to zero.

Suppose the incident direction is again the z direction.
For scattering through an angle 0, the spinor transforma-
tion law leads to :

X(,;Xvo=cos§ . (50)
Integration of (42) then gives for the total cross section
4Gy EIN?
o= ——W—”;N~ : (51
whic

Equation (51) is the total cross section for N identical
scatterers. Required modifications for quark models will
be considered in another paper. Equation (51) is the same
for both neutrinos and antineutrinos. In general, if all
terms in (49) contribute significantly, the neutrino and an-
tineutrino cases would not be identical.

[ E2(| Uspr®(1+¥5) U0 Uvrv ol 1+75)Uso | 2)dQ, . 42)

EXPERIMENTS

A number of experiments have confirmed theoretical
predictions of relatively large cross sections. One series
observed heating of a nuclear spin system in a target crys-
tal, associated with inelastic coherent scattering of an-
tineutrinos from the ten megawatt reactor at the National
Bureau of Standards in Gaithersburg, Maryland.

A second experiment observed a repulsive force of

4% 10~7 dyn on a 12 g crystal elastic scattering antineu-

trinos from a 600 Ci tritium source. This corresponds to
a total cross section approximately 1.5 cm?.

A third experiment also employed antineutrinos from
the ten megawatt reactor at the National Bureau of Stan-
dards. Elastic scattering was observed, with a cross sec-
tion approximately 2 cm?, for a 100 g crystal. A larger
crystal was employed as a shield. Repulsive force
changes, approximately 3 10~° dyn, were observed as
the shield was placed between the reactor and the target
crystal.

These experiments will be described in detail in forth-
coming papers.

CONCLUSION

Theory predicts large cross sections for tightly coupled
nuclei interacting with low energy neutrinos and antineu-
trinos.
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APPENDIX A: COHERENT SCATTERING
WITH WELL-DEFINED SCATTERER MOMENTA

The large cross sections may be observed only under
some very restricted conditions. One such condition is
that the scatterers have well-defined positions. In this ap-
pendix it is demonstrated that the method will not give
large cross sections if the scatterers have well-defined mo-
menta. Consider again the S matrix.

1 — -
S=o- [ (F|9sTs¥,E¢; | 0)d*xd>x, . (A1)
For well-defined scatterer momenta, it is convenient to

discuss the elastic scattering case in terms of the center of
mass motion.
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The following kinds of quantum states are chosen for
the operators g and ¥r.

Us=2 3 V¥(Da; T (Tc)b)

¥ = 2 Tpe P&l VY

(A2)

In (A2), T is the position three vector, ajT is a creation
operator for the state with wave function ¢§;. b, is a

]

FF o= — — G/ A[(Peo— )T+ PBro —Prp)T] ,— ;=
S3—TUnrEUso [ YD) (P)e" /! Peo ~Per e Pio =B Ty gz
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creation operator for the center of mass state with wave
function ¥gc,(Tc). Tc is the center of mass coordinate
vector. dj is a creation operator for an incident particle
with known momentum P;;. Uy may be a scalar, tensor,
or spinor required to describe the incident particles.

The wave functions 9%, for the center of mass are then

e PcTe’® 2nd the three space part of the integral (A1)
may be written as

(A3)

Pco and Pjo are the original momenta of the center of mass and incident particle, respectively, and Pcr and P;r are
the final state values. Let T' be the three vector from the center of mass to the three volume element d7.

=1

C—-—T r

(A4)

Substituting (A4) into (A3) and carrying out the integration gives

= = == - NNTY 31 s S S
S3—UrEU1083(Beo —PBer +Pro—bir) [ ¥5r(T Thgo(E e 10 P gy |

(AS)

The quantity Ap, =Pco —Pcr Will then disappear in the subsequent integrations.
For elastic scattering the “internal” state 1/)51(r') is not changed by the scattering and ¢S,F(r’)—¢sjo(r’) In practice
(AS) will give an extremely small total cross section, because the solid angle into which scattering may occur is limited as

in (12).

APPENDIX B: SOME KINEMATICAL
CONSIDERATIONS
FOR ZERO REST MASS
PARTICLES

Suppose a beam of zero rest mass particles is scattered
by a large crystal with mass M, initially at rest. If
momentum and energy are strictly conserved and the
internal degrees of freedom of M are not excited, it may
be shown that

1 1
| P1F | |Pro |
1
_-—AE{1—[1—(p§/p,zp)(1—cos2¢)]“2}=o, (B1)
pir—pio—p3+2|prollps | cosp=0 . (B2)

In (B1) and (B2), following earlier definitions, p;r and
pro refer to the final and original incident particle mo-
menta, and pg refers to the final momentum of the center
of mass of M. ¢ is the angle which pg makes with the in-
cident particle momentum. For a given value of pjo it is
clear that p;r and ¢ may have a wide range of values. An
even wider range is possible in practice, since the interac-
tion time is smaller than the length of M divided by ¢ and
the internal degrees of freedom of M may share the
energy. (Bl) implies, for elastic scattering, that
|pir | = |pro |, and (B2) requires that either pg=~O or
: I

—i[(Apyx/n; )+(Apyy/

5" T
Ysn= 2 VYsondon(e

)+ (Ap,z/n, ) +(AE /i) /%

[

Ps=~2|pjo |cosp. ¢ can therefore vary over a wide range.
It follows that there are no serious restrictions on the in-
tegration (14).

APPENDIX C: OTHER MOMENTUM EXCHANGE
POSSIBILITIES

Most of the present paper treats the case where a single
unidentified scatterer exchanges all of the momentum.
Clearly other processes might occur in which any number
of unidentifiable scatterers exchange all of the momen-
tum. All possible kinds of exchange must contribute to
the total cross section. Suppose that an unidentified num-
ber of scatterers, ng, exchange total momentum Ap,, not
necessarily in equal fractions, so that

]="s Ap
Apx= 2 'n—f_ )
j=1 Jx
j=ns AP
Apy= 3 n.y ,
ji=1 gid
J=ns A (1
)
D
APZ= 2 —z— ’
=1 Mz
Jj= "s

aE="3 2E

j=1 ”10

Corresponding to (26A), we have

— D+ 3 doiab - (c2)
N
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For construction of the S matrix each of the N particles must be summed over because the scatterers cannot be identi-
fied. Care is required to sum over each particle no more than once for a particular value of n, n;, n;. For the quanti-

ty X of Eq. (29) this will give

j=ng —iN'3b[B o —PB1p— (8B /)], /i
X= (1—e )

: —ib[P;o —Prp—(AP/n; )], /%
j=1 (1—e [P10—Pr B/ ) ]x )

X?Y2Z?T? is required for the cross section. When
squared, the cross product terms in (C3) are expected to
sum to a small value. The momentum space integrals will

then consist of sums X, ,3'jx Y,ij Z,sz T,fjo, approximately.

The boundary conditions restrict the nj,ny,n;, to ra-

tional numbers exceeding 1. Ap,, Ap,, Ap, are summed
over and have values determined by boundary conditions.
Consideration of these requirements indicates that all pos-
sible momentum transfer combinations will be included
if the ny, n;, n; have integral values from 1 to
(pN'3b/27#).

A given set of Rjxs Njys Njg, will lead to a solid angle
given by:

(Ap2)  (Ap2)  (Ap2)
d= |l 0P P ik (c4)
Njx Rjy Rjz

For infinitely stiff material, assuming no restrictions on
AP and all directions equally likely,

—ilByo —Bpp —(8B/n; )12 /202K 2

(C3)

((Apx)?) ={(Ap,*) ={(Ap,*) =p} /3 . (C5)

A total cross section Eq. (35), obtained from (C5) and a
summation of (C4) over all positive and negative n; is
then

o—o 1425 +5+%+ )] (C6)

In (C6), o, is the cross section for the process in which
all momentum is exchanged by a single unidentified
scatterer. The series
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I+s+stat =", (c7)
Egs. (C6) and (C7) then give
2
o—0 3 1]. (C8)
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