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A simple relativistic extension of the first-order multiple scattering mechanism for the optical po-
tential is employed within the context of a Dirac equation description of elastic nucleon-nucleus

scattering. A formulation of this problem in terms pf a momentum-space integral equation display-

ing an identifiable nonrelativistic sector is described and applied. Extensive calculations are present-
ed for proton scattering from Ca and ' 0 at energies between 100 and SOO MeV. Effects arising
from the relativistic description of the propagation of the projectile are isolated and are shown to be

responsible for most of the departures from typical nonrelativistic (Schrodinger) results. Off-shell
and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are
shown not to compromise the characteristic improvement of forward angle spin observable predic-
tions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and
vector composition of the optical potential is displayed and discussed.

I. INTRODUCTION

In an earlier work, ' several microscopic aspects of the
nonrelativistic impulse approximation (NRIA) to the opti-
cal potential for elastic proton scattering from nuclei were
studied. In particular, the influence of off-shell and non-
local effects and the related ambiguities associated with
approximate treatments of the nuclear matrix element of
two-body scattering operators were investigated. The ef-
fect of uncertainties due to incomplete knowledge of nu-
clear densities was also studied. The scattering observ-
ables at forward angles are not affected significantly by
these sources of ambiguities in current approximation
methods for implementing the NRIA.

Although the NRIA yields qualitatively adequate
theoretical predictions, especially at several hundred MeV,
these predictions do not provide completely satisfactory
descriptions of the high precision data currently available.
In particular, some details of the spin observables are
poorly given by the NRIA and even the descriptions of
differential cross sections are not completely satisfactory
when measured against the standards set by the data.
Moreover, the successes and failures of the NRIA do not
generally appear to follow any systematic dependence
upon projectile energy or momentum transfer which
might be attributed to higher-order effects, although the
difficulties for differential cross sections do diminish as
the projectile energy increases. Thus, one cannot readily
appeal to what have become the standard sources of error

for an "explanation" of the inadequacy of the NRIA. It
appears that there may be an omission of a fundamentally
important process in the theoretical approach itself. Re-
cent calculations strongly suggest that an approach
within the context of a Dirac wave equation may go a
long way towards a resolution of this problem. In this pa-
per we address a relativistic approach of this type and
present calculations based on a formulation which keeps
the relation with the nonrelativistic description in focus.

The unsatisfactory predictions of the NRIA for certain
of the low momentum transfer spin observables are espe-
cially suggestive, since higher-order correlation effects in
the multiple scattering series are expected to be very small
for low momentum transfer. Thus, the nature of the dif-
ficulties appears to require an additional optical potential
contribution which involves all of the target nucleons
coherently, such as is obtained in the ground state matrix
element of the sum of two-nucleon transition operators.
As is described in the following, this sort of additional ef-
fect arises rather naturally when the scattering dynamics
is described by a Dirac rather than a Schrodinger equa-
tion. The enlargement of the Hilbert space to include neg-
ative energy intermediate states of the projectile, which is
implicit in the use of a Dirac rather than a Schrodinger
equation, provides this additional coherent contribution to
the optical potential. ''

In order to appreciate the basis of the preceding re-
marks, it is only necessary to recognize that the idea of
coherence underlies the rationale for the development of
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a multiple scattering expansion of the optical potential.
This can be illustrated by consideration of the first-order
(tp) or impulse approximation term for the optical poten-
tial within the simple model of a Slater determinant
description of the target states. Consider first the differ-
ence between the matrix elements (P

~
to&

~ P) and
(P,

~
to~

~
P), where to& represents the interaction between

the projectile (0) and one of the A target nucleons (1),
~ p )

is the ground state Slater determinant normalized to uni-
ty, and (P„~ is, for example, a one-particle —one-hole ex-
cited state Slater determinant. With differences in the
spatial distributions of each state ignored, the second (in-
elastic) matrix element is smaller than the first (elastic)
matrix element by a statistical factor of I /A. This is be-
cause in the first matrix element the single particle orbital
of particle (1) cannot change and all A of the orbitals con-
tribute, while in the second matrix element orthogonahty
permits a contribution only from the single term in which
particle (1) is in the excited orbital of the final Slater
determinant.

The result of employing a given approximate optical
potential in a Lippman-Schwinger —type of integral equa-
tion for the transition amplitude can be considered from
the point of view of a summation of the scattering pro-
cesses in which the target remains in its ground state.
With a first-order optical potential, the second term in the
expansion of the Lippmann-Schwinger equation for the
transition amplitude is bilinear in the elastic matrix ele-
ments already discussed. The size of this term is the ap-
propriate reference scale against which the size of the om-
itted second-order term for the optical potential should be
judged. This omitted term involves scattering through an
intermediate excited state and is bilinear in the inelastic
matrix elements already discussed. For a given one-
particle —one-hole excited state, the ratio of the bilinear
term retained for the transition amplitude to that omitted
is then I/3, or I/3 in the cross section. These simple
considerations reinforce the physical usefulness of organ-
izing a theory of the optical potential in orders of multiple
scattering. Even for nuclei as light as ' 0, this suppres-
sion is a large effect. Although there are many excited
states that wiH be coupled to the elastic channel, only a
limited sampling will be important at small momentum
transfer where the statistical suppression already estimat-
ed should be reasonable. At high momentum transfer
where the elastic nuclear form factor has fallen many de-
cades, the inelastic terms may be non-negligible, but for
low momentum transfer the first-order optical potential
should be totally dominant due to the foregoing coherence
argument. The consideration of a complete inelastic spec-
trum orthogonal to the ground state single particle orbi-
tals will introduce the pair correlation function as the
centerpiece of this discussion. The suppressions inherent
in this quantity for very small momentum transfers are a-
reflection of the statistical suppression factor already
mentioned. Significant departures from the scattering re-
sults of the first-order approximation to the optical poten-
tial at low momentum transfer would have to come from
additional processes that are coherent in the sense of the
elastic matrix element. If the description of the target
ground state is reliable, then such additional processes

most readily enter if extra degrees of freedom are allowed
for the projectile. An approach in which the projectile is
treated as a Dirac particle achieves this by allowing, in ad-
dition to the positive energy to positive energy scaiterings,
virtual transitions to, from, and within the negative ener-

gy sector as discussed in more detail in Sec. II.
In this paper we extend the previous nonrelativistic cal-

culations' to the case where the dynamics of the projectile
is described by a Dirac equation. We treat only the case
of elastic scattering of a nucleon from a spinless nucleus.
Although the Dirac equation apparently embodies the
correct symmetries for such an effective one-body prob-
lem with spin —,, the microscopic nature of the effective
interaction (optical potential) is not under the same degree
of theoretical control as one is accustomed to with a non-
relativistic formalism. In particular, a relativistic coun-
terpart to standard multiple scattering expansions of the
optical potential is not presently available. The separabili-
ty of a Schrodinger Hamiltonian into components describ-
ing the free target nucleus, the free projectile, and a sum
of residual interactions between the projectile and the tar-
get constituents, is the key feature which enables the con-
struction of a nonrelativistic multiple scattering expansion
in terms of the solutions of the subproblems for scattering
from one, two, etc. , constituents of the target. For a rela-
tivistic treatment, there is no simple counterpart to this
feature. It is well known that a consistent description of a
system of interacting Dirac particles necessitates a field-
theoretical approach. In fact, the treatment of the vacu-
um, the interacting many-body nuclear ground state, and
the nonconservation of particles, as well as the specifica-
tion of the projectile-nucleus residual interaction in terms
of interactions with the nuclear constituents, all introduce
difficulties not encountered in the Schrodinger theory.
Principally for these reasons, a relativistic multiple
scattering theory cannot be straightforwardly formulated
along the lines of the nonrelativistic development. One
must at this time take a heuristic approach. Initially,
such efforts, directed towards a first-order optical poten-
tial in a Dirac equation description of elastic proton
scattering, appear to remove much of the inadequacy of
the nonrelativistic predictions. The issues that are raised
by efforts to reconcile this finding with the clear problems
in specifying the underlying theoretical framework are
important and deserve further study.

We calculate a relativistic optical potential in the im-
pulse approximation (first-order in multiple scattering) by
assuming a relativistic extension of the standard mecha-
nism for the first-order Schrodinger optical potential. A
simple ansatz is employed to prescribe a microscopic
nucleon-nucleus interaction which operates in the 4)&4
Dirac spin space of the projectile from knowledge of this
interaction projected onto the positive-energy Dirac plane
wave states. We take the latter quantity to be the first-
order nonrelativistic optical potential so that our exten-
sion allows the effect of a Dirac description of just the
projectile to be studied separately from the effect of rela-
tivistic components of the target state. This ansatz is very
simple to apply. Mostly this is because the ansatz is
designed to address questions separate from the required
frame transformation of NN scattering amplitudes that is
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an integral part of the related, but distinct, ansatz em-

ployed in initial approaches of this type. We show that
the principal results of the previous relativistic approach
are reproduced by numerical calculations based on the
much simpler ansatz. Thus the essential ingredient of rel-
ativistic approaches lies in the enlargement of the Hilbert
space to include negative energy intermediate states of the
projectile. Eventually it is envisaged that the need for
such an ansatz will be eliminated by dealing not with ex-
trapolations from the physical NN scattering amplitudes,
but rather with the separate positive and negative energy
Dirac components of the NN t matrix predicted from a
relativistic potential, as is obtained from boson exchange
models.

The formulation and calculations presented here utilize
an integral equation in a momentum-space representation.
In this way, the Dirac positive and negative energy projec-
tors can be dealt with simply and straightforward connec-
tions between the relativistic and nonrelativistic sectors
can be maintained and studied. Target recoil effects can
be included in a natural way. Nonlocalities, including
those introduced by Dirac spinors, can be dealt with
directly. Finally, this approach facilitates a study of the
influence of certain off-shell and nonlocal effects related
to the approximate treatment of the full-folding integral
for the nuclear ground state matrix elements of the NN t
matrix. This study is performed in a manner analogous to
similar studies we have made in the nonrelativistic case. '

Stability of the results to model dependence of nuclear
densities is also examined. It is important to investigate
such questions to see whether the characteristic differ-
ences (especially in spin observables) between the relativis-
tic and nonrelativistic approaches are stable with respect
to these typical ambiguities in the microscopic input.

In Sec. II, the Dirac equation in the presence of an
external interaction is cast into the form of a coupled in-

tegral equation between two channels which correspond to
the positive and negative energy Dirac plane-wave states
for the projectile. After defining our notation and the
methods we employ for handling the Dirac equation, we
turn to the question of the microscopic content of the
nucleon-nucleus interaction. The ansatz employed to ob-
tain this from the first-order nonrelativistic optical poten-
tial is then described. Details concerning the relationship
between this ansatz and the one employed in earlier work
in this area ' are discussed in the Appendix. The
partial-wave decomposition of the positive and negative
energy sectors of the optical potential is given in Sec. III
as is the partial wave form of the Dirac integral equation.
The numerical results are presented and discussed in Sec.
IV. The summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

where p=y"pz ——y~", p"=(E, —iV), and pz (——E,tV)
The notation for four vectors and the gamma matrices is
that of Bjorken and Drell. We shall work within a static
approximation in which the energy is fixed and only
three-momentum can be transferred. The positive energy
free state with momentum k and rest frame spin projec-
tion s satisfies

(p —m) ~k,s(+))=0,
and has the coordinate-space form

ikr
(r~ks(+))= u(k, +) ~X, ),

(2~)

(2)

where
~
g, ) is a Pauli (two-component) spinor and

u (k, + ) is a Dirac (four-component) spinor given by
1/2

1Ek+m
2Ek

(4)u(k, +)= o"k
Ek+m

u(k, —)=

—o"k

E„+m '" Ek+m

2Ek

The positive and negative energy free states relate to the
particle and antiparticle degrees of freedom, respectively.
The orthonormality relations for these basis states are

and

(k', s'(+)
i
k,s(+)) =5, ,5(k' —k) (7)

(k', s'(+)
~

k, s(+))=0.
Note that the adjoint state vectors in Eqs. (7) and (8) are
the Hermitian adjoints, viz. ,

—ik' r

( k', s'(+)
i
r) = (X, i

u(k, +) (2~)'" '

rather than the Dirac adjoints which are

(k', s'(+)
~

=(k', s'(+)
~ y (10)

In terms of the basis states already introduced, the com-
pleteness relation is

g Jd k[ ~k,s(+))(k,s(+)
~

In Eq. (4), Ek ——k +m, cr is the usual 2X2 Pauli spin
matrix, and 1 is the 2/2 unit matrix. The corresponding
negative energy solution of Eq. (2), with energy —Ek, is

ik. r
(riks( —))=,i, u(k, —) iX, ),(2~)'"

where

A. Dirac equation with an external field

The differential form of the Dirac equation for the
scattering of a spin —,

' particle of mass m from an external
central field U is

~
+)= ~k,s(+))+ . U

~

+),
p —m +l5 (12)

+ ~k,s( —))(k,s( —)
~

j=l .

From Eqs. (1) and (2), the integral equation equivalent
of Eq. (1) is

(P—m U~ e) =0, — (1) which implements the outgoing spherical wave boundary
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conditions with the limit 6~0+. Subsequently, we shall
not explicitly display the i 5 term in the Dirac propagator.
With a transition operator T defined as

I
k,s(+)&=—fk, +& I&, & (18)

T Ik s(+)&=U
I

q & (13) «, +
I
=«, + Iy' (19)

Eq. (12) leads to the operator integral equation

1=U+U 1
(14)

The convenient quantity to deal with is T++(k', k)
which, as given by Eq. (17), is an operator in Pauli spin
space. To make the integral equation [Eq. (14)] more ex-
plicit, the Dirac propagator can be expanded as (a=y y)

1 =y'r .

The physical transition matrix elements are given by

(15)

which is completely equivalent to the differential form of
the Dirac equation [Eq. (1)]. To make contact with a
more standard notation, we introduce an operator T such
that

(p —m) 'y =(E—a.p —y m)

fk, +&(k, +
I

E —Ek

E+Ek
(20)

T++(k', k) = (k',s'(+ )
I
T

f
k, s (+ ) &

= (k', s'(+)
I
T

I
k,s(+) &

=(X,
f

T++(k k)',fX, &,

where

(16)

ol

Ik, +&(k, + I

E —E E+Ek

(21)
T++(k', k)=(k', +

I
T fk, +&

=(k', +
I

T fk, + & . (17)

Here, for convenience, we have removed the Pauli spinors
to produce basis vectors

I
k, + &, such that

When Eq. (21) is employed in Eq. (14), and matrix ele-
ments are taken with respect, to the same complete basis,
the resulting coupled pair of integral equations can be
written in the form

T++(k', k)=U++(k', k)+ fd k"U++(k', k")I +(k")T++(k",k)+ fd k"U+ (k', k")I (k")T +(k",k),
T +(k', k)= U +(k', k)+ fd k"U +(k', k")I (k")T++(k",k)+ fd k U "(k k '),I "(k )T"+(k k)",,

(22)

(23)

where

r (k")=

The projected interactions are

Ig&= fd'k'[Ik', +&q (k+')+ fk, —&y (k)], (28)

where the projected quantities p+ operate in Pauli spin
space and are given by

U' (k', k) = (k', a
I

U
I
k, b &, (25)

(k') =5(k' —k)+ T++(k k)', (29)

where a and b can stand for either of the labels + or —.
The various quantities T(k', k) and U(k', k) in Eqs. (22)
and (23) are operators in Pauli spin space (2&&2 matrices)
and the pair of coupled equations, Eqs. (22) and (23), are
just another version of the four-component Dirac equa-
tion, Eq. (1). The wave function solution of the Dirac
equation may also be obtained straightforwardly from the
solution of Eqs. (22) and (23) by using Eqs. (12) and (13).
The relationship is

(26)

where

(30)

The pole in the propagator of Eq. (29) produces the out-
going wave term in the position space representation
g+(r). The negative energy plane wave projection g
has, of course, no incident piece and, within the present
static treatment, no outgoing wave even above production
threshold.

With the basis employed here, the scattering state can
be represented by the column

I@&= fk, +&+ T fk, +&. (27) (31)

In terms of the basis states
I
k', + &, we have the expan-

sion of the four-component Dirac state in the form
This representation is not the same as the more usual

representation in terms of "upper" and "lower" com-
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ponents. The essential relativistic feature of the Dirac
equation is the enlarged Hilbert space due to the appear-
ance of the antiparticle degree of freedom on an equal
footing with the particle degree of freedom. If one were
to truncate the formalism so that only the particle degree
of freedom were allowed, then in Eqs. (22) and (23) we
would have I -=0 and, thus, P =0. It is therefore
natural to interpret P+ in Eq. (31) as the "nonrelativistic"
component. We note that, within the same truncation, the
pair of equations that determine T++, namely Eqs. (22)
and (23), become simply the usual Lippmann-Schwinger
equation (with relativistic kinematics), viz. ,

describe the same NN matrix element by means of a dif-
ferent operator, tD, and different basis states for the parti-
cles. These basis states would be the positive energy Dirac
spinors

~
k, s (+ ) &. Accordingly, we may write

&
k'

I

&p'
I

r
I p& I

k& —= &k' +
I

& p' +
I

rD
I p + & I

k + &

(34)

and with the attitude that the momentum components of
~
Po& in Eq. (33) be interpreted as the amplitudes in a pos-

itive energy Dirac plane-wave expansion of the target
state, we are led to adopt the identification

T++(k,k) = U++(k, k) U++(k', k) = UNR(k', k) . (35)

„U++(k k', )T"++(k k"),+ Jd'k" (32)

The interpretation of t/i+ as the nonrelativistic sector of
the wave function is suggested by the form of Eqs. (22)
and (23) and Eqs. (29) and (30), and by the interpretation
of the basis states

~

k', + &. We note that g+(k) is, as may
be seen from Eq. (28), the probability amplitude for the
system to be in the basis state

~
k, + & which, in turn, is a

four-component object having the content of a nonrela-
tivistic free state only in the rest frame. In general, the
question of the identification of the nonrelativistic sector
of ' the relativistic scattering equation is ambiguous
without a specification of the interaction part of the Ham-
iltonian in each formulation. The microscopic description
of an optical potential in first order of multiple scattering
introduces two-body scattering amplitudes which, on shell
at least, are determined by two-body data. This provides
a strong (but incomplete) link between relativistic and
nonrelativistic representations which reinforces the inter-
pretation already discussed.

B. Microscopic approach

We recall that the first-order optical potential in the
Kerman-McManus- Thaler (KMT) nonrelativistic multiple
scattering theory' is

UNR(k' k)=(~ —1)&k'
I &A I

r 140& Ik&

where
~

k & is a Schrodinger plane wave and
~ $0 & is the

target ground state, normalized to unity. In the absence
of a clearly defined multiple scattering expansion for the
relativistic many-body problem, it is natural to seek a rel-
ativistic extension of this first-order mechanism for use in
the Dirac equation. For reasons discussed in the Intro-
duction, we shall, for this present work, retain a nonrela-
tivistic treatment of the target ground state, and consider
the effects of negative energy intermediate states and
propagation for the projectile alone. The physical picture
associated with Eq. (33) is that the projectile interacts
with one target nucleon at a time via the NN transition
operator t. The NN matrix element of t that enters
represents the sum of all possible two-body interactions
that can connect the initial and final asymptotic states.
When these latter states are physically realizable, in a free
NN collision, the t-matrix element is required to repro-
duce NN data. In a relativistic description, one would

U++(k', k)= U'(k', k)+ —o k'XkU s(k', k),
2

where

(36)

U'(k', k) = g(k', k)t'(q, K)p(q), (37)

(38)

We must now specify the other (purely relativistic)
components ( U+, U +, and U ) of the Dirac optical
potential. We stress at this point that if the relativistic
NN operator tD, which can be defined with respect to the
full Dirac plane wave basis (positive and negative energy),
were available, then the natural extension of the NRIA is
to use the right-hand side of Eq. (33) with t replaced by
tD, the Schrodinger plane waves replaced by Dirac (+ or
—) plane waves, and

~ Po & replaced by a suitable relativis-
tic state. However, the operator tD is not uniquely speci-
fied by Eq. (34). Many possible choices of tD can satisfy
Eq. (34) and reproduce the given Pauli matrix element on
the left-hand side. Initial microscopic calculations ' were
implemented by making an ansatz for tD that is as local
as possible while having sufficient gamma matrix struc-
ture so as to reproduce the various on-shell NN Wolfen-
stein scattering amplitudes through Eq. (34). The matrix
elements of this tD that involve one or more negative en-

ergy Dirac plane waves were then assumed to provide a
reasonable extension into the orthogonal negative energy
sector of the space. The accuracy of this procedure is not
known at this time and such information must await a
more fundamental approach such as may be provided by
the solution of a Bethe-Salpeter equation with an elemen-
tary boson exchange model for the NN force." %'ork
along these lines is in progress' and is beyond the scope
of this paper.

In this paper we show that a very simple ansatz for the
relativistic extension to the negative energy sector can re-
veal significant insight into the important features of the
Dirac description of elastic scattering. With the identifi-
cation

U++(k', k) = UNR(k', k),
and an optimum factorization treatment' of the matrix
element in Eq. (33), we can write
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Here K=(k'+k)/2 and ri is the Moiler factor which im-
plements the transformation of an on-shell NN t-matrix
element from the NN center of momentum frame to the
N-nucleus center of momentum frame. The point nucleon
density p(q) is normalized so that p(q =0) is the number
of particles. The quantities t' and t are the components
of the NN t matrix that survive the summations over the
spin coordinates of the constituents of the target, which
we take to be spin saturated. We now change to a Dirac
representation by writing

U++(k', k)=(k', + IS+y Vlk, +), (39)

where S is a Lorentz scalar, and V is the timelike com-
ponent of a Lorentz four-vector which together describe
the N-nucleus interaction U++. The ansatz we employ is
that the S and V derived from the forced equality of the
representation in Eqs. (36) and (39) are to be used to cal-
culate the extensions U+, U +, and U . That is, we
take

U'b(k', k) = ( k', a
I
S+y V

I
k, b ), (40)

where a and b can each be either + or —.This is similar
in spirit to the prescription ' that a postulated Lorentz
invariant content of t++ can be used to generate t+
t +, and t, except that the application here is made at
the level of the optical potential rather than at the NN t
matrix level. Equations (36)—(40) define the Dirac optical
potential which is employed in the present work together
with the integral Eqs. (22) and (23) to calculate scattering
observables. This procedure is equivalent to setting
U=S+y V in the Dirac differential equation given by
Eq. (1).'

We note that any microscopic treatment will give to
U++(k', k) the structure displayed in Eq. (36) due to in-
variance arguments linked to the spin —, spin 0 structure
of the problem. The extension ansatz embodied by Eqs.
(39) and (40) does not rely upon detailed knowledge of the
microscopic content of U' and U . The expression for
U' and U in terms of NN scattering operators and nu-
clear densities will vary with the type of microscopic ap-
proach. We have chosen to employ expressions for U'
and U that come directly from a nonrelativistic ap-
proach. The implications that our approach has for treat-
ments of the Lorentz transformation properties of NN
scattering operators and for relativistic components of nu-
clear densities are discussed in the Appendix. We also
note that at this level of treatment there is no fundamen-
tal reason for choosing the Lorentz structure S+y V in
Eq. (39). There are many other Lorentz structures with
different momentum and gamma matrix dependence that
could be used in Eq. (39) while still reproducing the form
given in Eq. (36).' For example, a Lorentz tensor could
be used in place of either the scalar or vector. The results
for U+, U +, and U would then, in general, be dif-
ferent. This ambiguity is tied to the problem of obtaining
a unique determination of the Lorentz structure of the
NN scattering operator, as discussed earlier. Even if that
problem were under reasonable control, there is still con-
siderable ambiguity as to whether a more fundamental ap-
proach from a field theory would justify a multiple

scattering structure of the same form as the nonrelativistic
one. In the absence of a fundamental approach, we
choose S+y V as already indicated for simplicity and for
comparison with both phenomenological arialysis of
scattering' and mean-field treatments of nuclear ground
states. '

An aspect of the nonrelativistic KMT multiple scatter-
ing structure that does retain its meaning in the relativis-
tic circumstance is the weighting factor of A —1 (rather
than 2) in Eq. (33). A consideration of the implications
of this factor leads to an interesting insight into the physi-
cal picture associated with a first-order relativistic optical
potential, in contrast to that in the nonrelativistic case.
To discuss the point, we consider that the relativistic opti-
cal potential is described by

U' (k', k)=(A —1)(k',a
I (Po I

tD
I go) k,b),

(k',
I &q, I

gt' Iq, ) lk, b),
i=1

(41)

(42)

where a and b can each be + or —,$0 is a suitable rela-
tivistic description of the target ground state, and tD is an
operator in the Dirac spinor space describing the scatter-
ing of the projectife and target particle i. The integral
form of the Dirac equation [Eqs. (22) and (23)], when ex-
pressed in single channel form through formal elimination
of the negative energy channel, becomes'

T++ gr+++ Pe++I T++

where

I ' —U

(43)

(44)

The physical scattering operator u++ is related to the
KMT operator T++ through M ++ = (A /A —1)T++.
Thus, M++ satisfies

~~++ ~+++ ~++I ~~++A —1
+ (45)

S = Jd'klk, —)r (k)(k, —
I

. (47)

The second term of Eq. (46) is the leading term of the
relativistic modification arising from treating the projec-
tile as a Dirac particle. If only the first term in Eq. (46) is
retained, then the treatment of the projectile is nonrela-
tivistic. In nonrelativistic multiple scattering theory, '

terms of higher order than this necessarily involve an ex-
citation of the target via the projectile scattering from one
target nucleon, a propagation of this excited system, and

where ~++=(3/A —1)W++. With retention of only
the first-order effect of the coupling to the negative ener-

gy states in Eq. (44) (that is, U =0), the operator
~++ in the projectile space can be expressed as

~"=X&0.lt' lo. )
i=1

+y(go I

t'
I @ )& (@0l tj

I $0), (46)
l+J

where
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then a deexcitation of the target as the projectile scatters
from a different target nucleon. Thus a target correlation
density is involved. However, in the relativistic descrip-
tion of the projectile, terms involving scattering of the
projectile from two (or more) distinct nucleons of the tar-
get can enter without being coupled to target correlation
effects, viz. , the second term of Eq. (46) in which the tar-
get always remains in its ground state. This is a direct
consequence of the enlargement of the Hilbert space avail-
able to the projectile. The second term of Eq. (46) corre-
sponds to the process often referred to as the Z graph in
field theory. Because of the static treatment of the
present formulation, the negative energy plane-wave inter-
mediate states do not have as close an association with an-
tinucleons as would be possible in a truly covariant
description of the dynamics.

III. PARTIAL %'AVE PROJECTIONS OF THE
INTERACTIONS AND THE INTEGRAL EQUATION

and

U+ (k', k)=(k', + i Ui k, —)

cr k' cr k=Nk Nk ( V —S)—( V+S)
k

U-+(k', k)=(k', —
~
U~k, +)

o'k cr k'
=Nk Nk ( V —S) — ( V+S)

k

U--(k, k)=&k', —
~

U ~k, —)

V+S=Nk Nk ( V —S)+
~k'~k

(52)

The Dirac momentum-space integral equations [Eqs.
(22) and (23)] are to be solved separately for each angular
momentum state. The particularly simple form of these
equations is due to the fact that each of the quantities
T++, T +, U++, U+, U +, and U is an operator
in the two-dimensional Pauli spin space. Here we outline
the expansion of these quantities in (Pauli) spinor-
spherical harmonics, and derive the resulting projected
form of the integral equations. We discuss the techniques
in some detail because they yield additional insight into
the structure of the coupling between the positive and
negative energy spaces, and because the nature of some of
the expansions is somewhat different from what is en-
countered in Schrodinger-type treatments. We first give
the explicit forms for the four components U++, U+
U +, and U of the Dirac optical potential employed
here. From Eq. (40), with the notation U=S+y V, we
find

x (k'.k+i~.k'xk) (53)

It is useful to define the auxiliary quantities D and F,
such that

D (k', k) =Nk Nk[ V(k', k) —S(k', k)] (54)

F( k', k) =Nk Nk[ V(k', k)+S(k', k)], (55)

D ( k', k) = U (k', k),
2

(56)

since these are the only combinations that appear. Given
the nonrelativistic optical potential in the form of Eq.
(36), our ansatz for determining V and S can now be ex-
pressed as

F(k' k)= U'(k' k) ——k'kU (k', k) . (57)
U++(k', k)=(k', +

~

U
~

k, +)
=Nk Nk ( V+S)+

We introduce the angular momentum expansion for the
rotational invariant F(k', k) as

where

x (k' k+io"k'xk) (48)

F( k', k) =4' g 3t'gg(k ')Fl (k', k)9'JL (k),
JLM

=4~ g YL (k')FL (k', k) YL (k),
LMI

(58)

(59)

e„=E„+m=(k'+m')'"+I, (49)
along with a similar expansion for D, U', and U . Here,
3t'Jl (k) is the standard (Pauli) spinor-spherical harmonic
defined by

and from Eq. (4) the normalization constant of the Dirac
spinors is

M9 gg(k) = g Yi (k)
~
Xg ) (LMI,' —,s

~

JM )

(50) in terms of spherical harmonics and Clebsch-Gordan
coefficients. The angular momentum projected form of
Eqs. (56) and (57) is easily seen to be

For convenience, we denote V(k', k) and S(k', k) by sim-

ply V and S. We can explicitly see at this stage the identi-
ty in form between Eqs. (36) and (48). In like manner, Eq.
(40) also yields

DI(k', k)= UJ (k', k)
2

(61)
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Fr (k', k) = UI'(k', k)
k'k

2 2L+1
In this way all four terms involved in Eqs. (64) and (65)

may be expanded and the results may be expressed in the
form (L =2J L—)

X[(L+1)UI+&+LUI &] . (62)

For a given D and F, the full Dirac optical potential can
be expressed as

U+ (k', k)=4~ g9'g~(k')Up+I. (k', k)+JI (k),
JLM '

where

(72)

D k'kU++(k' k) = F(k', k)+

x (k'.i+ io"k' Xk), and

U~+i (k', k) =F1 (k', k)
~k

k'
D~(k', k), (73)

.k'
U+ (k', k) = D(k', k) —F(k', k)

~k
(64)

A
U +(k', k)=4' +5~~z(k )UJI (k k)9 Jl (k)

JLM

where

(74)

and

U +(k', k) =D (k', k)
.k'

F(k', k),
k'

(65) k'
Ugg+(k', k) = Fl. (k', k) DI-(k'—, k) (75)

F k'kU--(k', k) = (k', k) ' (k' k
~k'~k

(66)

U++(k', k) =4~ g O'Jl (k') Up+I+(k', k )O'Jl. (k),
JLM

with

(67)

We now require the angular momentum expansions of
these quantities. There are only two types of expansion
required because when the roles of F and D are reversed,
U++ becomes U, and when the roles of F and —D
are reversed, U+ becomes U +. The expansion of
U++ is of the standard form encountered in momentum-
space treatments of nonrelativistic optical potentials. '

The result is

UJ+I (k', k) = Uq~+(k, k') . (76)

From Eqs. (63), (66), and (68), an interchange of the roles
of F and D allows expansion of U (k', k) to be written
as

U (k', k)=4~ g 9q~z(k )UJI (k k)9qi (k)
JLM

where

(77)

We note that despite the coupling between L and L
states, the angular momentum projections of U+ and
U + need only be labeled by J, and by a single L value
which we choose for later convenience to be that of the
positive energy state. The negative energy state coupled
to this is uniquely specified by J and L =2J L. Because-
Fl. (k', k) and Dl. (k', k) are symmetric under interchange
of k' and k, Eqs. (73) and (75) exhibit the important sym-
metry relation

k'k
UJ+I+(k', k) =F1 (k', k)+ Dz(k', k),

~k ~k
(68) U,, (k', k)=Dz(k', k)+ F, (k', k) .

k'k

k
(78)

where L =2J —L.
The optical potentials U+ and U +, which link the

positive and negative energy sectors of the Dirac space,
are pseudoscalar because of the cr k and cr k' factors
occurring in Eqs. (64) and (65), and hence do not conserve
parity. The angular momentum expansion of these poten-
tials will be purely off diagonal in orbital angular momen-
tum, but still diagonal in total angular momentum. The
expansion can be derived by initially considering the first
term of Eq. (64). From the expansion

D(k', k)=4~+ O'Jl (k')Dl (k', k)9'Jl (k), (69)
JLM

and the identity

Here we have labeled the component by the L value of the
positive energy state that it will eventually be coupled to.
This allows the integral equations to be expressed in a
concise form.

The above-mentioned angular momentum expansion of
the optical potentials, together with the coupled integral
equations [Eqs. (22) and (23)] for T++ and T +, serve to
define the corresponding expansions of these latter quanti-
ties. The most general form for the angular momentum
expansions for T++ and T + may be adopted and the
integral equations iterated using the above-mentioned op-
tical potential expansions to confirm the following results.
The expansions for T++ and T + are necessarily of the
form

which follows from the fact that cr k ' is a Hermitian, uni-
tary, pseudoscalar operator that commutes with J and
J„we have that

a"k'D(k', k)= 4n Q 3rJz(k )DI(k k)9 JI (k) (71)
JLM

T++(k', k) =4' g 9'q~(k')TJI+(k', kl9'q~ (k)
JLM

and
A

T +(k', k) =4' g 9'q~(k')Tq~+(k', k)B'Jl (k) .
JLM

The integral equations in partial wave form are

(79)

(80)
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TJL (k', k) = Uq~+(k', k)+4' g fdk "k" U+ (k' k") Tq~+(k", k)
a=+)— a k"

(81)

TJI+(k', k) = UJI+(k', k)+4m+ fdk "k"
UJL (k', k") TJI+(k",k),

a=+, — a k"
(82)

where k+ ——+1, and A, = —1. The fact that these in-
tegral equations are diagonal in J and independent of the
projection M of J is a reflection of the rotational invari-
ance of the system. The appearance of only a single orbi-
tal angular momentum label in these equations is a conse-
quence of our labeling scheme. The full effects associated
with the lowering (or raising) of the L value by one unit
via U + and the subsequent raising (or lowering) of the
L value via U+ are automatically included.

The results presented in Sec. IV are obtained by numer-
ical solution of Eqs. (81) and (82) for a set of ( J,L) values
up to some maximum values such that the Born approxi-
mation T++= U++ is sufficiently accurate beyond that
point. The contributions to T++ from all higher (J,L)
values are obtained from an evaluation of U++(k', k) via
Eq. (63) followed by a subtraction of the lower angular
momentum components of U++(k', k'), which are includ-
ed in the set of ( J,L) values for which Eqs. (81) and (82)
are solved. The nonrelativistic results with which we
compare are obtained simply by setting U+ to zero,
thereby removing the coupling to negative energy states
and reverting, in effect, to Eq. (32). The only input re-
quired for these calculations is the nonrelativistic optical
potential. The relativistic extension ansatz that we em-
ploy here fixes all other ingredients. A more detailed
description of the microscopic construction of the non-

relativistic optical potential is provided in Ref. 1.

A. Comparison of relativistic and
nonrelativistic calculations
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In Figs. 1—7 the scattering observables do. /dO, A~,
and Q, calculated according to the relativistic prescription

IV. RESULTS -05

Some representative calculations for the elastic scatter-
ing of protons from Ca and ' 0 are presented in the fol-
lowing. These target nuclei were chosen because they are
zero-spin, spin-saturated, X=Z nuclei, for which the
neutron and proton distributions may be considered to be
almost identical. Thus, the only input to these calcula-
tions consists of the density of the target nucleus, inferred
from electron scattering measurements, and the nucleon-
nucleon r matrix, inferred from nucleon-nucleon scatter, -

ing measurements. Any incongruities between the predic-
tions and the elastic scattering data in this study are con-
sidered from the point of view of either failures of the
theo'retical assumptions or incomplete knowledge of the
input quantities for the calculations.

We show calculations for the differential cross section
do. /dQ, the analyzing power A~, and the spin rotation
function Q. Whenever data are available, these are shown
on the figures. Unless otherwise indicated, the point pro-
ton density was obtained from the nuclear charge density
which was taken to be a three-parameter Fermi shape
with parameters fixed at values determined by an
analysis' of electron scattering data. The point neutron
density was set equal to the point proton density.
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FIG. 1. Differential cross section, analyzing power, and spin
rotation function for 500 MeV protons scattered from "Ca.
The solid and dashed lines represent the relativistic and nonrela-
tivistic calculations described in the text. Off shell and nonlocal
effects as represented through the optimum factorization
prescription are included. The data are from Ref. 24.
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as for Fig. 8, except that here an increased
angle is displayed.

The difference between the two predictions for the dif-
ferential cross section is similar to that at 500 MeV. The
nonrelativistic result again has sharper minima and is
somewhat more compact than the relativistic curve. The
results for A~ and Q again show the characteristic phase
difference at the first diffraction minimum and the
deepening of higher-order minima. These qualitative
differences should be easily distinguished by the data
when it becomes available.

Comparisons of the relativistic and nonrelativistic pre-
dictions of do. /dQ and A~ for Ca at 300 MeV have
been presented elsewhere and will not be repeated here.
In this case, except for the region of the first diffraction
minimum, the nonrelativistic calculations provide a better
description of the data.

The data for Ca at 500 MeV is, in fact, so well
described by the relativistic approach that the perfor-

mance over a wider regime demands to be explored. We
do not, of course, expect that a parameter-free approach
will invariably yield precise predictions everywhere. What
we do hope is that the relativistic approach has an extend-
ed regime of applicability when compared to the nonrela-
tivistic approach. Deviations from the predictions can
then be interpreted as arising from physical effects not in-
cluded in the theoretical framework or from inadequate
approximations adopted within calculation. Much of the
thrust of the numerica/ part of the present paper is to ex-
plore the regime of applicability of the relativistic ap-
proach, to investigate the sensitivity of the calculations to
the uncertainties in the input, and to investigate the valid-
ity of various approximations which serve to facilitate
computation.

VA'th the foregoing in mind, we turn now to the scatter-
ing of medium energy protons from ' O. In a previous
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100

publication the 500 MeV relativistic and nonrelativistic
predictions for the cross section and analyzing power have
been presented and compared with one another and with
the data. In this case the nonrelativistic result provides a
good description of the data which is further improved by
the additional relativistic process described in this paper.

In Figs. 4 and 5 we present results for ' O at 318 and
180 MeV. Extensive data will soon become available to
test these predictions. The qualitative features of both
calculations for 318 MeV are the same and the compar-
ison is quite similar to the case of Ca at 300 MeV. The
sharp oscillatory structure for A~ and Q at forward angles
is present in both the relativistic and nonrelativistic results
in contrast to the case at several hundred MeV higher in
energy. Preliminary data agree well with the relativistic
calculation for A~ and Q.

The energy of 180 MeV is rather low for the first-order

-1 s i & i I i a & a I i i i i I & i s s I

5 10 15 20 25
8 {deg)

30 36 40

I

FIG. 13. Differential cross section, analyzing power, and
spin rotation function for 500 MeV protons scattered from Ca.
The solid line corresponds to the same relativistic calculation
displayed as a solid line in earlier figures. The cross-hatched
areas represent the uncertainties due to incomplete knowledge of
the nuclear density as described in the text. The data is from
Ref. 24.

free impulse approximation to the optical potential to be
expected to perform well. The clear distinction between
the relativistic and nonrelativistic results that was evident
for a Ca target at this energy (Fig. 2) is of the same
character for the lighter target as seen from Fig. 5. Data
for Q at 180 MeV on ' O and" Ca at small angles should
be highly instructive. Similar observations about the 0
data at 135 MeV have been made in a previous publica-
tion.

Overall, we observe that where the nonrelativistic pre-
dictions are far from the data, the differences between the
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nonrelativistic and relativistic predictions are often
dramatic, as for Ca at 500 MeV, and the relativistic re-
sult is in far better accord with the data. Where the non-
relativistic predictions are in good qualitative agreement
with the data, the relativistic addition turns out to be
smaH, and in the appropriate direction to improve the
description of the data. Thus the arguments in favor 'of

the relativistic addition are cumulatively compelling, pro-
vided that we are able to rule out sensitivity to other ef-
fects not included in these first-order calculations, which
might be large enough to change our conclusions. In the
latter part of this section we present the results of tests
designed to explore this question.

In Figs. 6 and 7 we compare relativistic and nonrela-
tivistic calculations for Ca and ' 0 at 500 MeV for
larger momentum transfers, out to about 7I' '. A num-
ber of uncertainties which are unimportant for small q

can enter in a significant way at larger momentum
transfer. As we will see later, the major source of ambi-

guity is the lack of constraint on the nuclear density. This
is due to the limited range of electron scattering informa-
tion. Figures 6 and 7 indicate that with a fixed represen-
tation of the nuclear density as a three-parameter Fermi
shape, the relativistic and nonrelativistic calculations yield
the same qualitative behavior for the larger momentum
transfers shown. Of the number of small effects that can
contribute significantly to these numerically difficult
first-order calculations, we have found that Coulomb-
nuclear interference effects are quite important for A~
and Q at large momentum transfer.

In Fig. 7 it is noteworthy that the qualitative behavior
of A~ and Q for the first diffraction minimum is given
correctly for ' 0 at 500 MeV by both the relativistic and
nonrelativistic results. We must view the contrasting situ-
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ation for Ca at the same energy as evidencing a special
sensitivity to the particular nuclear shape.

B. Off-shell and nonlocal effects

We now wish to explore the sensitivity of the relativis-
tic calculations which we have presented to off-shell and
nonlocal effects. By these effects we mean the dependence
upon K= —,(k'+k) as well as upon q in Eqs. (37) and (38)
for the components of U++(k', k). Since the complete
relativistic optical potential in this work is inferred from
this nonrelativistic piece, off-shell and nonlocal depen-
dence will be induced in the components U+, U +, and
U . We assume this to be representative of the charac-
ter of such effects that would be obtained from a more
fundamental calculation of the relativistic components of
the NN t matrix. In all instances we find that the sensi-

tivity calculated in the relativistic case follows fairly
closely the findings for the nonrelativistic case. This sen-
sitivity is displayed in Figs. 8—12.

We do not consider the standard local, on-shell factori-
zation prescription [ t(q)p(q) j that has been almost invari-
ably employed in representations of the first-order KMT
optical potentials. From the studies presented in Ref. 1,
we observe that, although this rather crude approximation
to the first-order optical potential gives reasonable results
for scattering angles below -30, the approximation be-
comes progressively worse beyond -30' and has no clear
meaning beyond -60 .

The solid curves in Figs. 8—12 result from the op-
timum factorization procedure in which the optical poten-
tial is nonloml and includes particular off-shell extrapola-
tions of the nucleon-nucleon t matrix. The calculations
are identiml to those shown as solid lines in Figs. 1—7.
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SOO MeV is displayed. In the angular region in which
data exist this uncertainty may be seen to be completely
negligible and only becomes appreciable beyond —35 .
Comparison with the analogous nonlocal —off-shell sensi-
tivity for the same case, shown in Fig. 8, clearly estab-
lishes how much less important is the specific treatment
of off-shell effects than is a more complete knowledge of
the nuclear distribution. As the energy is lowered or a
lighter target is considered, the nuclear density ambigui-
ties impinge upon regions where data exist or could soon
be measured without difficulty, as indicated in Figs. 14
and 15.

Figures 16 and 17 serve to indicate that lack of
knowledge of the large momentum transfer components
of the density is the principal question that would be ad-
dressed by any future measurements of scattering observ-
ables in an extended angular range. Questions of the ap-
propriate relativistic departures from nonrelativistic first-
order descriptions would seem to be of secondary impor-
tance, as are off-shell and nonlocal effects.

D. Specifically relativistic sensitivity
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FIG. 22. Same as for Fig. 18, except at 650 MeV.

40

and (2) fits to electmn scattering form factors in terms of
a three-parameter Fermi shape supplemented by other
functions to improve the description of the data at high
momentum transfer. In the shell model case, the point
neutron and proton densities are not identical, while in the
second case the point neutron density is taken to be identi-
cal to the point proton density.

As one would expect, Figs. 13—17 illustrate that these
differing descriptions of the nuclear density have essen-
tially no effect on the calculated scattering observables for
forward angles throughout the energy range above —100
MeV. However, the model dependence of the nuclear
density introduces uncertainties in the scattering observ-
ables which increase significantly with increasing momen-
tum transfer. In all cases these ambiguities are the largest
of all those considered in this paper. In Fig. 13 the nu-
clear density sensitivity for protons scattered from Ca at

In Figs. 18—22 we examine the sensitivity of the rela-
tivistic results for the scattering observables to variation
of the scalar and vector composition of the optical poten-
tial. One motivation for such a study comes from the fact
that S and V are separately each large and of opposite
sign. In the nonrelativistic sector, the spin-independent
central part of the optical potential is described by the
sum of S and V. Thus we might expect any uncertainty
in S and/or V to be magnified in the determination of the
central potential.

Another motivation for this study is that the scalar and
vector components of the optical potential adopted in this
work can only be viewed as effective components. The
form of U++(k', k), the nonrelativistic sector of the opti-
cal potential, can be reproduced by a structure for the
operator U in Dirac spinor space which is more general
than the structure U=S+y V considered here. For ex-
ample, a dependence upon gamma matrices y and o." is
to be expected in the general case. The general relativistic
description will remain quite model dependent until com-
ponents of the target states and the NN r matrix that have
the corresponding transformation properties are under re-
liable theoretical control. In this light, an effective scalar
and vector representation is model dependent and the re-
sults reported in the following give an indication of how
this can be expected to affect calculated scattering observ-
ables.

In this study we have used only a single parameter to
display this sensitivity. We have taken S'(a)=(1+a)S,
and varied the parameter about a=0. For Ca 500 MeV
the case a=0.01 provides an essentially perfect fit to the
data. With this in mind, we- display in Figs. 18—22 the
result for a=0.0 as a solid line, and the shaded band is
defined by the limits a=+0.01. This band of width 2%
is seen to have a negligible effect on the differential cross
sections but a significant effect on the minima and maxi-
ma of the spin-dependent observables A» and Q. In par-
ticular, we note that for Ca at the energies of 500 and
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650 MeV, the qualitative behavior in the region of the
first diffraction minimum is subject to a large variation.
For the same target at the lower energy of 181 MeV, and
also for an ' 0 target at the energy of 500 MeV, the quali-
tative behavior of A~ and Q in the region of the first dif-
fraction minimum is stable to thi. s uncertainty. The con-
trast in the behavior at the first diffraction minimum for
500 MeV scattering from ' 0 and Ca must be viewed as
an effect based primarily on the difference between the
momentum-space structure of the density profile of the
target.

By comparing Figs. 18—22 with earlier figures, we can
see that small ambiguities in the effective scalar and vec-
tor composition are much more significant at small
scattering angles than is the lack of precise knowledge of
either the off-shell and nonlocal structure of the NN t
matrix or the nuclear density profile.

V, SUMMARY

In this paper we have investigated a variety of the rela-
tivistic aspects that arise in a Dirac equation description
of proton-nucleus elastic scattering with an ansatz for a
first-order microscopic optical potential. We have dis-
cussed the utility of a formulation of this problem in
terms of a momentum-space integral equation for the
transition amplitude. In this approach, the optical poten-
tial can be expressed as a 2&2 matrix with elements
U++, U+, U +, and U . Each of these quantities
depend upon k', k, and o., the Pauli operator for the spin
of the projectile nucleon. They are the projections of the
relativistic operator U for the nucleon-nucleus optical po-
tential onto the positive and negative energy states of a
free Dirac particle. The coupled integral equations given
in the text for the components T++ and T + are
equivalent to the Dirac wave equation in which the in-
teraction operator is U. The microscopic content of the
relativistic nucleon-nucleus operator U that corresponds
to a first-order mechanism in a multiple scattering frame-
work is not settled at present. In large measure, this is
due to the absence of a multiple scattering expansion for a
problem which is inherently a field-theoretical one.

We have argued that if negative energy plane wave ex-
pansion components of the target states are ignored, then
the component U++ should reduce to the nonrelativistic
optical potential when a first-order scattering mechanism
is adopted. The subsequent microscopic considerations of
this paper are built around this constraint. We adopt a
simple ansatz for the relativistic operator U so that the re-
sulting U++ reproduces the nonrelativistic first-order op-
tical potential that we have calculated and applied in re-
cent work. ' This U++ contains microscopically based
nonlocalities and off-shell effects from the NN t matrix.
The simple relativistic extension ansatz is that U++ be
viewed as the positive-energy Dirac spinor matrix element
of the operator U=S+y V. The deduced scalar and vec-
tor components are then used to construct the purely rela-
tivistic quantities U+, U +, and U . Off-shell ef-
fects and nonlocalities are included in these quantities
through their forced relationship to U++. This extension
ansatz is not unique. It can be viewed as the nucleon-

nucleus counterpart of the related ansatz applied at the
nucleon-nucleon level in initial works on the construction
of a first-order optical potential for a Dirac equation.
The topic of the frame transformation for the NN scatter-
ing amplitude is treated within the construction of U++
and is divorced from the topic of the extension from posi-
tive to negative energy basis states.

Part of the motivation for the studies undertaken in this
paper is to see whether the essential features that distin-
guish the numerical results of relativistic first-order
prescriptions from those of the nonrelativistic first-order
calculations are reproduced by the simpler extension an-
satz. In large measure, we find this to be so. The single
notable exception is the very forward angle behavior of
the spin-dependent observables in elastic proton scattering
from Ca at 500 MeV. There we find the qualitative
behavior of the calculations to be extremely sensitive to
small variations in the assumed vector and scalar compo-
sition of the relativistic nucleon-nucleus operator U. At
the same energy, with the target nucleus taken to be ' 0
and all other aspects of the calculation taken to be identi-
cal, there is no comparable sensitivity in the qualitative
structure of the spin-dependent observables. The situation
for a Ca target at this energy must be considered an ef-
fect driven in large part by the particular shape of this nu-
cleus. The model dependence of relativistic representa-
tions of the NN t matrix and the underlying framework
for a multiple scattering representation of a field-
theoretical system would have to be under much tighter
control than at present to confidently explain the behavior
in this case. An important step in this direction would be
provided by an independent calculation of the positive and
negative energy plane-wave matrix elements of the NN
scattering operator.

We have discussed the nature of the extra processes that
enter when the projectile is treated as a Dirac particle
rather than as a Schrodinger-Pauli particle. The new pro-
cesses enter because of the relativistic enlargement of the
Hilbert space to include the negative-energy states of a
free particle. The use of NN scattering amplitudes that
fit NN data implicitly include negative energy plane-wave
intermediate states in the two-body operators. In the
many-body situation such intermediate states necessarily
enter between the projectile's scattering from two different
target nucleons. The nucleus can remain in the ground
state between such scatterings. However, this is not part
of the elastic channel. The lowest-order relativistic
correction in the effectiue elastic channel optical potential
is therefore a three-body (projectile plus two nucleons of
the target) term. No pair correlations of the target are
needed to feed such a term in contrast to the requirement
for a three-body term in the nonrelativistic multiple
scattering expansion. A definition of a first-order multi-
ple scattering mechanism for an optical potential which is
broad enough to cover both circumstances would be the
absence of mechanisms requiring pair correlations in the
target.

The comparison of relativistic and nonrelativistic calcu-
lations of scattering observables over the energy range
100—500 MeV indicates that the relativistic effects are
very important for spin-dependent observables at all ener-
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gies investigated. Where data exist, the agreement is im-
proved compared to the nonrelativistic calculations of
these observables. The agreement with cross section data
is improved at the higher- energies but not at the lower en-
ergies. This may reflect the importance of Pauli effects,
higher-order multiple scattering terms, and inadequate
knowledge of relativistic features of NN t matrices. The
most interesting and obvious relativistic effects occur at
low momentum transfer. This offers the opportunity of
possible further refinement in our knowledge of such ef-
fects, unencumbered by serious contributions from corre-
lative effects if the energy is not too low.

The nonlocality and off-shell effects present in the opti-
cal potential are investigated in a way which gives an esti-
mate of the ambiguity due to use of a factorization
prescription instead of carrying out the integral for the
nuclear ground state matrix element of an intrinsically
nonlocal NN scattering operator. As in the nonrelativistic
case, such ambiguities are quite negligible at energies
above about 300 MeV for moderate momentum transfer.
As the energy is lowered, such ambiguities become more
serious and occur at smaller momentum transfer where
data exist or can reasonably be measured. The charac-
teristic influence of the relativistic effects on the spin-
dependent observables still survives after consideration of
these ambiguities.

At moderate and large momentum transfer, the most
serious uncertainty comes from the lack of detailed
knowledge of the nuclear shape. By using several dif-
ferent sources for the nuclear density profile, we confirm
that the low q relativistic effects remain identifiable, while
the task of identifying such affects at moderate q is
masked by the uncertain knowledge of the density.

Variations of + 1% in the vector-scalar composition of
the optical potential are used to display estimations of the
effect of typical ambiguities in arriving at the microscopic
content of the operator that should go into a Dirac equa-
tion for elastic scattering. There are negligible effects on
the differential cross sections but quite significant effects
on the sharpness of minima and maxima of the spin-
dependent observables. The most serious effects are at
low q, where this type of model dependence is much
stronger than all other effects we have investigated. The
qualitative structure of the angular distributions for A~
and Q is maintained in all cases except for the sharp oscil-
lation at low q for scattering from Ca at 500 and 650
MeV.

Given the ill-defined nature of the theoretical frame-
work at present, relativistic treatments of elastic nucleon-
nucleus scattering produce results which, overall, are in
better accord with data than the corresponding nonrela-
tivistic treatment. Further refinement of the theoretical
framework, which takes a relativistic viewpoint close to
field theory from the beginning, is called for. In this re-
gard, it should be emphasized that neither the approach
adopted in this work nor the approach of Refs. 2 is very

far removed from the phenomenological investigations of
Ref. 15. The results of Refs. 2 and the relativistic-
nonrelativistic comparisons of this work depend crucially
upon an ansatz. In both cases, the ansatz yields vector-
scalar dominance of the optical potential and, almost as a
consequence, the characteristic advantages of Ref. 15.
Nevertheless, the link between the phenomenology of Ref.
15 and the microscopic nonrelativistic optical potential
obtained here and in Refs. 2 is both physically and intui-
tively exciting. Confirmation of the quahtative physical
correctness of the results obtained on the basis of current
approaches, however, must await comprehensive studies
with microscopically based sources of the full Dirac t ma-
trix and, more importantly, a sound theoretical justifica-
tion.
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APPENDIX

UNR(k', k) = — gU;(k', k),A —1

l

(A 1)

where

Our ansatz for obtaining the Dirac optical potential
from knowledge of the first order nonrelativistic optical
potential, namely Eqs. (35)—(40) and the related discus-
sion in the text, implies a specific treatment of the
Lorentz transformation properties of the NN t matrix and
of relativistic aspects of the intrinsic structure of the nu-
clear target. Here we set out and discuss these implica-
tions in order to allow comparison with other approaches
that begin with an ansatz for obtaining Lorentz invariant
two-body amplitudes before the nucleon-nucleus interac-
tion is constructed.

The purposes of the present discussion can be met by
consideration of the simplified case in which the target
nucleus is described in a single particle model and the
mass of the target is taken to the large. The first order
KMT nonrelativistic optical potential' can then be ex-
pressed in the form'

U;(k', k)= fd'P&y;
~

P ——,'q&&k', P ——,'ql r
~
P+ —,'q, k&&P+ —'q14 & . (A2)
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Here the frame of reference is the frame of zero total
momentum of the projectile plus nucleus system. The
state (p I P; ) is a nonrelativistic (Schrodinger) single par-
ticle state for the ith bound nucleon of the target, and

I (p I P;) I
is the probability density for that particle to

have momentum p. The two-body t matrix in Eq. (A2) is
an operator in the (Pauli) spin space of both particles, and

I P; ) includes a (two-component) Pauli spinor. The nota-
tion of Eq. (A2) is meant to imply a scalar product in the
spin space of the struck nucleon, so that the resulting
U;(k', k) is an operator in the (Pauli) spin space of just the
projectile. Let p=P+ —,q and p'=P ——,

'
q be, respective-

ly, the initial and final momenta of the struck nucleon
that enter into Eq. (A2). We introduce a change of basis
for the t-matrix element by writing

&k' p'It lp k&=&k'+
I
&p'+

I
tD I»+& Ik +&

(A3)

where the basis states on the right-hand side of this equa-
tion are the positive-energy plane-wave Dirac spinors
(each with four components) introduced in the text [see
Eq. (18)]. The quantity tD is an appropriate Lorentz in-

variant operator in the Dirac spinor space of both parti-
cles whose content is constrained only by the requirement
that the right-hand side of Eq. (A3) reproduce the given
left-hand side. This requirement does not determine the
operator tD uniquely, even if consideration is restricted to
only on-shell values of the matrix elements in Eq. (A3).
The ambiguities are of no consequence if attention is re-
stricted to only positive energy Dirac plane wave states of
the colliding pair of particles, as in the case under discus-
sion at this stage.

The t-matrix elements in Eq. {A3) are defined in the
frame of zero total momentum of the projectile-nucleus
system and must be transformed to the frame of zero total
momentum of the projectile-nucleon system in order to
make use of available information for the t-matrix ob-
tained in the latter frame. We introduce the state

&k'p'It lpk&= E(k')

1/2

E (p')
1/2

XM(k', p', k, p)
' E(p)

where

M {k' p'k p) =(k' +(
I
p' +

I I ta
I p +)

I
k, +) .

(A6)

(A7)

Let us consider for the moment that the required ma-
trix element (k', p'

I
t

I p, k) describes a physically realiz-
able two-body collision (one in which total four-
momentum is conserved). Then there is a single Lorentz
transformation which maps both the initial momentum
pair (p, k) and the final momentum pair (p', k') into the
corresponding values as seen from the frame of zero total
two-body momentum. Let the momenta in this two-
body "center of mass" frame be ( —A, A) and ( —4', 4') for
the initial and final states, respectively. From the normal-
ization condition [Eq. (A5)] of the spinors employed in
Eq. (A7), the (on-shell) amplitude M is an invariant, that
1S

M(A', —4';4, —4)=M(k', p', k, p) . (AS)

t(4', 4) = I
E (4')

E(A)

1/2

E(d')

E(A)

M(A', —4';4, —4)

1/2

(A9)

With the left-hand side of Eq. (A9) determined from a
two-body model, the t matrix required for the optical po-
tential calculation (in the frame of zero total projectile-
nucleus momentum) is obtained from Eqs. {A6), (A8), and
(A9) in the form

The t-matrix element in the two-body center of mass
frame is given by

1/2

1/2

which has the normalization [cf. Eq. (7)]

(A4) (k', p'
I
t

I p, k) =ii(k', p';p, k)t(A', 4),
where the Moiler factor for the change of frame is

E (4')E (4')E (k)E (4)
E ( k')E (p')E (k)E (p)

(A 10)

(A 1 1)

(k', + lk, +)=6(k' —k) .

Then, Eq. (A3) can be written as

(A5)
The contribution of the ith nucleon of the target to the
nonrelativistic first-order optical potential, from Eq. (A2),
can now be written as

U, (k', k) = Id P q(P, k', k) (P; I
P——,

'
q ) t(A', 4)(P+ —,

'
q I P; &, (A12)

where 4' and 4 depend upon P and where we have used
the fact that g depends on orily three independent mo-
menta.

The method of optimum factorization that we employ
for the approximation of the integral in Eq. (A12) consists
of making a Taylor's series expansion of qt in the variable {A13)

P about a fixed value Po chosen such that the contribu-
tion of the first derivative term is minimized. . This point
is Pp=O and the contribution of the first derivative term
is zero there. Further details can be found in Ref. 1.
Thus Eq. (A12) becomes

U;(k*,k) =q(P =0,k*,k)t(kp, dp)p;{q),
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where the (scalar) functions FJ(r) and G (r) are the stan-
dard upper and lower components, $=2j—I and the P t
are the (Pauli) spinor-spherical harmonics defined in the
text. We choose the normalization condition

& 0 I 0& —= & 0 I
y'

l 0 & = fd" O'(r W(r) =1 (A15)

A simple relativistic extension of the component U;(k, k)
of the nonrelativistic optical potential which connects pos-
itive energy Dirac plane wave states of the projectile,
would be written as

U +(k', k) =(k', +
~
Vf

~

t
~ g) ~

k, + & . (A16)

The substitution of negative energy plane-wave spinors for
one or both of the projectile states would complete the
description of the required Dirac optical potential.

To relate the U;++ of Eq. (A16) to the nonrelativistic
situation it is convenient to expand the state

~ P ) in terms
of Dirac momentum eigenstates. We thus write

&r
~

/&= fd'p[&r~p, +&q+(p)+(r~p, —&y (p)j,
(A17)

where the components are operators in Pauli spin space
and are given by

FJ (r)9'~((r )

iG/(r) t' T(r—)
0+(P)= &I +

I 4& . (A18)&r~q&= (A14)

Substitution of Eq. (A17) into Eq. (A16) yields
I

where Ao and Ao are evaluated at P=0, but each still de-
pends on k' and k. The above-mentioned procedure for
implementing the change of frame for the two-body t ma-
trix is satisfactory for an on-shell two-body collision.
However, only when the optical potential U;(k', k) is on-
shell (k'=k) does the two-body t matrix become on-shell
(40 ——40) in the optimally factorized form of Eq. (A13).
In the general case one could attempt to deal with the
Dirac operator tz rather than the amplitude M. However
this procedure requires prior knowledge of the t matrix on
the complete Dirac space spanned by both positive and
negative energy plane wave states, that is, a more com-
plete relativistic model of projectile-nucleon scattering.
Such considerations lie outside the scope of this paper.

Let us now consider the implications that the above
treatment has for relativistic aspects of the initial and fi-
nal bound nucleon states. We suppose, for the sake of this
discussion, that the NN operator t~ in the Dirac spinor
space has been suitably identified. We also suppose that
the target nucleus is described by a single-particle model
in which the states are Dirac states. Let (r

~
f) be the

Dirac single particIe state corresponding to total angular
momentum projection I within a filled subshell with
quantum numbers j and /. This four-component spinor
can be written

U++(k'k)= fd'~4'(P —-'q)&k'+1&(P —-'q»+ It I(P+-,'q»+& lk+&0 (P+-'q)+~U;"(k'k» «»)

Xp++(q),
where the density p++(q), defined by

p++(~) =fd'p 0'+( p l q)0+(p+ l q—»

(A20)

(A21)

is a measure of the probability of imparting momentum

where b, U;++(k', k) represents the three terms which in-
volve the negative-energy plane-wave components of the
initial and/or the final bound nucleon states. These com-
ponents are very small compared to the P+(p). If they
were to be neglected, then b, U;++=0. The first term of
Eq. (A19) is exactly of the same form as the nonrelativis-
tic optical potential of Eq. (A2), with the component P+
playing the same role as the state P. The physical content
of g+ and P is, of course, very similar but not, in general,
identical when separate dynamical models are employed
for each. However, the neglect of negative-energy Dirac
plane-wave components of nuclear bound states does re-
strict the physical picture involved in U;++ to precisely
that involved in the nonrelativistic counterpart U;.

With P set to zero, consider now the optimum factori-
zation procedure applied to the first term of U~++ in Eq.
(A19). If the full t-matrix element (i.e., including the
Dirac spinor basis states) is evaluated at P=O and re-
moved from the integral, the result is

U;++(k', k)= &k', + ~( ——,'q, + ~t
~

—,'q, +) ~k, +)

—q to a target nucleon which initially and finally is in a
positive-energy plane-wave component of the bound state.
When t/r is not neglected the three terms that constitute
b, U++(k', k) have a structure similar to Eqs. (A20) and
(A21) with the initial and/or the final bound nucleon la-
bels (+ ) replaced by ( —). In an obvious schematic nota-
tion the full U;++ could be written

=t++~+++ +-~+-+ -+~-++ --~-- .++ ++ ++ t++ t++

(A22)

The last three terms of Eq. (A22) correspond to the three
"Z graphs" described by Celenza and Shakin for the di-
agrammatic expansion of the "one-body" density matrix
associated with a relativistic "tp" approximation. Since
the appearance of negative energy plane-wave basis states
is a natural and convenient signature of processes coming
from the relativistic enlargement of the Hilbert space, we
feel that an organization of theoretical and calculational
investigations along the lines suggested by Eq. (A22) has
significant advantages and should be pursued. In the ab-
sence of firmly based information at this stage on the
negative-energy plane-wave projections of t matrices and
density matrices, we have taken only the first term of Eq.
(A22) in this work and employed the simple ansatz as dis-
cussed in the text, for estimating the U;+, U; +, and
U; from U;++. That is, our approach can be described
as taking the full Dirac optical potential to be given by
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the four quantities

("'k)=&k'+
I

&
—2q+ It

I
—,'q, +}

x
I
k, + }p++(q), (A23)

pv(q ) =f d p u (p ——,
'

q, + )u (p+ —,
'

q, + )

X0+(p—
2 qW+(p+-,'q),

for the vector density in momentum space, and

ps(q) =f d'p u (p ——,
'

q, + )u (p+ —,
'

q, + )

X 0+(p —-'q)0+(p+ 2 q»

(A24)

(A25)

for the scalar density in momentum-space. These expres-
sions are not equal. This is because neglect of negative
energy plane-wave components does not imply neglect of
lower components. We also note that because our op-

where the "effective" (two-body) tD is assumed to retain,
after a spin average in the target space, a Dirac scalar and
vector (fourth component only) parts (tz& ts——+yzy, tz)
determined from equating U;++ to the nonrelativistic
counterpart U;.

The last point we wish to make in this Appendix is
that, from this point of view our approach does not imply
that the Dirac vector and scalar densities of the target
have been taken to be identical. With f set to zero, Eq.
(A17) yields

timum factorization procedure involves removal of the
complete t-matrix element from the folding integral of
Eq. (A19), the Dirac plane-wave spinors for the expansion
of the initial and final state of the bound nucleon have
also been removed from the folding integral. Thus quan-
tities such as those in Eqs. (A24) and (A25) do not appear
explicitly in our present calculations. Only one piece of
shape information, namely that in Eq. (A21) enters. If
one had firmer knowledge of the Dirac NN operator tn,
then it would be possible to implement optimum factori-
zation by removing just tD from the integral, leaving ex-
pressions such as those in Eqs. (A24) and (A25) which
would be more closely comparable to the standard Dirac
vector and scalar densities. Since g is very small, a large
part of the difference between Dirac vector and scalar
densities derives from the different Dirac plane-wave spi-
nor matrix elements in Eqs. (A24) and (A25). Effectively,
these matrix elements (albeit, evaluated at p=o) have
been included in the complete t-matrix elements that we
deal with. Thus, from the point of view of previous ap-
proaches, a large part of difference between vector and
scalar target densities has been included implicitly in the
calculations reported here. The studies of the sensitivity
of results to small changes in the relative strength of vec-
tor and scalar optical potentials presented in the text in-
tentionally do not attribute this sensitivity to either the t
matrix or the density in isolation, since only the combina-
tion can be identified at the present level of treatment.
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