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We invoke the formalism developed by Krajcik and Foldy to consistently treat recoil effects in the
relativistically corrected impulse approximation in the presence of a local central potential. It is
stressed that recoil effects in the case of the single-particle Dirac Hamiltonian are considerably dif-
ferent from those suitable for the Foldy-Wouthuysen diagonalized Hamiltonian. It is also found
that, for the diagonalized Hamiltonian, intuitive arguments may result in an incorrect sign for cer-
tain terms as in a preceding paper. As an illustrative numerical example, we use the resultant for-
mulae to determine the magnetic moment and charge radius of the "N nucleus.

I. INTRODUCTION

To describe electron scattering or other electroweak re-
actions at intermediate energies (e.g. , at 1 GeV electron
beam energy), it has become evident that relativistic ef-
fects associated with the target nucleus must be incor-
porated in a systematic manner. This turns out to be a
formidable task, if not an impossible one, since a con-
sistent description of a system of relativistic particles
remains in its very infancy. On the other hand, it is in-
conceivable that the entire body of nonrelativistic nuclear
physics, as shown over the last five decades to be highly
successful in describing reactions at low energies, can be
ignored altogether. It is likely that further developments
in nuclear Dirac phenomenology or in quark physics will
shed light on how to go beyond the low energy nuclear
physics.

In an earlier paper, ' one of us has attempted to derive a
relativistically-corrected impulse approximation (RCIA)
in the presence of a central local potential. Instead of the
Foldy-Wouthuysen [FW] transformation, in which an
operator is generally considered separately from the initial
and final wave functions, the Pauli-Breit reduction pro-
cedure has been used to generate a unique nonrelativistic
representation of a given matrix element. As shown by
de Vries and Jonker, this reduction method yields results
identical with Eriksen's version of the F%' transforma-
tion. Accordingly, it appears as a proper choice to identi-
fy, in the context of the shell-model language, the normal-
ized upper component of the four-component nucleon
wave function in the FW-diagonalized picture with the
nonrelativistic nucleon wave function. This identification
is plausible for several reasons, viz. ,

(1) The entire body of the low-energy nuclear physics is
expected to remain more or less intact.

(2) The statistical interpretation of the wave function in
nonrelativistic quantum mechanics is strictly reinforced.

(3) By letting the potential approach gradually to zero,
one always maintains the connection between the Dirac
picture and the nonrelativistic picture for the constituent
nucleon.

(4) It serves as a model for allowing one to characterize
relativistic corrections to the nucleon-only impulse ap-
proximation (NOIA).

Of course, the ulc expansion obtained via the FW
transformation does not necessarily converge rapidly for
an arbitrary potential. The two potentials proposed in nu-
clear Dirac phenomenology are fairly strong but, for-
tunately, we have demonstrated that the convergence
property of the U/c expansion remains appealingly good.
Nevertheless, we are interested in the RCIA for a general
central local potential and thereby do not intend to restrict
ourselves to the Dirac phenomenology potential.

The main purpose of this paper is to elucidate, within
the framework of the RCIA, those (recoil) effects which
arise from the fact that the initial and final nuclei in gen-
eral cannot be both at rest. For technical reasons to be
described below, we believe that this topic deserves further
attention and certainly has not been addressed adequately
in the previous paper. ' We discuss in Sec. II how ambi-
guities may arise in an intuitive treatment of recoil effects
as in the previous paper and then propose to use the for-
malism developed by Krajcik and Foldy to treat recoil ef-
fects consistently and elegantly. As an illustrative numer-
ical example, we employ in Sec. III the resultant formulae
to evaluate the magnetic moment and charge radius of the
' N nucleus.
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II. GENERAL FORMALISM

%"e are interested in the matrix elements of the polar
vector and axial vector currents V~(x) and A~(x) between
two nuclear states of definite four momenta p" and p' ',

M~ '=(Xf(p'f')
~

V~(0)
~

X;(p"')),

m,'"' = (X~(p'f'
~
a, (0)

~

m, (p") ) .

These matrix elements enter the transition amplitude T
which allows us to calculate all physical observables of
relevant interest. For instance, the transition amplitude T
for electron scattering is given, in the one-photon-
exchange approximation, by

~iU (p )r4rkU (p~)

X (+f(p' ')
~

J~(0)
~

&;(p")) (2)

with J~(x) the hadronic electromagnetic current and

(p" p—'f')~=—(p,
' —p, 4

To evaluate any of these matrix elements, we need as
the basic input: (1) the initial nuclear wave function of
four-momentum p", (2) the final nuclear wave function
of four-momentum p'f', and (3) the current operator
J)„(x). All these input quantities must be defined in a sin-
gle frame of reference, say the Breit frame in which the
initial and final nuclei are treated symmetrically
(p"= —p' '=q/2), since the matrix element itself is a
Lorentz four-vector. Accordingly, the space-time vari-
ables (x,it) appearing in the current operator J~(x) are de-
fined in the Breit frame. On the other hand, the initial or
final nuclear wave function is generally given in its own
rest frame. Thus, we need to find the Breit-frame nucleon
wave function 4'(r) when the nucleon wave function
4 (r ) obtained in the rest (laboratory) frame of the entire
nucleus is given. This turns out to be a tricky question,
for reasons to be elucidated below.

It is of practical interest to first obtain some intuitive
understanding of the problem. To this end, we write

that the ith constituent wave function depends on
(r;,ir; ). It is well known that the shell model suffers
from the center-of-mass (c.m. ) problem. The resolution to
the c.m. problem has been discussed widely in the litera-
ture, ' but mostly for a system of nonrelativistic particles.
We wish to return to this aspect when we invoke the for-
malism developed by Krajcik and Foldy to formulate
recoil effects to second order in u/c.

The transformation of the coordinates between the
Breit frame and the rest frame of the initial nucleus is
characterized by' "

x =x+(x q)q/(8&'m&) —qt/(2AmN)

+O(v /c ),
t'=t[1+ ~q~'/(8~'m')] —q.x/(2~m )

+O(u /c ) .

Here mN is the nucleon mass. Accordingly, we have

r =r+(r q)q/(8A mN) —qr/(2AmN)

(6a)

(6b)

+O(v /c ),
+=~[1+

~ q ~

'/(8A'm N)] —q r/(2AmN)

+O(u /c ) .

(7a)

(7b)

It has been a standard practice to neglect any role
played by the relative times r; . This approximation could
be dangerous for a consistent treatment of recoil effects.
If we assume that the given nuclear wave function defined
in its own rest frame is in fact a universal-time wave func-
tion, then we have

2=Of roi=l, . . . , A.
Equations (7a), (7b), and (8) yield

r =r —(r q)q/(8A mN)+O(u /c ) .

(8a)

(8b)

This result has been used in Ref. 1. Unfortunately, it is
equally plausible to assume that the universal time has
been specified in the Breit frame,

%(r)=SAT (r )=S&%' (r), v.;=Ofori=l, . . . , 3 . (9a)

AR'—=—g x', ,
A

TL y t L (4)

If it is further assumed (with caution) that a good overall
wave function depends on the ("laboratory" ) c.m. coordi-
nates, X =(R,iT ), only through the trivial factor
exp(iP X ), then the internal overall wave function de-
pends on the relative coordinates,

where SA is the Lorentz transformation determined by
the relative velocity between the Breit-frame observer and
the entire nucleus. To describe a system of A identical
relativistic particles, we may assume that the overall wave
function is already given in its own rest frame in terms of
the space-time variables (x&,it~ ), (x2, it2 ), . . . , and
(x~z,it/). We introduce

H =a Ip —UI+ Uo+P(mN+ V),
then we may expect to use the standard form, '

(loa)

Thus, Eq. (7a) yields

r =r+(r q)q/(8A mN)+O(u /c ),
which predicts a recoil effect of the same magnitude but
opposite in sign in contradistinction with Eq. (8b). To
make a definitive choice, we need a consistent formalism
such as that of Krajcik and Foldy. It turns out that the
sign implied by Eqs. (9a) and (9b) is the right choice ac-
cording to the formalism to be described below.

The next delicate point has to do with the explicit form
of the boost operator S~ appearing in Eq. (3). If we as-
sume that the underlying Hamiltonian is

r'= xL R', 2=t' —TL . —
In the spirit of the shell model, one may further assume

2 QS = 1+ + +O(u /c ),
323 m N 4~mN

(10b)
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for the transformation from the rest frame of the initial
nucleus to the Breit frame. However, Eq. (10b) introduces
a number of recoil effects to the order of ( I/A)(U/c). For
reactions involving 1ight nuclei, such as thermal neutron
capture 'H(n, y) H, these recoil terms present very serious
problems since they are not negligible and, yet, have been
ignored. (As an illustrative example, see Ref. 13.)

The key to resolve this last difficulty comes from the
fact that we are dealing with the FW-diagonalized pic-
ture. ' In this picture, the Hamiltonian is already diago-
nal. Intuitively, the term a q/(4Am N ) in Eq. (10b)
characterizes a reorientation among the different com-
ponents of a Dirac spinor when the Dirac spinor given in

the rest of the initial nucleus is seen in the Breit frame.
For the diagonalized single-particle Hamiltonian, we ap-

ply the formalism of Krajcik and Foldy to the present
problem and obtain

so that

I d r Vt(r)%(r)=1+q /(8A mN)+O(U /c ) . (12b)

If we introduce nuclear wave functions normalized in the
Breit frame, then we need to make an additional substitu-
tion:

%(r)~[1—q /(162 mN)]%'(r) .

This substitution gives rise to relativistic effects of trivial
nature which, however, have often been neglected.

It is clear that the above considerations yield

~K = 1 — a &p q+ (q'r)(q p)
8AmN 8A m

2
q +Sres

162
(13)

with the residual S~" yet to be determined by the detailed
formalism described below. Equation (13) differs from
the corresponding formula in Ref. 1 [Eq. (9b)], where in
tuitive arguments have been invoked in the derivation. To
unravel ambiguities such as those illustrated above, we
find it useful to invoke the formalism developed by
Krajcik and Foldy to treat recoil effects in a consistent
manner.

To maintain Lorentz covariance, it is essential that the
ten infinitesimal generators of the proper inhomogeneous
Lorentz group, i.e., the generators of the infinitesimal
space translations (P&,Pz, P3) =P, the generator of the in-

finitesimal time translation H, the generators of infini-

1—,trXp q.
8Am N

with g a two-component Pauli spinor specified in the rest
frame of the initial nucleus. Here the minus sign appear-
ing in Eq. (11), as also different from what has been used
in Ref. 1, presents another intriguing problem which calls
for a consistent formalism.

There is yet another problem which is related to the
normalization of the overall nuclear wave functions. We
already have'

J d'r 4 (r )'0 (r )=1+0(U'/c ), (12a)

«»m» rotations (J»J2,J3)=J, and the generators of in-
finitesimal Lorentz transformations (K~,K2,K3 ) =K,
satisfy the well-known commutation relations:

[P;,Pj ]=0,
[P;,H]=0,
[J;,H]=0,

Jj]='eljk~k

' Pj ] teijkPk

[I;&Kj]=lejlkKk

[H,K ]=iP
[K;,K ]=—',"k.J„,
[P;,Kj]=i5jH .

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

(14h)

(14i)

For the sake of convenience, the above Lie algebra is to be
referred to as the "Poincare algebra" henceforth. The
Poincare algebra has been invoked in a classic paper of
Krajcik and Foldy for defining the relativistic center-of-
mass variables for a system of relativistic particles with a
diagonalized single-particle Hamiltonian. Recently, two
of us'" have also applied the formalism to the problem of
recoil effects in a bag model. For a system of "nonin-
teracting" Dirac particles with the single-particle Hamil-
tonian given by Eq.(10a), it is straightforward to choose
the various generators,

H =EH

P=XP',
J=XJ
K=2K',

where we have'"'

(15a)

(15b)

(15c)

(15d)

H'=a'V'/i+ pro+ p'(mN+ v'),
P'= V~/i,

J'= x')& V'/i +o'/2,
K'= tV'/i +i a'/2 x'H' . —

(16a)

(16b)

(16c)

(16d)

It is important to bear in mind that the validity of the
Poincare algebra implies Lorentz covariance of the entire
system, and so, the existence of the relativistic center-of-
mass (c.m. ) variables. However, it is the basic assumption
of a shell model that the single-particle generators
(H', P', J', K') can be found without violation of the Poin-
care algebra and the generators of the entire system are
given as simple sums of single-particle generators [i.e.,
Eqs. (15a)—(15d)]. Owing to the complexities associated
with nuclei, such an assumption appears to be a sensible
working hypothesis (or a reasonable approximation). A
further detailed synthesis' indicates that, provided that
Uo and V' can be considered as "internal interactions" (as
already assumed in practice), corrections of higher order
in U/c (which are in fact negligible for practical purposes)
need to be added to the boost operator K. Granting the
validity of such an assumption, we note of the possibility
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of performing a unitary transformation U on all the gen-
erators while maintaining the Poincare algebra, Eqs.
(14a)—(14i). In particular, it is of great interest to per-
form a unitary transformation which diagonalizes the
single-particle Hamiltonian, Eq. (16a). To this end, we
choose, to second order in U/c,

p p P . 2+ p
2 mN 8 mN 16 mN 128 m4~

+.—pV p +, pa [V(V+/3U, )] .
2mN 4mN

+ —
3 [v (V+PUO)] —

3 (VV) p
16m N 4mN

P' '([x'j)=exp( i—8v.K)f' '([x'j), (19)

v=p/~p~, tanh6)= ~p~/E, and E=(~p~2

Since an additional power in p/mN arises from the
presence of 0, we need the boost operator K only to first
order in u/c. To this end, we note

x'—:UxU~

=x+( U, x) U

l 1Pa ,—trXp
4m N

momentum p, i.e., P(p)([x'j), can be obtained from the
wave function at rest, i.e., g' '( [x'j ), as follows:

+, Vp +, tr [V(V—PUO)]xp . .
1 2 1

4mN 8mN

+ Pa+0(1/m N),
2mN mN

p'—:UpU =p[1+O(1/mN)] .

(20a)

(20b)

(17) Accordingly, we find

Here the particle index a has been dropped everywhere for
the sake of simplicity. We obtain

H'= UHU
2

=pmN+ p +V +U,
2mN

+ —,Pp —,P(p'V+ Vp')
8mN 4mN

K'= UKU = U[tp ,' (—xH+Hx—)]Ut

=tp' —,(x'H'+—H'x') .

K'=tp —x pmN+p + V + Uo
P

2m N'

(21)

[(v Uo) —p(v V)]
8mN

1
, a [(VU, ) —p(VV)]Xp

4mN
(18)

We recall ' that the wave function of three-

+ ~T Xp+ pp+ paUO+O(1/m N) .
4mN 2mN 2mN

(22)
It is of great interest to note that the term ia/2 appearing
in Eq. (16d) has been removed upon diagonalization. This
implies that recoil effects suitable for the Dirac Hamil-
tonian, Eq. (16a), are in fact very different from those an-
ticipated for the diagonalized Hamiltonian, Eq. (18).

Finally, it is useful to rewrite Eq. (19) as follows:

g2 ~ 3 4

exp( iOv K')p—' '([x'j)=, 1 iHv K' — (v K—') + (v K') + (v'K')"+ ' ' ' g' ([x'j),
6 24

(23a)

with g'O' =—Ut/j'

Since the Hamiltonian has been diagonalized to the desired order in u/c, we may obtain an overall wave function
g' '( [x'j ) with each constituent wave function containing only the norma/ized upper component. In such a case, the ma-
trix /3 can be neglected except for the iPa term in Eq. (22) (which, in fact, is of order m N and so can be neglected)
Using the identity,

gp'y'"'([x j)=O, (23b)

we obtain, from Eqs. (19), (22), and (23a),
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g'~'([x'J)=exp +iegmNv x'
a

g2
1 — ti Am N

a 2

X 1+i8v g x'
2mN

1 ~'X p'
4mN

g2
+ i g (v x'v. p'+v p'v x')+ . .ltt' 'o'( jx'I ) .

a

exp[ itp /(2—AmN)]=1 — tiAmN+
~ 2

g2

2
(25)

As pointed out earlier in another paper, ' the time depen-
dent factor,

III. A NUMERICAL EXAMPLE

As an illustrative numerical example, we consider the
ground state of the ' N nucleus, which has the following
properties

exp i9+mNv. x'
a

(26a)

is precisely what is needed to give rise to the energy-
conservation 6 function. Furthermore, we may use either
the expression,

J7T
2

M = 13 972.632 MeV,

P = —0.283 189 PN,

( r') '"=2.S80+0.026 fm .

(28)

or the expression

a 2

exp iggv x' mN+ +V'+Uo
2mN

(26b)

I

to generate the three-momentum-conservation 6 function.
Of course, these two choices, either of which is incredibly
close to Eq. (4), will result in slightly different residual
Sx" [Eq. (13)]. The remaining terms in Eq. (24) yield, for
the required transformation on the initial state
(p"= +q/2),

l l
Sg ——1 — o.Xp q+

8Am 162 mN

&& [(q r)(q p)+(q.p)(q r)]+Sx", (27)

which agrees exactly with Eq. (13) with the residual SK"
determined from the mismatch between Eq. (4) and Eq.
(26b). lt is unlikely that such a mismatch will result in a
residual S&" sizable compared to the terms explicitly
given. Thus, we choose to neglect such an effect in our
numerical example.

In summary, the formalism ' developed on the basis
of the Poincare algebra provides a coherent language for
treating recoil effects in the relativistically corrected im-

pulse approximation. '

( l5N(p )
~
J,(0)

~

"N(p) &

with

=iU'(p')1'4 ) lFl(q')+ " "F,(q') U(p),
P

(29)

q~=(p —p')~ ) ~=1~,
F~7g+ 7gTx=2&zg r

.,=(2 ) '() .~„-)„y.),—
and m „ is the proton mass. Fl (q ) and F2(q 2)

respectively, the nuclear charge and anomalous-magnetic-
moment form factors for the ' N nucleus. Furthermore,
we impose the normalization condition on the nuclear
Dirac spinors,

U (p) U(p) = U'(p') U(p ) =1, (30)

so that nuclear wave functions need to be normalized ac-
cordingly.

We follow the procedure developed by Hwang and
16Ernst to calculate the nuclear electromagnetic form fac-

tors. We define

In view of the given spin structure, we define the matrix
element of the electromagnetic current Jl„(x) between the
on-shell nuclear states of four-momenta p and p'p ~

Io= (l5N(p'= —q/2; t)
~
Jo(0)

~

"N(p=q/2;t)), (31a)

I = 2m p N p'= —;t
) J„(0)["N p=E+~ iq 2 '
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2

Io =Ip+Ip —
2- +0

PPZ p
(32a)

with E=[M+(q /4)]' and q =q —qo=q . Both Io
can be evaluated for a given ' N nuclear wave

function. Following Hwang and Ernst, ' it is possible to
relate the Sachs form factors to the above matrix elements
and their q -dependence behaviors,

2 1

& rE&= —mp
3 m„ Io
8 ~2 IO

2 1

We make the usual identification

V=GM(0), &r') =(rE) .

(33c)

(33d)

(34)

Gz(0) =Io

2

m (32b)

(33a)

(33b)

» the remainder of this paper, we wish to invoke the
RCIA, modified to incorporate recoil effects addressed in
t»s paper, «evaluate both p and (r~).

With recoil effects specified by Eq. (27) instead of Eq
(9b) in Ref. 1, the relativistically-corrected impulse ap
proximation (RCIA) for the nuclear electromagnetic
current is given by'

&&f(&')
I
J(o) I~V»& IRcIA 0f g e 'q' fv(q ) 2g gq+j—qx~

—iq e a z F(r') V'

a =~ 2mN l'

[[ VF( r)] +io'X[VF(r')]}
2&7 N

(35a)

a
iqr —& 2 ~v a(&y()' )I &o(0) I));'(P))

I RcIA (PJ g e " ff(q ) (+ ~f~(q )
8mN 4mN

(35b)

Here the various entities entering Eqs. (35a) and (35b) are
defined by' V

5M ——F(r) q +2i go qx —."
l

fv(q') =
z es(q')+ —ev(q'»

2

fM(q') = zijs(q')+ )u v(q'»—-
2

es(O) =ev(O) =1

(36a)

(36b)

(36c)

+ [ —iq. [VF(r)]+n.f VF(r)] xq}, (36i)

(36j)

Ps(0)+@v(0) =2(M~(0) =2X 1.793,

p (0)—(M (0)=2p„(0)=2 X ( —1 913),

F(r)=2mN[2mN+ V(r) —Uo(r)]

G(r) =[F(r)]',

5v ——+(iq r)q /A +q /A (2Eg/A)—o X '—. q
V
l

—G(r) q +2igo"qX —.V

+ (
—i[VG(r)] q+o"[VG(r)]xq},

(36d)

(36e)

(36f)

(36g)

(36h)

P=P +P +P
p'= —,2 —,6 drr R rF r0

p'= ——, J dr r R (r) [F(r)+ 1.793],

p = ——, f dr r R (r)rF'(r) .

(37a)

(36b)

(37c)

(37d)

Here R (r) is the radial part of the normalized lp~~q wave
function, i.e.,

R(r) g (l,m —s; —,',s
I

—,',m ) I') ~,(r)g, .

Following the existing literature, '" we assume a pure
1pi~q configuration for the ' N nucleus. We obtain, from
Eqs. (31)—(36),
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p', p', and p are due to, respectively, the convection
current ( cc V/i), the spin current ( ~iqXcr), and the
medium-induced current I ~ icr X [VF(r)]]. Numerically,
we find, using the harmonic oscillator (HO) wave function
with b = 1.64 fm and V, Uo as in Ref. 8,

p'= 0.859, p'= —1.056, p =0.165,

p= —0.032 . (38)

Accordingly, our small result for the magnetic moment p
is not very different from the value obtained by Miller'
or Bawin et al. ' This suggests that the RCIA is a good

approximation to the original Dirac-phenomenology ap-
proach. This result is not unexpected in view of the other
paper. Unfortunately, the medium-induced current,
which is important only in the surface region, yields a
contribution which tends to upset the agreement between
theory and experiment. Other effects, such as meson-
exchange currents, are needed to assess whether the Dirac
picture indeed fails.

Analogously, the RCIA expression for the charge densi-
ty, Eq. (35b), yields, for a pure lp~~2 configuration and to
order q /mN,

( N(~'~~o(0)
I "NV»&=, ( ') y,

"d '8'( )(1,', )

2
g 1

smN + G(r)+2 X 1.793F(r)

q' 415+ z 3 16
««(~) — +G(r)+2—X1.793F(r)

2

f ««(&)&[G'(r)+2 X 1.793F'(r)] .
SIN 0 (39)

Here the second, third, and fourth terms arise, respective-
ly, from the q, crXp q, and. q [VF(r)] terms in 5~ and
5~ [Eqs. (36h) and (36i)]. It is clear from Eq. (39) that
recoil effects are negligible except for light nuclei. Nu-
merically, Eq. (39) yields, with the HO wave function as
given above,

(r') =(r') +6.64 fm', (40)

which is to be compared with the experimental value in
Eq. (28). The proton charge radius (rE)„describes the
q dependence of ez(q ) which appears in the first term of
Eq. (39). We note that the oscillator parameter b can be
adjusted to make a prediction in agreement with the ex-
perimental value [Eq. (28)] without affecting appreciably
the prediction on the magnetic moment. We also note
that the medium-induced charge density [which is pro-
portional to [VF(r)] or [VG(r)] J is again sensitive to the
surface region but is of negligible importance (only
—0.5% of the overall contribution).

In closing our numerical example, it is useful to note
that Eqs. (17)—(22) establish the link (or, in fact, the
equivalence) between the nondiagonalized (original) Dirac
Hamiltonian and the unitarily-diagonalized Hamiltonian,
with the latter being assumed for the RCIA used in the
present section. In particular, the smallness of recoil ef-
fects in the RCIA treatment of the above numerical ex-
ample cannot be taken as to imply that recoil effects in
the relativistic mean-field calculation for the same prob-
lem are also negligible. As a matter of fact, Eqs.
(17)—(22) indicate that the boost operator, as described by
Eqs. (15d) and (16d) [with the single-particle boost opera-
tor (16d) appearing exactly in Eq. (21)], must be used in

such relativistic mean-field or Dirac-phenomenology cal-
culations. This boost operator [Eq. (16d)] contains both a
term linear in a [as already given in Eq. (10b)] and terms
involving the potentials. For the illustrative example dis-
cussed above, numerical importance of these corrections
are currently under detailed investigation. However, any
such effects are suppressed by a factor I/3 [as implied by
Eq (19) w. ith M the nuclear mass], and so, are in general
negligible except for very light nuclei or for some excep-
tional cases where delicate cancellation occurs or measure-
ments are very accurate. It is clearly of great interest to
pin down cases where inclusion of such relativistic recoil
effects becomes- essential. Although this task is well
beyond the main focus of the present paper, it is gratify-
ing to note that the equivalence between the nondiagonal-
ized Dirac picture (as used in relativistic mean-field calcu-
lations) and the unitarily-diagonalized picture (as used in
connection with RCIA) is established reasonably well by
Eqs. (17)—(22) and, in both cases, recoil effects are under-
stood at least to the leading order in U lc.

IV. SUMMARY

%'e have invoked the formalism developed by Krajcik
and Foldy to treat recoil effects in the relativistically
corrected impulse approximation in the presence of a local
central potential. Whereas recoil effects in such impulse
approximations remain negligible, recoil corrections in
Dirac phenomenology may be of numerical significance
for very light nuclei or for exceptional cases where deli-
cate cancellation occurs or accurate measurements have
been made. As an illustrative numerical example, we have
considered the magnetic moment and charge radius of the
' N nucleus.
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